Advertisement

Cyclic Reservoir Computing with FPGA Devices for Efficient Channel Equalization

  • Erik S. Skibinsky-Gitlin
  • Miquel L. Alomar
  • Christiam F. Frasser
  • Vincent Canals
  • Eugeni Isern
  • Miquel Roca
  • Josep L. RossellóEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10841)

Abstract

The reservoir computation (RC) is a recurrent neural network architecture that is very suitable for time series prediction tasks. Its implementation in specific hardware can be very useful in relation to software approaches, especially when low consumption is an essential requirement. However, the hardware realization of RC systems is expensive in terms of circuit area and power dissipation, mainly due to the need of a large number of multipliers at the synapses. In this paper, we present an implementation of an RC network with cyclic topology (simple cyclic reservoir) in which we limit the available synapses’ weights, which makes it possible to replace the multiplications with simple addition operations. This design is evaluated to implement the equalization of a non-linear communication channel, and allows significant savings in terms of hardware resources, presenting an accuracy comparable to previous works.

Notes

Acknowledgment

This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO), the Regional European Development Funds (FEDER), and the Comunitat Autonoma de les Illes Balears under grant contracts TEC2014-56244-R, TEC2017-84877-R and a fellowship (FPI/1513/2012) financed by the European Social Fund (ESF) and the Govern de les Illes Balears (Conselleria d’Educació, Cultura i Universitats).

References

  1. 1.
    Baptista, D., Abreu, S., Freitas, F., Vasconcelos, R., Morgado-Dias, F.: A survey of software and hardware use in artificial neural networks. Neural Comput. Appl. 23(3–4), 591–599 (2013)CrossRefGoogle Scholar
  2. 2.
    Misra, J., Saha, I.: Artificial neural networks in hardware: a survey of two decades of progress. Neurocomputing 74(1–3), 239–255 (2010)CrossRefGoogle Scholar
  3. 3.
    Amir, M.F., Kim, D., Kung, J., Lie, D., Yalamanchili, S., Mukhopadhyay, S.: NeuroSensor: a 3D image sensor with integrated neural accelerator. In: 2016 SOI-3D-Subthreshold Microelectronics Technology Unified Conference, S3S 2016 (2017)Google Scholar
  4. 4.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25(NIPS2012), 1–9 (2012)Google Scholar
  5. 5.
    Morro, A., Canals, V., Oliver, A., Alomar, M.L., Galan-Prado, F., Ballester, P.J., Rossello, J.L.: A stochastic spiking neural network for virtual screening (2017)Google Scholar
  6. 6.
    Li, H., Zhang, D., Foo, S.Y.: A stochastic digital implementation of a neural network controller for small wind turbine systems. IEEE Trans. Power Electron. 21(5), 1502–1507 (2006)CrossRefGoogle Scholar
  7. 7.
    Chauhan, A., Semwal, S., Chawhan, R.: Artificial neural network-based forest fire detection system using wireless sensor network. In: 2013 Annual IEEE India Conference (INDICON), pp. 1–6 (2013)Google Scholar
  8. 8.
    Raghunathan, S., Gupta, S.K., Ward, M.P., Worth, R.M., Roy, K., Irazoqui, P.P.: The design and hardware implementation of a low-power real-time seizure detection algorithm. J. Neural Eng. 6(5), 056005 (2009)CrossRefGoogle Scholar
  9. 9.
    Lee, M., Hwang, K., Park, J., Choi, S., Shin, S., Sung, W.: FPGA-based low-power speech recognition with recurrent neural networks. In: IEEE Workshop on Signal Processing Systems, SiPS: Design and Implementation, pp. 230–235 (2016)Google Scholar
  10. 10.
    Basterretxea, K., Tarela, J.M., del Campo, I.: Digital design of sigmoid approximator for artificial neural networks. Electron. Lett. 38(1), 35–37 (2002)CrossRefGoogle Scholar
  11. 11.
    Baptista, D., Morgado-Dias, F.: Low-resource hardware implementation of the hyperbolic tangent for artificial neural networks. Neural Comput. Appl. 23(3–4), 601–607 (2013)CrossRefGoogle Scholar
  12. 12.
    Carrasco-Robles, M., Serrano, L.: Accurate differential tanh(nx) implementation. Int. J. Circuit Theory Appl. 37(5), 613–629 (2009)CrossRefGoogle Scholar
  13. 13.
    Nedjah, N., De MacEdo Mourelle, L.: Reconfigurable hardware for neural networks: binary versus stochastic. Neural Comput. Appl. 16(3), 249–255 (2007)CrossRefGoogle Scholar
  14. 14.
    Lotrič, U., Bulić, P.: Applicability of approximate multipliers in hardware neural networks. Neurocomputing 96, 57–65 (2012)CrossRefGoogle Scholar
  15. 15.
    Lukoševičius, M., Jaeger, H., Schrauwen, B.: Reservoir computing trends. KI - Künstliche Intell. 26(4), 365–371 (2012)CrossRefGoogle Scholar
  16. 16.
    Antonelo, E.A., Schrauwen, B.: On learning navigation behaviors for small mobile robots with reservoir computing architectures. IEEE Trans. Neural Netw. Learn. Syst. 26(4), 763–780 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jalalvand, A., Wallendael, G.V., Walle, R.V.D.: Real-time reservoir computing network-based systems for detection tasks on visual contents. In: Proceedings - 7th International Conference on Computational Intelligence, Communication Systems and Networks, CICSyN 2015, pp. 146–151 (2015)Google Scholar
  18. 18.
    Lin, X., Yang, Z., Song, Y.: Short-term stock price prediction based on echo state networks. Expert Syst. Appl. 36(3 PART 2), 7313–7317 (2009)CrossRefGoogle Scholar
  19. 19.
    Alomar, M.L., Canals, V., Perez-Mora, N., Martínez-Moll, V., Rosselló, J.L.: FPGA-based stochastic echo state networks for time-series forecasting. Comput. Intell. Neurosci. 2016 (2016)Google Scholar
  20. 20.
    Alomar, M.L., Soriano, M.C., Escalona-Morán, M., Canals, V., Fischer, I., Mirasso, C.R., Rosselló, J.L.: Digital implementation of a single dynamical node reservoir computer. IEEE Trans. Circuits Syst. II Express Briefs 62(10), 977–981 (2015)CrossRefGoogle Scholar
  21. 21.
    Benedetto, S., Biglieri, E.: Principles of Digital Transmission: With Wireless Applications. Kluwer Academic Publishers, Norwell (1999)zbMATHGoogle Scholar
  22. 22.
    Boccato, L., Lopes, A., Attux, R., Von Zuben, F.J.: An echo state network architecture based on Volterra filtering and PCA with application to the channel equalization problem. In: Proceedings of the International Joint Conference on Neural Networks, pp. 580–587 (2011)Google Scholar
  23. 23.
    Rossello, J.L., Alomar, M.L., Morro, A., Oliver, A., Canals, V.: High-density liquid-state machine circuitry for time-series forecasting. Int. J. Neural Syst. 26(5), 1550036 (2016)CrossRefGoogle Scholar
  24. 24.
    Rodan, A., Tiño, P.: Minimum complexity echo state network. IEEE Trans. Neural Netw. 22(1), 131–144 (2011)CrossRefGoogle Scholar
  25. 25.
    Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)CrossRefGoogle Scholar
  26. 26.
    Bauduin, M., Smerieri, A., Massar, S., Horlin, F.: Equalization of the non-linear satellite communication channel with an Echo state network. In: IEEE Vehicular Technology Conference, vol. 2015 (2015)Google Scholar
  27. 27.
    Mathews, V.J., Lee, J.: Adaptive algorithms for bilinear filtering. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 2296, pp. 317–327 (1994)Google Scholar
  28. 28.
    Nguimdo, R.M., Verschaffelt, G., Danckaert, J., Van Der Sande, G.: Simultaneous computation of two independent tasks using reservoir computing based on a single photonic nonlinear node with optical feedback. IEEE Trans. Neural Netw. Learn. Syst. 26(12), 3301–3307 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ortín, S., Soriano, M.C., Pesquera, L., Brunner, D., San-Martín, D., Fischer, I., Mirasso, C.R., Gutiérrez, J.M.: A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron. Scientific Reports 5 (2015)Google Scholar
  30. 30.
    Vinckier, Q., Duport, F., Smerieri, A., Haelterman, M., Massar, S.: Autonomous bio-inspired photonic processor based on reservoir computing paradigm. In: 2016 IEEE Photonics Society Summer Topical Meeting Series, SUM 2016. pp. 183–184 (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Erik S. Skibinsky-Gitlin
    • 1
  • Miquel L. Alomar
    • 1
  • Christiam F. Frasser
    • 1
  • Vincent Canals
    • 1
  • Eugeni Isern
    • 1
  • Miquel Roca
    • 1
  • Josep L. Rosselló
    • 1
    Email author
  1. 1.Electronics Engineering Group, Department of PhysicsUniversity of Balearic IslandsPalma de MallorcaSpain

Personalised recommendations