Advertisement

Feature Selection Using Differential Evolution for Unsupervised Image Clustering

  • Matheus Gutoski
  • Manassés Ribeiro
  • Nelson Marcelo Romero Aquino
  • Leandro Takeshi Hattori
  • André Eugênio Lazzaretti
  • Heitor Silvério LopesEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10841)

Abstract

Due to the accelerated growth of unlabeled data, unsupervised classification methods have become of great importance, and clustering is one of the main approaches among these methods. However, the performance of any clustering algorithm is highly dependent on the quality of the features used for the task. This work presents a Differential Evolution algorithm for maximizing an unsupervised clustering measure. Results are evaluated using unsupervised clustering metrics, suggesting that the Differential Evolution algorithm can achieve higher scores when compared to other feature selection methods.

Keywords

Differential evolution Feature selection Image clustering 

Notes

Acknowledgements

Author M. Gutoski and L.T. Hattori would like to thank CAPES for the scholarship; Author M. Ribeiro would like to thank the Catarinense Federal Institute of Education, Science and Technology and IFC/CAPES/Prodoutoral for the scholarship; Author N. Aquino would like to thank the Organization of the American States, the Coimbra Group of Brazilian Universities and the Pan American Health Organization; author H. S. Lopes would like to thank to CNPq for the research grant number 440977/2015-0.

References

  1. 1.
    Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)CrossRefGoogle Scholar
  2. 2.
    Gantz, J.F.: The diverse and exploding digital universe: an updated forecast of worldwide information growth through 2011. Technical report, IDC (2008)Google Scholar
  3. 3.
    Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Piscataway, NJ, vol. 1, pp. 886–893. IEEE Press (2005)Google Scholar
  5. 5.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, (USA), vol. 1, pp. 1097–1105. Curran Associates Inc. (2012)Google Scholar
  6. 6.
    Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014)CrossRefGoogle Scholar
  7. 7.
    Song, Q., Ni, J., Wang, G.: A fast clustering-based feature subset selection algorithm for high-dimensional data. IEEE Trans. Knowl. Data Eng. 25(1), 1–14 (2013)CrossRefGoogle Scholar
  8. 8.
    Law, M.H., Figueiredo, M.A., Jain, A.K.: Simultaneous feature selection and clustering using mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1154–1166 (2004)CrossRefGoogle Scholar
  9. 9.
    Li, Z., Liu, J., Yang, Y., Zhou, X., Lu, H.: Clustering-guided sparse structural learning for unsupervised feature selection. IEEE Trans. Knowl. Data Eng. 26(9), 2138–2150 (2014)CrossRefGoogle Scholar
  10. 10.
    Tabakhi, S., Moradi, P., Akhlaghian, F.: An unsupervised feature selection algorithm based on ant colony optimization. Eng. Appl. Artif. Intell. 32(1), 112–123 (2014)CrossRefGoogle Scholar
  11. 11.
    Ghamisi, P., Benediktsson, J.A.: Feature selection based on hybridization of genetic algorithm and particle swarm optimization. IEEE Geosci. Remote Sens. Lett. 12(2), 309–313 (2015)CrossRefGoogle Scholar
  12. 12.
    Nag, K., Pal, N.R.: A multi-objective genetic programming-based ensemble for simultaneous feature selection and classification. IEEE Trans. Cybern. 46(2), 499–510 (2016)CrossRefGoogle Scholar
  13. 13.
    Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)CrossRefGoogle Scholar
  15. 15.
    Hattori, L.T., Lopes, H.S., Lopes, F.M.: Evolutionary computation and swarm intelligence for the inference of gene regulatory networks. Int. J. Innov. Comput. Appl. 7(4), 225–235 (2016)CrossRefGoogle Scholar
  16. 16.
    Lin, C., Qing, A., Feng, Q.: A comparative study of crossover in differential evolution. J. Heuristics 17(6), 675–703 (2011)zbMATHCrossRefGoogle Scholar
  17. 17.
    Krause, J., Lopes, H.S.: A comparison of differential evolution algorithm with binary and continuous encoding for the MKP. In: Proceedings of the BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence, pp. 381–387 (2013)Google Scholar
  18. 18.
    Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat.-Theory Methods 3(1), 1–27 (1974)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Matheus Gutoski
    • 1
  • Manassés Ribeiro
    • 2
  • Nelson Marcelo Romero Aquino
    • 1
  • Leandro Takeshi Hattori
    • 1
  • André Eugênio Lazzaretti
    • 1
  • Heitor Silvério Lopes
    • 1
    Email author
  1. 1.Graduate Program in Electrical and Computer EngineeringFederal University of Technology – Paraná (UTFPR)CuritibaBrazil
  2. 2.Catarinense Federal Institute of EducationScience and Technology–(IFC)VideiraBrazil

Personalised recommendations