Advertisement

Comparison of Constraint Handling Approaches in Multi-objective Optimization

  • Rohan Hemansu Chhipa
  • Mardé HelbigEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10841)

Abstract

When considering real-world optimization problems the possibility of encountering problems having constraints is quite high. Constraint handling approaches such as the penalty function and others have been researched and developed to incorporate an optimization problem’s constraints into the optimization process. With regards to multi-objective optimization, in this paper the two main approaches of incorporating constraints are explored, namely: Penalty functions and dominance based selection operators. This paper aims to measure the effectiveness of these two approaches by comparing the empirical results produced by each approach. Each approach is tested using a set of ten benchmark problems, where each problem has certain constraints. The analysis of the results in this paper showed no overall statistical difference between the effectiveness of penalty functions and dominance based selection operators. However, significant statistical differences between the constraint handling approaches were found with regards to specific performance indicators.

Keywords

Constrained multi-objective optimization Pareto dominance Penalty functions 

Notes

Acknowledgements

This work is based on the research supported by the National Research Foundation (NRF) of South Africa (Grant Number 46712). The opinions, findings and conclusions or recommendations expressed in this article is that of the author(s) alone, and not that of the NRF. The NRF accepts no liability whatsoever in this regard.

References

  1. 1.
    Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0056872CrossRefGoogle Scholar
  2. 2.
    Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006)CrossRefGoogle Scholar
  3. 3.
    Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Hoboken (2005)zbMATHGoogle Scholar
  4. 4.
    Coello Coello, C.A.: Evolutionary multi-objective optimization: a historical view of the field. IEEE Comput. Intell. Mag. 1(1), 28–36 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)zbMATHGoogle Scholar
  6. 6.
    Marler, R., Arora, J.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26(6), 369–395 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput. Methods Appl. Mech. Eng. 191(11), 1245–1287 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Coello Coello, C.A.: A survey of constraint handling techniques used with evolutionary algorithms. Lania-RI-99-04, Laboratorio Nacional de Informática Avanzada (1999)Google Scholar
  9. 9.
    Le Riche, R., Knopf-Lenoir, C., Haftka, R.T.: A segregated genetic algorithm for constrained structural optimization. In: ICGA, pp. 558–565. Citeseer (1995)Google Scholar
  10. 10.
    Joines, J.A., Houck, C.R.: On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA’s. In: Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, pp. 579–584. IEEE (1994)Google Scholar
  11. 11.
    Coello Coello, C.A., Montes, E.M.: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv. Eng. Inform. 16(3), 193–203 (2002)CrossRefGoogle Scholar
  12. 12.
    Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, pp. 82–87. IEEE (1994)Google Scholar
  13. 13.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)CrossRefGoogle Scholar
  14. 14.
    Abraham, A., Jain, L.: Evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization, pp. 1–6. Springer, London (2005).  https://doi.org/10.1007/1-84628-137-7_1CrossRefzbMATHGoogle Scholar
  15. 15.
    Sierra, M.R., Coello Coello, C.A.: Improving PSO-based multi-objective optimization using crowding, mutation and \(\in \)-dominance. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-31880-4_35CrossRefzbMATHGoogle Scholar
  16. 16.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  17. 17.
    Kukkonen, S., Lampinen, J.: GDE3: the third evolution step of generalized differential evolution. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 443–450. IEEE (2005)Google Scholar
  18. 18.
    Riquelme, N., Von Lücken, C., Baran, B.: Performance metrics in multi-objective optimization. In: Computing Conference (CLEI), 2015 Latin American, pp. 1–11. IEEE (2015)Google Scholar
  19. 19.
    Jmetal 5. https://jmetal.github.io/jMetal/. Accessed 03 May 2017
  20. 20.
    Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., Tiwari, S.: Multiobjective optimization test instances for the CEC 2009 special session and competition. University of Essex, Colchester, UK and Nanyang technological University, Singapore, Special Session on Performance Assessment of Multi-objective Optimization Algorithms, Technical report 264 (2008)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations