Semantic Query Suggestion Based on Optimized Random Forests

  • Aytuğ OnanEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 764)


Query suggestion is an integral part of Web search engines. Data-driven approaches to query suggestion aim to identify more relevant queries to users based on term frequencies and hence cannot fully reveal the underlying semantic intent of queries. Semantic query suggestion seeks to identify relevant queries by taking semantic concepts contained in user queries into account. In this paper, we propose a machine learning approach to semantic query suggestion based on Random Forests. The presented scheme employs an optimized Random Forest algorithm based on multi-objective simulated annealing and weighted voting. In this scheme, multi-objective simulated annealing is utilized to tune the parameters of Random Forests algorithm, i.e. the number of trees forming the ensemble and the number of features to split at each node. In addition, the weighted voting is utilized to combine the predictions of trees based on their predictive performance. The predictive performance of the proposed scheme is compared to conventional classification algorithms (such as Naïve Bayes, logistic regression, support vector machines, Random Forest) and ensemble learning methods (such as AdaBoost, Bagging and Random Subspace). The experimental results on semantic query suggestion prove the superiority of the proposed scheme.


Query suggestion Random Forests Ensemble learning 


  1. 1.
    Parikh, N., Singh, G., Sundaresan, N.: Handbook of Statistics. Elsevier, New York (2013)Google Scholar
  2. 2.
    Jansen, B.J., Booth, D.L., Spink, A.: Determining the informational, navigational and transactional intent of web queries. Inf. Process. Manage. 44(3), 1251–1266 (2008)CrossRefGoogle Scholar
  3. 3.
    Wen, J.R., Nie, J.Y., Zhang, H.J.: Clustering user queries of a search engine. In: Proceedings of the 10th International Conference on World Wide Web, pp. 162–168. ACM, New York (2001)Google Scholar
  4. 4.
    Jansen, B.J., Spink, A., Bateman, J., Saracevic, T.: Real life information retrieval: a study of user queries on the web. ACM SIGIR Forum 32(1), 5–17 (1998)CrossRefGoogle Scholar
  5. 5.
    Cao, H., Jiang, D., Pei, J., He, Q., Liao, Z., Chen, E., Li, H.: Context-aware query suggestion by mining click-through and session data. In: Proceedings of the 14th International Conference on Knowledge Discovery and Data Mining, pp. 875–883. ACM, New York (2008)Google Scholar
  6. 6.
    Kato, M.P., Sakai, T., Tanaka, K.: When do people use query suggestion? A query suggestion log analysis. Inf. Retrieval 16(6), 725–746 (2013)CrossRefGoogle Scholar
  7. 7.
    Meij, E., Bron, M., Hollink, L., Huurnink, B., de Rijke, M.: Learning semantic query suggestions. In: Bernstein, A., Karger, David R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 424–440. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Onan, A.: Classifier and feature set ensembles for web page classification. J. Inf. Sci. 42(2), 150–165 (2016)CrossRefGoogle Scholar
  9. 9.
    Beeferman, D., Berger, A.: Agglomerative clustering of a search engine query log. In: Proceedings of the sixth ACM Conference on Knowledge Discovery and Data Mining, pp. 407–416. ACM, New York (2000)Google Scholar
  10. 10.
    Baeza-Yates, R., Hurtado, C., Mendoza, M.: Query recommendation using query logs in search engines. In: Lindner, W., Mesiti, M., Türker, C., Tzitzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 588–596. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Mei, Q., Zhou, D., Church, K.: Query suggestion using hitting time. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 469–478. ACM, New York (2008)Google Scholar
  12. 12.
    Ma, H., Yang, H., King, I., Lyu, M.: Learning latent semantic relations from clickthrough data for query suggestion. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 709–718. ACM, New York (2008)Google Scholar
  13. 13.
    Song, Y., He, L.W.: Optimal rare query suggestion with implicit user feedback. In: Proceedings of the 19th International Conference on World Wide Web, pp. 901–910. ACM, New York (2010)Google Scholar
  14. 14.
    Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A.: An optimization framework for query recommendation. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 161–170. ACM, New York (2010)Google Scholar
  15. 15.
    Ma, H., Lyu, M.R., King, I.: Diversifying query suggestion results. In: Proceedings of AAAI (2010)Google Scholar
  16. 16.
    Song, Y., Zhou, D., He, L.W.: Post-ranking query suggestion by diversifying search results. In: Proceedings of the 34th International Conference on Research and Development in Information Retrieval, pp. 815–824. ACM, New York (2011)Google Scholar
  17. 17.
    Jiang, D., Leung, K.W.T., Yang, L., Ng, W.: Query suggestion with diversification and personalization. Knowl.-Based Syst. 89, 553–568 (2015)CrossRefGoogle Scholar
  18. 18.
    Kraft, R., Zien, J.: Mining anchor text for query refinement. In: Proceedings of the 13th International Conference on World Wide Web, pp. 666–674. ACM, New York (2004)Google Scholar
  19. 19.
    Jones, R., Rey, B., Madani, O., Greiner, W.: Generating query substitutions. In: Proceedings of the 15th International Conference on World Wide Web, pp. 387–396. ACM, New York (2006)Google Scholar
  20. 20.
    Wang, X., Zhai, C.: Mining term association patterns from search logs for effective query reformulation. In: Proceedings of the 17th Conference on Information and Knowledge Management, pp. 479–488. ACM, New York (2008)Google Scholar
  21. 21.
    Jansen, B.J., Booth, D.L., Spink, A.: Patterns of query reformulation during web searching. J. Am. Soc. Inform. Sci. Technol. 60(7), 1358–1371 (2009)CrossRefGoogle Scholar
  22. 22.
    Dang, V., Croft, B.W.: Query reformulation using anchor text. In: Proceedings of the Third International Conference on Web Search and Data Mining, pp. 41–50. ACM, New York (2010)Google Scholar
  23. 23.
    Ronao, C.A., Cho, S.B.: Anomalous query access detection in RBAC-administered databases with random forest and PCA. Inf. Sci. 369, 238–250 (2016)CrossRefGoogle Scholar
  24. 24.
    Kruschwitz, U., Lungley, D., Albakour, M.D., Song, D.: Deriving query suggestion for site search. J. Am. Soc. Inform. Sci. Technol. 64(10), 1975–1994 (2013)CrossRefGoogle Scholar
  25. 25.
    Kim, Y., Seo, J., Croft, W.B., Smith, D.A.: Automatic suggestion of phrasal-concept queries for literature search. Inf. Process. Manage. 50(4), 568–583 (2014)CrossRefGoogle Scholar
  26. 26.
    Momtazi, S., Lindenberg, F.: Generating query suggestions by exploiting latent semantics in query logs. J. Inf. Sci. 46(2), 437–448 (2016)CrossRefGoogle Scholar
  27. 27.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefGoogle Scholar
  28. 28.
    Verikas, A., Gelzinis, A., Bacauskinene, M.: Mining data with random forests: a survey and results of new test. Pattern Recogn. 44(2), 330–349 (2011)CrossRefGoogle Scholar
  29. 29.
    Bader-El-Den, M., Gaber, M.: GARF: towards self-optimised random forests. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012. LNCS, vol. 7664, pp. 506–515. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  30. 30.
    Elyan, E., Gaber, M.M.: A genetic algorithm approach to optimising random forests applied to class engineered data. Inf. Sci. 384, 220–234 (2017)CrossRefGoogle Scholar
  31. 31.
    Milne, D., Witten, I.H.: Learning to link with Wikipedia. In: Proceedings of the 17th Conference on Information and Knowledge Management, pp. 509–518, ACM, New York (2008)Google Scholar
  32. 32.
    Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)zbMATHGoogle Scholar
  33. 33.
    Nisbet, R., Miner, G., Elder, J.: Handbook of Statistical Analysis and Data Mining Applications. Academic Press, New York (2009)zbMATHGoogle Scholar
  34. 34.
    Caramia, M., Dell’Olmo, P.: Multi-objective management in freight logistics. Springer, London (2008)CrossRefzbMATHGoogle Scholar
  35. 35.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Software Engineering, Faculty of TechnologyManisa Celal Bayar UniversityManisaTurkey

Personalised recommendations