Advertisement

Lung Allograft Dysfunction (LAD) and Bronchiolitis Obliterans Syndrome

  • Bart Vanaudenaerde
  • Robin Vos
  • Stijn Verleden
  • Elly Vandermeulen
  • Geert Verleden
Chapter

Abstract

Lung transplantation is currently considered as an ultimate lifesaving treatment for selected patients suffering from end-stage pulmonary disease. Long-term survival, however, is hampered by chronic rejection, the major manifestation of chronic lung allograft dysfunction (CLAD). Various phenotypes of CLAD exist including the classical bronchiolitis obliterans syndrome (BOS) and the recently described restrictive allograft syndrome (RAS). BOS is considered to be a chronic rejection and defined as a persistent and obstructive pulmonary function defect (in the absence of any other cause) and histopathologically identified as small airway plugging or obliteration termed obliterative bronchiolitis (OB). RAS patients develop also a persistent decline in FEV1 of at least 20%, but a restrictive rather than obstructive pulmonary function defect (defined as a concomitant decline in total lung capacity of at least 10%) and demonstrate persistent interstitial and ground-glass opacities on chest computed tomographic (CT) scan. Patients with RAS have a much worse prognosis after diagnosis. This book chapter will discuss the different chronic rejection phenotypes, their etiology, diagnosis, prognosis, risk factors, mechanisms, and treatment modalities.

Keywords

Chronic lung allograft dysfunction Restrictive allograft dysfunction Bronchiolitis obliterans syndrome Chronic rejection 

References

  1. 1.
    Sayegh MH, Carpenter CB. Transplantation 50 years later—progress, challenges, and promises. N Engl J Med. 2004;351(26):2761–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Goldfarb SB, Levvey BJ, Edwards LB, Dipchand AI, Kucheryavaya AY, Lund LH, et al. The Registry of the International Society for Heart and Lung Transplantation: nineteenth pediatric lung and heart-lung transplantation report-2016; focus theme: primary diagnostic indications for transplant. J Heart Lung Transplant. 2016;35(10):1196–205.CrossRefPubMedGoogle Scholar
  3. 3.
    Cooper JD, Billingham M, Egan T, Hertz MI, Higenbottam T, Lynch J, et al. A working formulation for the standardization of nomenclature and for clinical staging of chronic dysfunction in lung allografts. International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 1993;12(5):713–6.PubMedGoogle Scholar
  4. 4.
    Estenne M, Maurer JR, Boehler A, Egan JJ, Frost A, Hertz M, et al. Bronchiolitis obliterans syndrome 2001: an update of the diagnostic criteria. J Heart Lung Transplant. 2002;21(3):297–310.CrossRefPubMedGoogle Scholar
  5. 5.
    Verleden GM, Vos R, Vanaudenaerde B, Dupont L, Yserbyt J, Van Raemdonck D, et al. Current views on chronic rejection after lung transplantation. Transpl Int. 2015;28(10):1131–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Verleden GM, Raghu G, Meyer KC, Glanville AR, Corris P. A new classification system for chronic lung allograft dysfunction. J Heart Lung Transplant. 2014;33(2):127–33.CrossRefPubMedGoogle Scholar
  7. 7.
    Glanville AR. Bronchoscopic monitoring after lung transplantation. Semin Respir Crit Care Med. 2010;31(2):208–21.CrossRefPubMedGoogle Scholar
  8. 8.
    Derom F, Barbier F, Ringoir S, Versieck J, Rolly G, Berzsenyi G, et al. Ten-month survival after lung homotransplantation in man. J Thorac Cardiovasc Surg. 1971;61(6):835–46.PubMedGoogle Scholar
  9. 9.
    Owen J, Punt J, Stranford S. Kuby immunology. 7th ed. New York: WH Freeman; 2013.Google Scholar
  10. 10.
    Verleden SE, Sacreas A, Vos R, Vanaudenaerde BM, Verleden GM. Advances in understanding bronchiolitis obliterans after lung transplantation. Chest. 2016;150(1):219–25.CrossRefPubMedGoogle Scholar
  11. 11.
    Sato M, Waddell TK, Wagnetz U, Roberts HC, Hwang DM, Haroon A, et al. Restrictive allograft syndrome (RAS): a novel form of chronic lung allograft dysfunction. J Heart Lung Transplant. 2011;30(7):735–42.CrossRefPubMedGoogle Scholar
  12. 12.
    Woodrow JP, Shlobin OA, Barnett SD, Burton N, Nathan SD. Comparison of bronchiolitis obliterans syndrome to other forms of chronic lung allograft dysfunction after lung transplantation. J Heart Lung Transplant. 2010;29(10):1159–64.CrossRefPubMedGoogle Scholar
  13. 13.
    Suhling H, Dettmer S, Rademacher J, Greer M, Mark G, Shin H-O, et al. Spirometric obstructive lung function pattern early after lung transplantation. Transplantation. 2012;93(2):230–5.CrossRefPubMedGoogle Scholar
  14. 14.
    Verleden SE, Vasilescu DM, Willems S, Ruttens D, Vos R, Vandermeulen E, et al. The site and nature of airway obstruction after lung transplantation. Am J Respir Crit Care Med. 2014;189(3):292–300.CrossRefPubMedGoogle Scholar
  15. 15.
    Galbán CJ, Han MK, Boes JL, Chughtai KA, Meyer CR, Johnson TD, et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med. 2012;18(11):1711–5.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Verleden SE, Vos R, Vandermeulen E, Ruttens D, Bellon H, Heigl T, et al. Parametric response mapping of bronchiolitis obliterans syndrome progression after lung transplantation. Am J Transplant. 2016;16(11):3262–9.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Renne J, Lauermann P, Hinrichs JB, Schönfeld C, Sorrentino S, Gutberlet M, et al. Chronic lung allograft dysfunction: oxygen-enhanced T1-mapping MR imaging of the lung. Radiology. 2015;276(1):266–73.CrossRefPubMedGoogle Scholar
  18. 18.
    Verleden SE, de Jong PA, Ruttens D, Vandermeulen E, van Raemdonck DE, Verschakelen J, et al. Functional and computed tomographic evolution and survival of restrictive allograft syndrome after lung transplantation. J Heart Lung Transplant. 2014;33(3):270–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Sato M. Chronic lung allograft dysfunction after lung transplantation: the moving target. Gen Thorac Cardiovasc Surg. 2013;61(2):67–78.CrossRefPubMedGoogle Scholar
  20. 20.
    Verleden SE, Ruttens D, Vandermeulen E, Bellon H, Dubbeldam A, De Wever W, et al. Predictors of survival in restrictive chronic lung allograft dysfunction after lung transplantation. J Heart Lung Transplant. 2016;35(9):1078–84.CrossRefPubMedGoogle Scholar
  21. 21.
    Paraskeva M, McLean C, Ellis S, Bailey M, Williams T, Levvey B, et al. Acute fibrinoid organizing pneumonia after lung transplantation. Am J Respir Crit Care Med. 2013;187(12):1360–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Corris PA, Christie JD. Update in transplantation 2007. Am J Respir Crit Care Med. 2008;177(10):1062–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Neurohr C, Huppmann P, Samweber B, Leuschner S, Zimmermann G, Leuchte H, et al. Prognostic value of bronchoalveolar lavage neutrophilia in stable lung transplant recipients. J Heart Lung Transplant. 2009;28(5):468–74.CrossRefPubMedGoogle Scholar
  24. 24.
    Davis WA, Finlen Copeland CA, Todd JL, Snyder LD, Martissa JA, Palmer SM. Spirometrically significant acute rejection increases the risk for BOS and death after lung transplantation. Am J Transplant. 2012;12(3):745–52.CrossRefPubMedGoogle Scholar
  25. 25.
    Glanville AR, Aboyoun CL, Havryk A, Plit M, Rainer S, Malouf MA. Severity of lymphocytic bronchiolitis predicts long-term outcome after lung transplantation. Am J Respir Crit Care Med. 2008;177(9):1033–40.CrossRefPubMedGoogle Scholar
  26. 26.
    Glanville AR, Gencay M, Tamm M, Chhajed P, Plit M, Hopkins P, et al. Chlamydia pneumoniae infection after lung transplantation. J Heart Lung Transplant. 2005;24(2):131–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Smith MA, Sundaresan S, Mohanakumar T, Trulock EP, Lynch JP, Phelan DL, et al. Effect of development of antibodies to HLA and cytomegalovirus mismatch on lung transplantation survival and development of bronchiolitis obliterans syndrome. J Thorac Cardiovasc Surg. 1998;116(5):812–20.CrossRefPubMedGoogle Scholar
  28. 28.
    Hachem RR, Tiriveedhi V, Patterson GA, Aloush A, Trulock EP, Mohanakumar T. Antibodies to K-α 1 tubulin and collagen V are associated with chronic rejection after lung transplantation. Am J Transplant. 2012;12(8):2164–71.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Nawrot TS, Vos R, Jacobs L, Verleden SE, Wauters S, Mertens V, et al. The impact of traffic air pollution on bronchiolitis obliterans syndrome and mortality after lung transplantation. Thorax. 2011;66(9):748–54.CrossRefPubMedGoogle Scholar
  30. 30.
    Bhinder S, Chen H, Sato M, Copes R, Evans GJ, Chow C-W, et al. Air pollution and the development of posttransplant chronic lung allograft dysfunction. Am J Transplant. 2014;14(12):2749–57.CrossRefPubMedGoogle Scholar
  31. 31.
    Sharples LD, McNeil K, Stewart S, Wallwork J. Risk factors for bronchiolitis obliterans: a systematic review of recent publications. J Heart Lung Transplant. 2002;21(2):271–81.CrossRefPubMedGoogle Scholar
  32. 32.
    Botha P, Archer L, Anderson RL, Lordan J, Dark JH, Corris PA, et al. Pseudomonas aeruginosa colonization of the allograft after lung transplantation and the risk of bronchiolitis obliterans syndrome. Transplantation. 2008;85(5):771–4.CrossRefPubMedGoogle Scholar
  33. 33.
    Vos R, Vanaudenaerde BM, Geudens N, Dupont LJ, Van Raemdonck DE, Verleden GM. Pseudomonal airway colonisation: risk factor for bronchiolitis obliterans syndrome after lung transplantation? Eur Respir J. 2008;31(5):1037–45.CrossRefPubMedGoogle Scholar
  34. 34.
    D’Ovidio F, Mura M, Ridsdale R, Takahashi H, Waddell TK, Hutcheon M, et al. The effect of reflux and bile acid aspiration on the lung allograft and its surfactant and innate immunity molecules SP-A and SP-D. Am J Transplant. 2006;6(8):1930–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Vos R, Vanaudenaerde BM, De Vleeschauwer SI, Willems-Widyastuti A, Scheers H, Van Raemdonck DE, et al. Circulating and intrapulmonary C-reactive protein: a predictor of bronchiolitis obliterans syndrome and pulmonary allograft outcome. J Heart Lung Transplant. 2009;28(8):799–807.CrossRefPubMedGoogle Scholar
  36. 36.
    Verleden GM, Vos R, Verleden SE, De Wever W, De Vleeschauwer SI, Willems-Widyastuti A, et al. Survival determinants in lung transplant patients with chronic allograft dysfunction. Transplantation. 2011;92(6):703–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Todd JL, Jain R, Pavlisko EN, Finlen Copeland CA, Reynolds JM, Snyder LD, et al. Impact of forced vital capacity loss on survival after the onset of chronic lung allograft dysfunction. Am J Respir Crit Care Med. 2014;189(2):159–66.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Verleden SE, Ruttens D, Vandermeulen E, Vaneylen A, Dupont LJ, Van Raemdonck DE, et al. Bronchiolitis obliterans syndrome and restrictive allograft syndrome: do risk factors differ? Transplantation. 2013;95(9):1167–72.CrossRefPubMedGoogle Scholar
  39. 39.
    Verleden SE, Ruttens D, Vandermeulen E, van Raemdonck DE, Vanaudenaerde BM, Verleden GM, et al. Elevated bronchoalveolar lavage eosinophilia correlates with poor outcome after lung transplantation. Transplantation. 2014;97(1):83–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Verleden SE, Ruttens D, Vos R, Vandermeulen E, Moelants E, Mortier A, et al. Differential cytokine, chemokine and growth factor expression in phenotypes of chronic lung allograft dysfunction. Transplantation. 2015;99(1):86–93.CrossRefPubMedGoogle Scholar
  41. 41.
    Shino MY, Weigt SS, Li N, Palchevskiy V, Derhovanessian A, Saggar R, et al. CXCR3 ligands are associated with the continuum of diffuse alveolar damage to chronic lung allograft dysfunction. Am J Respir Crit Care Med. 2013;188(9):1117–25.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Saito T, Liu M, Binnie M, Sato M, Hwang D, Azad S, et al. Distinct expression patterns of alveolar “alarmins” in subtypes of chronic lung allograft dysfunction. Am J Transplant. 2014;14(6):1425–32.CrossRefPubMedGoogle Scholar
  43. 43.
    Vandermeulen E, Verleden SE, Bellon H, Ruttens D, Lammertyn E, Claes S, et al. Humoral immunity in phenotypes of chronic lung allograft dysfunction: a broncho-alveolar lavage fluid analysis. Transpl Immunol. 2016;38:27–32.CrossRefPubMedGoogle Scholar
  44. 44.
    Kelly FL, Kennedy VE, Jain R, Sindhwani NS, Finlen Copeland CA, Snyder LD, et al. Epithelial clara cell injury occurs in bronchiolitis obliterans syndrome after human lung transplantation. Am J Transplant. 2012;12(11):3076–84.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Gilpin SE, Lung KC, Sato M, Singer LG, Keshavjee S, Waddell TK. Altered progenitor cell and cytokine profiles in bronchiolitis obliterans syndrome. J Heart Lung Transplant. 2012;31(2):222–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Andersson-Sjöland A, Erjefält JS, Bjermer L, Eriksson L, Westergren-Thorsson G. Fibrocytes are associated with vascular and parenchymal remodelling in patients with obliterative bronchiolitis. Respir Res. 2009;10:103.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Vanaudenaerde BM, Wuyts WA, Dupont LJ, Van Raemdonck DE, Demedts MM, Verleden GM. Interleukin-17 stimulates release of interleukin-8 by human airway smooth muscle cells in vitro: a potential role for interleukin-17 and airway smooth muscle cells in bronchiolitis obliterans syndrome. J Heart Lung Transplant. 2003;22(11):1280–3.CrossRefPubMedGoogle Scholar
  48. 48.
    Murphy DM, Forrest IA, Corris PA, Johnson GE, Small T, Jones D, et al. Simvastatin attenuates release of neutrophilic and remodeling factors from primary bronchial epithelial cells derived from stable lung transplant recipients. Am J Physiol Lung Cell Mol Physiol. 2008;294(3):L592–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Vanaudenaerde BM, De Vleeschauwer SI, Vos R, Meyts I, Bullens DM, Reynders V, et al. The role of the IL23/IL17 axis in bronchiolitis obliterans syndrome after lung transplantation. Am J Transplant. 2008;8(9):1911–20.CrossRefPubMedGoogle Scholar
  50. 50.
    Subramanian V, Ramachandran S, Banan B, Bharat A, Wang X, Benshoff N, et al. Immune response to tissue-restricted self-antigens induces airway inflammation and fibrosis following murine lung transplantation. Am J Transplant. 2014;14(10):2359–66.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Bhorade SM, Chen H, Molinero L, Liao C, Garrity ER, Vigneswaran WT, et al. Decreased percentage of CD4+FoxP3+ cells in bronchoalveolar lavage from lung transplant recipients correlates with development of bronchiolitis obliterans syndrome. Transplantation. 2010;90(5):540–6.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Krustrup D, Iversen M, Martinussen T, Schultz HHL, Andersen CB. The number of FoxP3+ cells in transbronchial lung allograft biopsies does not predict bronchiolitis obliterans syndrome within the first five years after transplantation. Clin Transpl. 2015;29(3):179–84.CrossRefGoogle Scholar
  53. 53.
    Ruttens D, Wauters E, Kiciński M, Verleden SE, Vandermeulen E, Vos R, et al. Genetic variation in interleukin-17 receptor A is functionally associated with chronic rejection after lung transplantation. J Heart Lung Transplant. 2013;32(12):1233–40.CrossRefPubMedGoogle Scholar
  54. 54.
    Verleden SE, Vos R, Vandermeulen E, Ruttens D, Vaneylen A, Dupont LJ, et al. Involvement of interleukin-17 during lymphocytic bronchiolitis in lung transplant patients. J Heart Lung Transplant. 2013;32(4):447–53.CrossRefPubMedGoogle Scholar
  55. 55.
    Todd JL, Wang X, Sugimoto S, Kennedy VE, Zhang HL, Pavlisko EN, et al. Hyaluronan contributes to bronchiolitis obliterans syndrome and stimulates lung allograft rejection through activation of innate immunity. Am J Respir Crit Care Med. 2014;189(5):556–66.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Platzer B, Stout M, Fiebiger E. Antigen cross-presentation of immune complexes. Front Immunol. 2014;5:140.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Keane MP, Gomperts BN, Weigt S, Xue YY, Burdick MD, Nakamura H, et al. IL-13 is pivotal in the fibro-obliterative process of bronchiolitis obliterans syndrome. J Immunol. 2007;178(1):511–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Zagai U, Lundahl J, Klominek J, Venge P, Sköld CM. Eosinophil cationic protein stimulates migration of human lung fibroblasts in vitro. Scand J Immunol. 2009;69(4):381–6.CrossRefPubMedGoogle Scholar
  59. 59.
    Hügle T. Beyond allergy: the role of mast cells in fibrosis. Swiss Med Wkly. 2014;144:w13999.PubMedGoogle Scholar
  60. 60.
    Bhatt NY, Allen JN. Update on eosinophilic lung diseases. Semin Respir Crit Care Med. 2012;33(5):555–71.CrossRefPubMedGoogle Scholar
  61. 61.
    Kousha M, Tadi R, Soubani AO. Pulmonary aspergillosis: a clinical review. Eur Respir Rev. 2011;20(121):156–74.CrossRefPubMedGoogle Scholar
  62. 62.
    Vandermeulen E, Lammertyn E, Verleden SE, Ruttens D, Bellon H, Ricciardi M, et al. Immunological diversity in phenotypes of chronic lung allograft dysfunction: a comprehensive immunohistochemical analysis. Transpl Int. 2017;30:134–43.CrossRefPubMedGoogle Scholar
  63. 63.
    Borthwick LA, Suwara MI, Carnell SC, Green NJ, Mahida R, Dixon D, et al. Pseudomonas aeruginosa induced airway epithelial injury drives fibroblast activation: a mechanism in chronic lung allograft dysfunction. Am J Transplant. 2016;16(6):1751–65.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Dunkelberger JR, Song W-C. Complement and its role in innate and adaptive immune responses. Cell Res. 2010;20(1):34–50.CrossRefPubMedGoogle Scholar
  65. 65.
    Bonilla FA, Oettgen HC. Adaptive immunity. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S33–40.CrossRefPubMedGoogle Scholar
  66. 66.
    Warrington R, Watson W, Kim HL, Antonetti FR. An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol. 2011;7(1):1–8.CrossRefGoogle Scholar
  67. 67.
    Zeevi A. Chronic antibody-mediated rejection: new diagnostic tools—clinical significance of C4d deposition and improved detection and characterization of human leucocyte antigen antibodies. Clin Exp Immunol. 2014;178(Suppl 1):52–3.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Meyer KC, Raghu G, Verleden GM, Corris PA, Aurora P, Wilson KC, et al. An international ISHLT/ATS/ERS clinical practice guideline: diagnosis and management of bronchiolitis obliterans syndrome. Eur Respir J. 2014;44(6):1479–503.CrossRefPubMedGoogle Scholar
  69. 69.
    Jaramillo A, Smith MA, Phelan D, Sundaresan S, Trulock EP, Lynch JP, et al. Development of ELISA-detected anti-HLA antibodies precedes the development of bronchiolitis obliterans syndrome and correlates with progressive decline in pulmonary function after lung transplantation. Transplantation. 1999;67(8):1155–61.CrossRefPubMedGoogle Scholar
  70. 70.
    Snyder LD, Wang Z, Chen D-F, Reinsmoen NL, Finlen-Copeland CA, Davis WA, et al. Implications for human leukocyte antigen antibodies after lung transplantation: a 10-year experience in 441 patients. Chest. 2013;144(1):226–33.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Fukami N, Ramachandran S, Takenaka M, Weber J, Subramanian V, Mohanakumar T. An obligatory role for lung infiltrating B cells in the immunopathogenesis of obliterative airway disease induced by antibodies to MHC class I molecules. Am J Transplant. 2012;12(4):867–76.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Neuringer IP, Mannon RB, Coffman TM, Parsons M, Burns K, Yankaskas JR, et al. Immune cells in a mouse airway model of obliterative bronchiolitis. Am J Respir Cell Mol Biol. 1998;19(3):379–86.CrossRefPubMedGoogle Scholar
  73. 73.
    Hachem RR, Yusen RD, Meyers BF, Aloush AA, Mohanakumar T, Patterson GA, et al. Anti-human leukocyte antigen antibodies and preemptive antibody-directed therapy after lung transplantation. J Heart Lung Transplant. 2010;29(9):973–80.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Jaramillo A, Smith CR, Maruyama T, Zhang L, Patterson GA, Mohanakumar T. Anti-HLA class I antibody binding to airway epithelial cells induces production of fibrogenic growth factors and apoptotic cell death: a possible mechanism for bronchiolitis obliterans syndrome. Hum Immunol. 2003;64(5):521–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Levine DJ, Glanville AR, Aboyoun C, Belperio J, Benden C, Berry GJ, et al. Antibody-mediated rejection of the lung: a consensus report of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2016;35(4):397–406.CrossRefPubMedGoogle Scholar
  76. 76.
    Feucht HE, Felber E, Gokel MJ, Hillebrand G, Nattermann U, Brockmeyer C, et al. Vascular deposition of complement-split products in kidney allografts with cell-mediated rejection. Clin Exp Immunol. 1991;86(3):464–70.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Verleden SE, Ruttens D, Vandermeulen E, Bellon H, Van Raemdonck DE, Dupont LJ, et al. Restrictive chronic lung allograft dysfunction: where are we now? J Heart Lung Transplant. 2015;34(5):625–30.CrossRefPubMedGoogle Scholar
  78. 78.
    Banerjee B, Musk M, Sutanto EN, Yerkovich ST, Hopkins P, Knight DA, et al. Regional differences in susceptibility of bronchial epithelium to mesenchymal transition and inhibition by the macrolide antibiotic azithromycin. PLoS One. 2012;7(12):e52309.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Vos R, Vanaudenaerde BM, Verleden SE, De Vleeschauwer SI, Willems-Widyastuti A, Van Raemdonck DE, et al. A randomised controlled trial of azithromycin to prevent chronic rejection after lung transplantation. Eur Respir J. 2011;37(1):164–72.CrossRefPubMedGoogle Scholar
  80. 80.
    Ruttens D, Verleden SE, Vandermeulen E, Bellon H, Vanaudenaerde BM, Somers J, et al. Prophylactic azithromycin therapy after lung transplantation: post hoc analysis of a randomized controlled trial. Am J Transplant. 2016;16(1):254–61.CrossRefPubMedGoogle Scholar
  81. 81.
    Baum C, Reichenspurner H, Deuse T. Bortezomib rescue therapy in a patient with recurrent antibody-mediated rejection after lung transplantation. J Heart Lung Transplant. 2013;32(12):1270–1.CrossRefPubMedGoogle Scholar
  82. 82.
    Snyder LD, Gray AL, Reynolds JM, Arepally GM, Bedoya A, Hartwig MG, et al. Antibody desensitization therapy in highly sensitized lung transplant candidates. Am J Transplant. 2014;14(4):849–56.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Baskaran G, Tiriveedhi V, Ramachandran S, Aloush A, Grossman B, Hachem R, et al. Efficacy of extracorporeal photopheresis in clearance of antibodies to donor-specific and lung-specific antigens in lung transplant recipients. J Heart Lung Transplant. 2014;33(9):950–6.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Greer M, Dierich M, De Wall C, Suhling H, Rademacher J, Welte T, et al. Phenotyping established chronic lung allograft dysfunction predicts extracorporeal photopheresis response in lung transplant patients. Am J Transplant. 2013;13(4):911–8.CrossRefPubMedGoogle Scholar
  85. 85.
    Ihle F, von Wulffen W, Neurohr C. Pirfenidone: a potential therapy for progressive lung allograft dysfunction? J Heart Lung Transplant. 2013;32(5):574–5.CrossRefPubMedGoogle Scholar
  86. 86.
    King TE, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2083–92.CrossRefPubMedGoogle Scholar
  87. 87.
    Vos R, Verleden SE, Ruttens D, Vandermeulen E, Yserbyt J, Dupont LJ, et al. Pirfenidone: a potential new therapy for restrictive allograft syndrome? Am J Transplant. 2013;13(11):3035–40.CrossRefPubMedGoogle Scholar
  88. 88.
    Kohno M, Perch M, Andersen E, Carlsen J, Andersen CB, Iversen M. Treatment of intractable interstitial lung injury with alemtuzumab after lung transplantation. Transplant Proc. 2011;43(5):1868–70.CrossRefPubMedGoogle Scholar
  89. 89.
    Verleden SE, Todd JL, Sato M, Palmer SM, Martinu T, Pavlisko EN, et al. Impact of CLAD phenotype on survival after lung retransplantation: a multicenter study. Am J Transplant. 2015;15(8):2223–30.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Bart Vanaudenaerde
    • 1
  • Robin Vos
    • 1
    • 2
  • Stijn Verleden
    • 3
  • Elly Vandermeulen
    • 3
  • Geert Verleden
    • 4
  1. 1.Laboratory of Respiratory Diseases, Department of Clinical and Experimental MedicineKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Lung Transplant and Respiratory Intermediate Care Unit, Department of Respiratory MedicineUniversity Hospitals LeuvenLeuvenBelgium
  3. 3.Department of Clinical and Experimental MedicineKatholieke Universiteit LeuvenLeuvenBelgium
  4. 4.Lung Transplantation UnitUniversity Hospital GasthuisbergLeuvenBelgium

Personalised recommendations