Advertisement

Spark-Based Classification Algorithms for Daily Living Activities

  • Dorin Moldovan
  • Marcel Antal
  • Claudia Pop
  • Adrian Olosutean
  • Tudor Cioara
  • Ionut Anghel
  • Ioan Salomie
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 764)

Abstract

Dementia is an incurable disease that affects a large part of the population of elders and more than 21% of the elders suffering from dementia are exposed to polypharmacy. Moreover, dementia is very correlated with diabetes and high blood pressure. The medication adherence becomes a big challenge that can be approached by analyzing the daily activities of the patients and taking preventive or corrective measures. The weakest link in the pharmacy chain tends to be the patients, especially the patients with cognitive impairments. In this paper we analyze the feasibility of four classification algorithms from the machine learning library of Apache Spark for the prediction of the daily behavior pattern of the patients that suffer from dementia. The algorithms are tested on two datasets from literature that contain data collected from sensors. The best results are obtained when the Random Forest classification algorithm is applied.

Keywords

Machine learning Classification algorithms Daily living activities Sensors Elderly 

Notes

Acknowledgement

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CCCDI UEFISCDI and of the AAL Programme with co-funding from the European Union’s Horizon 2020 research and innovation programme project number AAL 44/2017 within PNCDI III [1].

References

  1. 1.
  2. 2.
    Ordonez, F.J., de Toledo, P., Sanchis, A.: Activity recognition using hybrid generative/discriminative models on home environments using binary sensors. Sensors 13(5), 5460–5477 (2013).  https://doi.org/10.3390/s130505460CrossRefGoogle Scholar
  3. 3.
    Leutheuser, H., Schuldhaus, D., Eskofier, B.M.: Hierarchical, multi-sensor based classification of daily life activities: comparison with state-of-the-art algorithms using a benchmark dataset. PLoS ONE 8(10), 1–11 (2013).  https://doi.org/10.1371/journal.pone.0075196CrossRefGoogle Scholar
  4. 4.
    Ni, Q., Hernando, A.B.G., de la Cruz, I.P.: The elderly’s independent living in smart homes: a characterization of activities and sensing infrastructure survey to facilitate services development. Sensors 15(5), 11312–11362 (2015).  https://doi.org/10.3390/s150511312CrossRefGoogle Scholar
  5. 5.
    Espana-Boquera, S., Castro-Bleda, M.J., Gorbe-Moya, J., Zamora-Martinez, F.: Improving offline handwritten text recognition with hybrid HMM/ANN models. IEEE Trans. Pattern Anal. Mach. Intell. 33, 767–779 (2011).  https://doi.org/10.1109/TPAMI.2010.141CrossRefGoogle Scholar
  6. 6.
    Nazerfard, E., Cook, D.J.: CRAFFT: an activity prediction model based on Bayesian networks. J. Ambient Intell. Humanized Comput. 6(2), 193–205 (2015).  https://doi.org/10.1007/s12652-014-0219-xCrossRefGoogle Scholar
  7. 7.
    Ordonez, J., Iglesias, J.A., de Toledo, P., Ledezma, A., Sanchis, A.: Online activity recognition using evolving classifiers. Expert Syst. Appl. 40(4), 1248–1255 (2013).  https://doi.org/10.1016/j.eswa.2012.08.066CrossRefGoogle Scholar
  8. 8.
    Vail, D.L., Veloso, M.M., Lafferty, J.D.: Conditional random fields for activity recognition. In: AAMAS 2007 Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1–8 (2007).  https://doi.org/10.1145/1329125.1329409
  9. 9.
    Lin, W., Wu, Z., Lin, L., Wen, A., Li. J.: An ensemble random forest algorithm for insurance big data analysis. IEEE Access (2017).  https://doi.org/10.1109/ACCESS.2017.2738069
  10. 10.
    Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman, J., Tsai, D., Amde, M., Owen, S., Xin, D., Xin, R., Franklin, M.J., Zadeh, R., Zaharia, M., Talwalkar, A.: MLlib: machine learning in apache spark. J. Mach. Learn. Res. 17(1), 1–7 (2016)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Dorin Moldovan
    • 1
  • Marcel Antal
    • 1
  • Claudia Pop
    • 1
  • Adrian Olosutean
    • 1
  • Tudor Cioara
    • 1
  • Ionut Anghel
    • 1
  • Ioan Salomie
    • 1
  1. 1.Computer Science DepartmentTechnical University of Cluj-NapocaCluj-NapocaRomania

Personalised recommendations