Eight Bio-inspired Algorithms Evaluated for Solving Optimization Problems

  • Carlos Eduardo M. Barbosa
  • Germano C. VasconcelosEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10841)


Many bio-inspired algorithms have been proposed to solve optimization problems. However, there is still no conclusive evidence of superiority of particular algorithms in different problems, diverse experimental situations and varied testing scenarios. Here, eight methods are investigated through extensive experimentation in three problems: (1) benchmark functions optimization, (2) wind energy forecasting and (3) data clustering. Genetic algorithms, ant colony optimization, particle swarm optimization, artificial bee colony, firefly algorithm, cuckoo search algorithm, bat algorithm and self-adaptive cuckoo search algorithm are compared, concerning, the quality of solutions according to several performance metrics and convergence to best solution. A bio-inspired technique for automatic parameter tuning was developed to estimate the optimal values for each algorithm, allowing consistent performance comparison. Experiments with thousands of configurations, 12 performance metrics and Friedman and Nemenyi statistical tests consistently evidenced that cuckoo search works efficiently, robustly and superior to the other methods in the vast majority of experiments.


Bio-inspired algorithms Swarm intelligence Optimization Automatic parameter tuning 


  1. 1.
    Pousinho, H.M.I., Mendes, V.M.F., da Silva Catalo, J.P.: A hybrid PSO–ANFIS approach for short-term wind power prediction in Portugal. Energy Convers. Manag. 52(1), 397–402 (2011)CrossRefGoogle Scholar
  2. 2.
    Rahmani, R., Yusof, R., Seyedmahmoudian, M., Mekhilef, S.: Hybrid technique of ant colony and particle swarm optimization for short term wind energy forecasting. J. Wind Eng. Ind. Aerodyn. 123, 163–170 (2013)CrossRefGoogle Scholar
  3. 3.
    Talbi, E.-G., Melab, N., Cahon, S.: Handbook of Bioinspired Algorithms and Applications (2006)Google Scholar
  4. 4.
    Holland, J.H.: Algoritmos genéticos. Investigación y Ciencia 192, 38–45 (1992)Google Scholar
  5. 5.
    Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrete optimization. Artif. Life 5(2), 137–172 (1999)CrossRefGoogle Scholar
  6. 6.
    Eberhart, R.C., Kennedy, J., et al.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, New York, NY, vol. 1, pp. 39–43 (1995)Google Scholar
  7. 7.
    Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical report, Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)Google Scholar
  8. 8.
    Yang, X.-S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-inspired Comput. 2(2), 78–84 (2010)CrossRefGoogle Scholar
  9. 9.
    Yang, X.-S., Deb, S.: Cuckoo search via levy flights. In: World Congress on Nature and Biologically Inspired Computing, NaBIC 2009, pp. 210–214. IEEE (2009)Google Scholar
  10. 10.
    Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 65–74. Springer, Heidelberg (2010). Scholar
  11. 11.
    Li, X., Yin, M.: Modified cuckoo search algorithm with self adaptive parameter method. Inf. Sci. 298, 80–97 (2015)CrossRefGoogle Scholar
  12. 12.
    Hruschka, E.R., Ebecken, N.F.F.: A genetic algorithm for cluster analysis. Intell. Data Anal. 7(1), 15–25 (2003)CrossRefGoogle Scholar
  13. 13.
    Booker, L.B., Goldberg, D.E., Holland, J.H.: Classifier systems and genetic algorithms. Artif. Intell. 40(1), 235–282 (1989)CrossRefGoogle Scholar
  14. 14.
    Van der Merwe, D.W., Engelbrecht, A.P.: Data clustering using particle swarm optimization. In: The 2003 Congress on Evolutionary Computation, CEC 2003, vol. 1, pp. 215–220. IEEE (2003)Google Scholar
  15. 15.
    Yang, X.-S., Deb, S.: Cuckoo search: recent advances and applications. Neural Comput. Appl. 24(1), 169–174 (2014)CrossRefGoogle Scholar
  16. 16.
    Barbosa, C.E.M., Vasconcelos, G.C.: Cuckoo search optimization for short term wind energy forecasting. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 1765–1772. IEEE (2016)Google Scholar
  17. 17.
    Jensi, R., Wiselin Jiji, G.: MBA-LF: a new data clustering method using modified bat algorithm and levy flight. ICTACT J. Soft Comput. 6(1), 1093–1101 (2015)CrossRefGoogle Scholar
  18. 18.
    Zhao, B.: An improved particle swarm optimization algorithm for global numerical optimization. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3991, pp. 657–664. Springer, Heidelberg (2006). Scholar
  19. 19.
    Jamil, M., Yang, X.-S.: A literature survey of benchmark functions for global optimisation problems. Int. J. Math. Model. Numer. Optim. 4(2), 150–194 (2013)zbMATHGoogle Scholar
  20. 20.
    Friedman, J.H.: An overview of predictive learning and function approximation. In: Cherkassky, V., Friedman, J.H., Wechsler, H. (eds.) From Statistics to Neural Networks. NATO ASI Series, vol. 136, pp. 1–61. Springer, Heidelberg (1994). Scholar
  21. 21.
    U.S. Department of Energy. National renewable energy laboratory (2016). Accessed 24 Apr 2016
  22. 22.
    Phillips, N.A.: Numerical weather prediction. Adv. Comput. 1, 43–90 (1960)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Center for Machine Learning and Intelligent Systems. UCI machine learning repository (2016). Accessed 04 June 2016
  24. 24.
    Zhao, X., Wang, S., Li, T.: Review of evaluation criteria and main methods of wind power forecasting. Energy Procedia 12, 761–769 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Carlos Eduardo M. Barbosa
    • 1
  • Germano C. Vasconcelos
    • 1
    Email author
  1. 1.Center for InformaticsFederal University of PernambucoRecifeBrazil

Personalised recommendations