Introduction to Complex Networks

  • Miloš SavićEmail author
  • Mirjana Ivanović
  • Lakhmi C. Jain
Part of the Intelligent Systems Reference Library book series (ISRL, volume 148)


Complex networks are graphs describing complex natural, conceptual and engineered systems. In this chapter we present an introduction to complex networks by giving several examples of technological, social, information and biological networks. Then, we discuss complex networks that are in the focus of this monograph (software, ontology and co-authorship networks). Finally, we briefly outline our main research contributions presented in the monograph.


  1. 1.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002).
  2. 2.
    Albert, R., Jeong, H., Barabasi, A.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000).
  3. 3.
    Albert, R., Jeong, H., Barabási, A.L.: Diameter of the world wide web. Nature 401, 130–131 (1999).
  4. 4.
    Andrade Jr., J.S., Bezerra, D.M., Ribeiro Filho, J., Moreira, A.A.: The complex topology of chemical plants. Phys. A Stat. Mech. Appl. 360(2), 637–643 (2006).
  5. 5.
    Anquetil, N., Fourrier, C., Lethbridge, T.C.: Experiments with clustering as a software remodularization method. In: Proceedings of the Sixth Working Conference on Reverse Engineering, WCRE ’99, pp. 235–255. IEEE Computer Society, Washington, DC, USA (1999).
  6. 6.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999).
  7. 7.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43 (2001)CrossRefGoogle Scholar
  8. 8.
    Bhattacharya, P., Iliofotou, M., Neamtiu, I., Faloutsos, M.: Graph-based analysis and prediction for software evolution. In: Proceedings of the 34th International Conference on Software Engineering, ICSE ’12, pp. 419–429. IEEE Press, Piscataway, NJ, USA (2012)Google Scholar
  9. 9.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex networks: structure and dynamics. Phys. Rep. 424(45), 175–308 (2006).
  10. 10.
    Bollobás, B.: Random graphs. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  11. 11.
    Bollobás, B., Riordan, O.: Robustness and vulnerability of scale-free random graphs. Internet Math. 1(1), 1–35 (2003).
  12. 12.
    Borgatti, S.P., Mehra, A., Brass, D.J., Labianca, G.: Network analysis in the social sciences. Science 323(5916), 892–895 (2009).
  13. 13.
    Buckner, J., Buchta, J., Petrenko, M., Rajlich, V.: Jripples: a tool for program comprehension during incremental change. In: Proceedings of the 13th International Workshop on Program Comprehension, IWPC ’05, pp. 149–152. IEEE Computer Society, Washington, DC, USA (2005).
  14. 14.
    Cancho, R.F., Solé, R.V.: The small world of human language. Proc. R. Soc. Lond. Ser B Biol Sci. 268(1482), 2261–2265 (2001).
  15. 15.
    Cancho, RFi, Janssen, C., Solé, R.V.: Topology of technology graphs: small world patterns in electronic circuits. Phys. Rev. E 64, 046119 (2001).
  16. 16.
    Chikofsky, E.J., Cross II, J.H.: Reverse engineering and design recovery: a taxonomy. IEEE Softw. 7(1), 13–17 (1990).
  17. 17.
    Chiricota, Y., Jourdan, F., Melançon, G.: Software components capture using graph clustering. In: Proceedings of the 11th IEEE International Workshop on Program Comprehension, IWPC ’03, pp. 217–226. IEEE Computer Society, Washington, DC, USA (2003).
  18. 18.
    Coskun, G., Rothe, M., Teymourian, K., Paschke, A.: Applying community detection algorithms on ontologies for identifying concept groups. In: Kutz, O., Schneider, T. (eds.) Workshop on Modular Ontologies, vol. 230, pp. 12–24. IOS Press (2011).
  19. 19.
    Costa, L.d.F., Oliveira, O., Travieso, G., Rodrigues, F.A., Villas Boas, P., Antiqueira, L., Viana, M.P., Correa Rocha, L.: Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv. Phys. 60(3), 329–412 (2011).
  20. 20.
    Erdős, P., Rényi, A.: On random graphs I. Publ. Math. Debr. 6, 290–297 (1959)zbMATHGoogle Scholar
  21. 21.
    Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. ACM SIGCOMM Comput. Commun. Rev. 29, 251–262 (1999).
  23. 23.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002).
  24. 24.
    Goffman, C.: And what is your Erdős number? Am. Math. Mont. 76(7), 149 (1969)zbMATHGoogle Scholar
  25. 25.
    Grossman, J.W.: Paul Erds: the master of collaboration. In: Graham, R.L., Nettil, J., Butler, S. (eds.) The Mathematics of Paul Erds II, pp. 489–496. Springer, New York (2013).
  26. 26.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquisition 5(2), 199–220 (1993).
  27. 27.
    Hylland-Wood, D., Carrington, D., Kaplan, S.: Scale-free nature of Java software package, class and method collaboration graphs. Technical report, TR-MS1286, MIND Laboratory, University of Maryland, College Park, USA (2006)Google Scholar
  28. 28.
    Inoue, K., Yokomori, R., Yamamoto, T., Matsushita, M., Kusumoto, S.: Ranking significance of software components based on use relations. IEEE Trans. Softw. Eng. 31(3), 213–225 (2005).
  29. 29.
    Jain, L.C.: Soft Computing Techniques in Knowledge-Based Intelligent Engineering Systems. Springer, Berlin (1997)zbMATHGoogle Scholar
  30. 30.
    Jenkins, S., Kirk, S.R.: Software architecture graphs as complex networks: a novel partitioning scheme to measure stability and evolution. Inf. Sci. 177, 2587–2601 (2007).
  31. 31.
    Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontology visualization methods – a survey. ACM Comput. Surv. 39(4) (2007).
  32. 32.
    Kienle, H.M., Müller, H.A.: Rigi - an environment for software reverse engineering, exploration, visualization, and redocumentation. Sci. Comput. Progr. 75(4), 247–263 (2010).
  33. 33.
    Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Extracting large-scale knowledge bases from the web. In: Proceedings of the 25th International Conference on Very Large Data Bases (VLDB ’99), pp. 639–650 (1999)Google Scholar
  34. 34.
    Lanza, M., Ducasse, S.: Polymetric views - a lightweight visual approach to reverse engineering. IEEE Trans. Softw. Eng. 29(9), 782–795 (2003).
  35. 35.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discov. Data 1(1) (2007).
  36. 36.
    Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: Proceedings of the Twelfth International Conference on Information and Knowledge Management, CIKM ’03, pp. 556–559. ACM, New York, NY, USA (2003).
  37. 37.
    Lucia, A.D., Deufemia, V., Gravino, C., Risi, M.: Design pattern recovery through visual language parsing and source code analysis. J. Syst. Softw. 82(7), 1177–1193 (2009).
  38. 38.
    Mancoridis, S., Mitchell, B.S., Rorres, C., Chen, Y., Gansner, E.R.: Using automatic clustering to produce high-level system organizations of source code. In: Proceedings of the 6th International Workshop on Program Comprehension, IWPC ’98, pp. 45–52. IEEE Computer Society, Washington, DC, USA (1998).
  39. 39.
    Maqbool, O., Babri, H.: Hierarchical clustering for software architecture recovery. IEEE Trans. Softw. Eng. 33(11), 759–780 (2007).
  40. 40.
    Martin, T., Ball, B., Karrer, B., Newman, M.E.J.: Coauthorship and citation patterns in the physical review. Phys. Rev. E 88, 012814 (2013).
  41. 41.
    Myers, C.R.: Software systems as complex networks: structure, function, and evolvability of software collaboration graphs. Phys. Rev. E 68(4), 046116 (2003).
  42. 42.
    Newman, M.: Networks: An Introduction. Oxford University Press Inc., New York (2010)CrossRefGoogle Scholar
  43. 43.
    Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. 98(2), 404–409 (2001).
  44. 44.
    Newman, M.E.J.: Assortative mixing in networks. Phys. Rev. Lett. 89, 208701 (2002).
  45. 45.
    Newman, M.E.J.: Mixing patterns in networks. Phys. Rev. E 67, 026126 (2003).
  46. 46.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003).
  47. 47.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004).
  48. 48.
    Oliveto, R., Gethers, M., Bavota, G., Poshyvanyk, D., De Lucia, A.: Identifying method friendships to remove the feature envy bad smell. In: Proceedings of the 33rd International Conference on Software Engineering, ICSE ’11, pp. 820–823. ACM, New York, NY, USA (2011).
  49. 49.
    Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001).
  50. 50.
    Rodriguez, M.A., Bollen, J.: An algorithm to determine peer-reviewers. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, CIKM ’08, pp. 319–328. ACM, New York, NY, USA (2008)Google Scholar
  51. 51.
    Ryder, B.G.: Constructing the call graph of a program. IEEE Trans. Softw. Eng. 5(3), 216–226 (1979).
  52. 52.
    Savić, M., Ivanović, M., Radovanović, M.: Characteristics of class collaboration networks in large Java software projects. Inf. Technol. Control 40(1), 48–58 (2011).
  53. 53.
    Savić, M., Kurbalija, V., Ivanović, M., Bosnić, Z.: A Feature Selection Method Based on Feature Correlation Networks, pp. 248–261. Springer International Publishing, Cham (2017).
  54. 54.
    Savić, M., Rakić, G., Budimac, Z., Ivanović, M.: A language-independent approach to the extraction of dependencies between source code entities. Inf. Softw. Technol. 56(10), 1268–1288 (2014).
  55. 55.
    Scanniello, G., Marcus, A.: Clustering support for static concept location in source code. In: Proceedings of the 19th International Conference on Program Comprehension (ICPC 2011), pp. 1–10 (2011).
  56. 56.
    Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intell. Syst. 21(3), 96–101 (2006).
  57. 57.
    Silva, T.C., Zhao, L.: Network Construction Techniques, pp. 93–132. Springer International Publishing, Cham (2016).
  58. 58.
    Stuckenschmidt, H., Schlicht, A.: Structure-based partitioning of large ontologies. In: Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.) Modular Ontologies, pp. 187–210. Springer, Berlin (2009).
  59. 59.
    Tosun, A., Turhan, B., Bener, A.: Validation of network measures as indicators of defective modules in software systems. In: Proceedings of the 5th International Conference on Predictor Models in Software Engineering, PROMISE ’09, pp. 5:1–5:9. ACM, New York, NY, USA (2009).
  60. 60.
    Valverde, S., Cancho, R.F., Solé, R.V.: Scale-free networks from optimal design. EPL (Europhys. Lett.) 60(4), 512–517 (2002).
  61. 61.
    Wallace, M.L., Larivire, V., Gingras, Y.: A small world of citations? the influence of collaboration networks on citation practices. PLoS ONE 7(3), e33339 (2012).
  62. 62.
    Wasserman, S., Faust, K., Iacobucci, D.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  63. 63.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of’small-world’networks. Nature 393(6684), 409–10 (1998).
  64. 64.
    Wheeldon, R., Counsell, S.: Power law distributions in class relationships. In: Proceedings of the Third IEEE International Workshop on Source Code Analysis and Manipulation, pp. 45–54 (2003).
  65. 65.
    Yan, E., Guns, R.: Predicting and recommending collaborations: an author-, institution-, and country-level analysis. J. Inf. 8(2), 295–309 (2014).
  66. 66.
    Zachary, W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452–473 (1977)CrossRefGoogle Scholar
  67. 67.
    Zhang, H., Li, Y.F., Tan, H.B.K.: Measuring design complexity of semantic web ontologies. J. Syst. Softw. 83(5), 803–814 (2010).
  68. 68.
    Zhang, X., Cheng, G., Qu, Y.: Ontology summarization based on RDF sentence graph. In: Proceedings of the 16th International Conference on World Wide Web, WWW ’07, pp. 707–716. ACM, New York, NY, USA (2007).
  69. 69.
    Zimmermann, T., Nagappan, N.: Predicting defects using network analysis on dependency graphs. In: Proceedings of the 30th International Conference on Software Engineering, ICSE ’08, pp. 531–540. ACM, New York, NY, USA (2008).
  70. 70.
    Zupanc, K., Savić, M., Bosnić, Z., Ivanović, M.: Evaluating coherence of essays using sentence-similarity networks. In: Proceedings of the 18th International Conference on Computer Systems and Technologies, CompSysTech’17, pp. 65–72. ACM, New York, NY, USA (2017).

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Miloš Savić
    • 1
    Email author
  • Mirjana Ivanović
    • 1
  • Lakhmi C. Jain
    • 2
  1. 1.Faculty of Sciences, Department of Mathematics and InformaticsUniversity of Novi SadNovi SadSerbia
  2. 2.Centre for Artificial Intelligence, Faculty of Engineering and Information TechnologyUniversity of Technology SydneySydneyAustralia

Personalised recommendations