Advertisement

Fast Adaptive Image Binarization Using the Region Based Approach

  • Hubert Michalak
  • Krzysztof Okarma
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 764)

Abstract

Adaptive binarization of unevenly lightened images is one of the key issues in document image analysis and further text recognition. As the global thresholding leads to improper results making correct text recognition practically impossible, an efficient implementation of adaptive thresholding is necessary. The most popular global approach is the use of Otsu’s binarization which can be improved using the fast block based method or calculated locally leading to AdOtsu method. Even faster adaptive thresholding based on local mean calculated for blocks is presented in the paper. Obtained results have been compared with some other adaptive thresholding algorithms, being typically the modifications of Niblack’s method, for a set of images originating from DIBCO databases modified by addition of intensity gradients. Obtained results confirm the usefulness of the proposed fast approach for binarization of document images.

Keywords

Image binarization Adaptive thresholding 

References

  1. 1.
    Bataineh, B., Abdullah, S.N.H.S., Omar, K.: An adaptive local binarization method for document images based on a novel thresholding method and dynamic windows. Pattern Recogn. Lett. 32(14), 1805–1813 (2011)CrossRefGoogle Scholar
  2. 2.
    Bradley, D., Roth, G.: Adaptive thresholding using the integral image. J. Graph. Tools 12(2), 13–21 (2007)CrossRefGoogle Scholar
  3. 3.
    Chou, C.H., Lin, W.H., Chang, F.: A binarization method with learning-built rules for document images produced by cameras. Pattern Recogn. 43(4), 1518–1530 (2010)CrossRefGoogle Scholar
  4. 4.
    Feng, M.L., Tan, Y.P.: Adaptive binarization method for document image analysis. In: Proceedings of the 2004 IEEE International Conference on Multimedia and Expo (ICME), vol. 1, pp. 339–342, June 2004Google Scholar
  5. 5.
    Gatos, B., Pratikakis, I., Perantonis, S.: Adaptive degraded document image binarization. Pattern Recogn. 39(3), 317–327 (2006)CrossRefGoogle Scholar
  6. 6.
    Kapur, J., Sahoo, P., Wong, A.: A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 29(3), 273–285 (1985)CrossRefGoogle Scholar
  7. 7.
    Khurshid, K., Siddiqi, I., Faure, C., Vincent, N.: Comparison of Niblack inspired binarization methods for ancient documents. In: Document Recognition and Retrieval XVI, vol. 7247, pp. 7247–7247-9 (2009)Google Scholar
  8. 8.
    Kulyukin, V., Kutiyanawala, A., Zaman, T.: Eyes-free barcode detection on smartphones with Niblack’s binarization and Support Vector Machines. In: Proceedings of the 16th International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV 2012) at the World Congress in Computer Science, Computer Engineering, and Applied Computing WORLDCOMP, vol. 1, pp. 284–290. CSREA Press, July 2012Google Scholar
  9. 9.
    Lech, P., Okarma, K.: Fast histogram based image binarization using the Monte Carlo threshold estimation. In: Chmielewski, L.J., Kozera, R., Shin, B.S., Wojciechowski, K. (eds.) Computer Vision and Graphics. LNCS, vol. 8671, pp. 382–390. Springer, Switzerland (2014)Google Scholar
  10. 10.
    Lech, P., Okarma, K.: Optimization of the fast image binarization method based on the monte carlo approach. Elektronika Ir Elektrotechnika 20(4), 63–66 (2014)CrossRefGoogle Scholar
  11. 11.
    Lech, P., Okarma, K.: Prediction of the optical character recognition accuracy based on the combined assessment of image binarization results. Elektronika Ir Elektrotechnika 21(6), 62–65 (2015)CrossRefGoogle Scholar
  12. 12.
    Lech, P., Okarma, K., Wojnar, D.: Binarization of document images using the modified local-global Otsu and Kapur algorithms. Przegląd Elektrotechniczny 91(1), 71–74 (2015)Google Scholar
  13. 13.
    Leedham, G., Yan, C., Takru, K., Tan, J.H.N., Mian, L.: Comparison of some thresholding algorithms for text/background segmentation in difficult document images. In: Proceedings of the 7th International Conference on Document Analysis and Recognition, ICDAR 2003, pp. 859–864, August 2003Google Scholar
  14. 14.
    Lu, H., Kot, A., Shi, Y.: Distance-reciprocal distortion measure for binary document images. IEEE Signal Process. Lett. 11(2), 228–231 (2004)CrossRefGoogle Scholar
  15. 15.
    Moghaddam, R.F., Cheriet, M.: AdOtsu: an adaptive and parameterless generalization of Otsu’s method for document image binarization. Pattern Recogn. 45(6), 2419–2431 (2012)CrossRefGoogle Scholar
  16. 16.
    Niblack, W.: An Introduction to Digital Image Processing. Prentice Hall, Englewood Cliffs (1986)Google Scholar
  17. 17.
    Ntirogiannis, K., Gatos, B., Pratikakis, I.: Performance evaluation methodology for historical document image binarization. IEEE Trans. Image Process. 22(2), 595–609 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Okarma, K., Lech, P.: Fast statistical image binarization of colour images for the recognition of the QR codes. Elektronika Ir Elektrotechnika 21(3), 58–61 (2015)CrossRefGoogle Scholar
  19. 19.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Pratikakis, I., Zagoris, K., Barlas, G., Gatos, B.: ICDAR 2017 Document Image Binarization COmpetition (DIBCO 2017) (2017). https://vc.ee.duth.gr/dibco2017/
  21. 21.
    Samorodova, O.A., Samorodov, A.V.: Fast implementation of the niblack binarization algorithm for microscope image segmentation. Pattern Recogn. Image Anal. 26(3), 548–551 (2016)CrossRefGoogle Scholar
  22. 22.
    Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern Recogn. 33(2), 225–236 (2000)CrossRefGoogle Scholar
  23. 23.
    Saxena, L.P.: Niblack’s binarization method and its modifications to real-time applications: a review. Artif. Intell. Rev., 1–33 (2017)Google Scholar
  24. 24.
    Shrivastava, A., Srivastava, D.K.: A review on pixel-based binarization of gray images. In: Satapathy, S., Bhatt, Y., Joshi, A., Mishra, D. (eds.) Proceedings of the International Congress on Information and Communication Technology. AISC, vol. 439, pp. 357–364. Springer, Singapore (2016)Google Scholar
  25. 25.
    Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45(4), 427–437 (2009)CrossRefGoogle Scholar
  26. 26.
    Su, B., Lu, S., Tan, C.L.: Robust document image binarization technique for degraded document images. IEEE Trans. Image Process. 22(4), 1408–1417 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wen, J., Li, S., Sun, J.: A new binarization method for non-uniform illuminated document images. Pattern Recogn. 46(6), 1670–1690 (2013)CrossRefGoogle Scholar
  28. 28.
    Wolf, C., Jolion, J.M.: Extraction and recognition of artificial text in multimedia documents. Formal Pattern Anal. Appl. 6(4), 309–326 (2004)MathSciNetGoogle Scholar
  29. 29.
    Yoon, Y., Ban, K.D., Yoon, H., Lee, J., Kim, J.: Best combination of binarization methods for license plate character segmentation. ETRI J. 35(3), 491–500 (2013)CrossRefGoogle Scholar
  30. 30.
    Young, D.P., Ferryman, J.M.: PETS metrics: on-line performance evaluation service. In: Proceedings of 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 317–324 (2005)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Signal Processing and Multimedia Engineering, Faculty of Elecrtical EngineeringWest Pomeranian University of Technology, SzczecinSzczecinPoland

Personalised recommendations