Advertisement

Migration Model of Adaptive Differential Evolution Applied to Real-World Problems

  • Petr BujokEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10841)

Abstract

Ten variants of migration model are compared with six adaptive differential evolution (DE) algorithms on real-world problems. Two parameters of migration model are studied experimentally. The results of experiments demonstrate the superiority of the migration models in first stages of the search process. A success of adaptive DE algorithms employed by migration model is systematically influenced by the studied parameters. The most efficient algorithm in the comparison is proposed migration model P15x50. The worst performing algorithm is adaptive DE.

Keywords

Differential evolution Migration model Migration frequency Sub-population size Experimental study Real-world problems 

References

  1. 1.
    Brest, J., Greiner, S., Boškovič, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10, 646–657 (2006)CrossRefGoogle Scholar
  2. 2.
    Bujok, P.: Synchronous and asynchronous migration in adaptive differential evolution algorithms. Neural Netw. World 23(1), 17–30 (2013)CrossRefGoogle Scholar
  3. 3.
    Bujok, P.: Hierarchical topology in parallel differential evolution. In: Dimov, I., Fidanova, S., Lirkov, I. (eds.) NMA 2014. LNCS, vol. 8962, pp. 62–69. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-15585-2_7CrossRefGoogle Scholar
  4. 4.
    Bujok, P., Tvrdík, J.: Parallel migration model employing various adaptive variants of differential evolution. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) EC/SIDE -2012. LNCS, vol. 7269, pp. 39–47. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29353-5_5CrossRefGoogle Scholar
  5. 5.
    Bujok, P., Tvrdík, J.: New variants of adaptive differential evolution algorithm with competing strategies. Acta Electronica at Informatica 15(2), 49–56 (2015)CrossRefGoogle Scholar
  6. 6.
    Das, S., Suganthan, P.N.: Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems. Jadavpur University, India and Nanyang Technological University, Singapore, Technical report (2010)Google Scholar
  7. 7.
    Das, S., Mullick, S.S., Suganthan, P.: Recent advances in differential evolution - an updated survey. Swarm Evol. Comput. 27, 1–30 (2016)CrossRefGoogle Scholar
  8. 8.
    Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15, 27–54 (2011)Google Scholar
  9. 9.
    Glotic, A., Glotic, A., Kitak, P., Pihler, J., Ticar, I.: Parallel self-adaptive differential evolution algorithm for solving short-term hydro scheduling problem. IEEE Trans. Power Syst. 29(5), 2347–2358 (2014)CrossRefGoogle Scholar
  10. 10.
    Gong, Y.J., Chen, W.N., Zhan, Z.H., Zhang, J., Li, Y., Zhang, Q., Li, J.J.: Distributed evolutionary algorithms and their models: a survey of the state-of-the-art. Appl. Soft Comput. 34, 286–300 (2015)CrossRefGoogle Scholar
  11. 11.
    Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11, 1679–1696 (2011)CrossRefGoogle Scholar
  12. 12.
    Penas, D., Banga, J., González, P., Doallo, R.: Enhanced parallel differential evolution algorithm for problems in computational systems biology. Appl. Soft Comput. 33, 86–99 (2015)CrossRefGoogle Scholar
  13. 13.
    Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)CrossRefGoogle Scholar
  14. 14.
    Storn, R., Price, K.V.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Tvrdík, J.: Self-adaptive variants of differential evolution with exponential crossover. Analele West Univ. Timisoara Ser. Math.-Inform. 47, 151–168 (2009). http://www1.osu.cz/~tvrdik/
  16. 16.
    Wang, X., Tang, L.: Multiobjective operation optimization of naphtha pyrolysis process using parallel differential evolution. Ind. Eng. Chem. Res. 52(40), 14415–14428 (2013)CrossRefGoogle Scholar
  17. 17.
    Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evol. Comput. 15, 55–66 (2011)CrossRefGoogle Scholar
  18. 18.
    Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13, 945–958 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Informatics and ComputersUniversity of OstravaOstravaCzech Republic

Personalised recommendations