Multi-swarm Optimization Algorithm Based on Firefly and Particle Swarm Optimization Techniques

  • Tomas KadavyEmail author
  • Michal Pluhacek
  • Adam Viktorin
  • Roman Senkerik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10841)


In this paper, the two hybrid swarm-based metaheuristic algorithms are tested and compared. The first hybrid is already existing Firefly Particle Swarm Optimization (FFPSO), which is based, as the name suggests, on Firefly Algorithm (FA) and Particle Swarm Optimization (PSO). The secondly proposed hybrid is an algorithm using the multi-swarm method to merge FA and PSO. The performance of our developed algorithm is tested and compared with the FFPSO and canonical FA. Comparisons have been conducted on five selected benchmark functions, and the results have been evaluated for statistical significance using Friedman rank test.


Firefly Algorithm Particle Swarm Optimization Hybridization Multi-swarm 


  1. 1.
    Pluhacek, M., Senkerik, R., Viktorin, A., Kadavy, T., Zelinka, I.: A review of real-world applications of particle swarm optimization algorithm. In: Duy, V., Dao, T., Zelinka, I., Kim, S., Phuong, T. (eds.) AETA 2017. LNEE. Springer, Cham (2018). Scholar
  2. 2.
    Du, W., Li, B.: Multi-strategy ensemble particle swarm optimization for dynamic optimization. Inf. Sci. 178(15), 3096–3109 (2008)CrossRefGoogle Scholar
  3. 3.
    Wang, H., Wu, Z., Rahnamayan, S., Sun, H., Liu, Y., Pan, J.: Multi-strategy ensemble artificial bee colony algorithm. Inf. Sci. 20(279), 587–603 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Blackwell, T., Branke, J.: Multi-swarm optimization in dynamic environments. In: Raidl, G.R., et al. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 489–500. Springer, Heidelberg (2004). Scholar
  5. 5.
    Liang, J.J., Suganthan, P.N.: Dynamic multi-swarm particle swarm optimizer with local search. IEEE (2005)Google Scholar
  6. 6.
    Lynn, N., Suganthan, P.N.: Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation. Swarm Evol. Comput. 1(24), 11–24 (2015)CrossRefGoogle Scholar
  7. 7.
    Nepomuceno, F.V., Engelbrecht, A.P.: A self-adaptive heterogeneous PSO for real-parameter optimization. IEEE (2013)Google Scholar
  8. 8.
    Zhan, Z.-H., Zhang, J., Li, Y., Shi, Y.-H.: Orthogonal learning particle swarm optimization. TEVC 15(6), 832–847 (2011)Google Scholar
  9. 9.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, MHS 1995, pp. 39–43. IEEE (1995)Google Scholar
  10. 10.
    Allahverdi, A., Al-Anzi, F.S.: A PSO and a Tabu search heuristics for the assembly scheduling problem of the two-stage distributed database application. Comput. Oper. Res. 33(4), 1056–1080 (2006)CrossRefGoogle Scholar
  11. 11.
    Assareh, E., Behrang, M.A., Assari, M.R., Ghanbarzadeh, A.: Application of PSO (Particle Swarm Optimization) and GA (Genetic Algorithm) techniques on demand estimation of oil in Iran. Energy 35(12), 5223–5229 (2010)CrossRefGoogle Scholar
  12. 12.
    Rudek, M., Canciglieri Jr., O., Greboge, T.: A PSO application in skull prosthesis modelling by superellipse. ELCVIA Electron. Lett. Comput. Vis. Image Anal. 12(2), 1–12 (2013). Scholar
  13. 13.
    Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Frome (2010)Google Scholar
  14. 14.
    Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H.: Firefly algorithm with chaos. Commun. Nonlinear Sci. Numer. Simul. 18(1), 89–98 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Yang, X.: Firefly algorithm, Lévy flights and global optimization. In: Bramer, M., Ellis, R., Petridis, M. (eds.) Research and Development in Intelligent Systems XXVI, pp. 209–218. Springer, London (2010). Scholar
  16. 16.
    Farahani, S.M., Abshouri, A.A., Nasiri, B., Meybodi, M.R.: A Gaussian firefly algorithm. Int. J. Mach. Learn. Comput. 1(5), 448 (2011)CrossRefGoogle Scholar
  17. 17.
    Kora, P., Rama Krishna, K.S.: Hybrid firefly and particle swarm optimization algorithm for the detection of bundle branch block. Int. J. Cardiovasc. Acad. 2(1), 44–48 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations