Advertisement

Applications of Silver Nanoparticles in Plant Protection

  • Nomita Gupta
  • Chandrama Prakash Upadhyaya
  • Amar Singh
  • Kamel A. Abd-Elsalam
  • Ram Prasad
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Silver nanoparticles have unique assets which lead in molecular diagnostics, therapeutics, and devices that are used in several medical procedures. The major procedures used for silver nanoparticle synthesis are the physical and chemical methods. The problems with the chemical and physical methods, the synthesis is expensive and can also have toxic materials absorbed onto them. To overwhelm this, the biological procedures provide a reasonable alternative. In the biological systems involved in the bacteria, actinomycetes, fungi, algae, virus, and plant extracts. Most applications of silver nanoparticles are in the therapeutics, like antimicrobial and anti-inflammatory properties. This chapter provides a wide-ranging understanding on the mechanism of action, production, and application in plant protection.

Keywords

Silver nanoparticles Antimicrobial Phytopathogens Antibacterial mechanism Nano-antifungal Nano-antiviral Nanopesticides Nanofertilizers 

References

  1. Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29:221–236CrossRefPubMedPubMedCentralGoogle Scholar
  2. Al-Huqail AA, Hatata MM, AL-Huqail AA, Ibrahim MM (2018) Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings. Saudi J Biol Sci 25:313–319CrossRefPubMedGoogle Scholar
  3. Arruda SCC, Silva ALD, Galazzi RM, Azevedo RA, Arruda MAZ (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705CrossRefPubMedGoogle Scholar
  4. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081 CrossRefPubMedGoogle Scholar
  5. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Balashanmugam P, Balakumaran MD, Murugan R, Dhanapal K, Kalaichelvan PT (2016) Phytogenic synthesis of silver nanoparticles, optimization and evaluation of in vitro antifungal activity against human and plant pathogens. Microbiol Res 192:52–64CrossRefPubMedGoogle Scholar
  7. Banerjee M, Mallick S, Paul A, Chattopadhyay A, Ghosh SS (2010) Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan-silver nanoparticle composite. Langmuir 26:5901–5908CrossRefPubMedGoogle Scholar
  8. Belava VN, Panyuta OO, Yakovleva GM, Pysmenna YM, Volkogon MV (2017) The effect of silver and copper nanoparticles on the Wheat- Pseudocercosporella herpotrichoides pathosystem. Nanoscale Res Lett 12(250):250. https://doi.org/10.1186/s11671-017-2028-6 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Berahmand AA, Ghafariyan-Panahi A, Sahabi H, Feizi H, Rezvani-Moghaddam P, Shahtahmassebi N et al (2012) Effects silver nanoparticles and magnetic field on growth of fodder maize (Zea mays L.). Biol Trace Elem Res 149:419–424CrossRefPubMedGoogle Scholar
  10. Bryaskova R, Pencheva D, Nikolov S, Kantardjiev T (2011) Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). J Chem Biol 4(4):185–191Google Scholar
  11. Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28:580–588CrossRefPubMedGoogle Scholar
  12. Chen J, Li S, Luo J, Wang R, Ding W (2016) Enhancement of the antibacterial activity of silver nanoparticles against phytopathogenic bacterium Ralstonia solanacearum by stabilization. J Nanomater 2016:7135852, 15 pages. https://doi.org/10.1155/2016/7135852 CrossRefGoogle Scholar
  13. Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12CrossRefGoogle Scholar
  14. Chou KS, Chen CC (2007) Fabrication and characterization of silver core and porous silica shell nanocomposite particles. Microporous Mater 98:208–213CrossRefGoogle Scholar
  15. Chowdappa P, Shivakumar G (2013) Nanotechnology in crop protection: status and cope. Pest Manag Hortic Ecosys 19:131–151Google Scholar
  16. Clement JL, Jarrett PS (1994) Antibacterial silver. Met Based Drugs 1:467–482CrossRefPubMedPubMedCentralGoogle Scholar
  17. Costa MVJD, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54:110–119CrossRefGoogle Scholar
  18. Danilcauk M, Lund A, Saldo J, Yamada H, Michalik J (2006) Conduction electron spin resonance of small silver particles. Spectrochimaca Acta Part A 63:189–191CrossRefGoogle Scholar
  19. Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1090Google Scholar
  20. Elbeshehy EF, Elazzazy AM, Aggelis G (2015) Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Front Microbiol 6:453CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fateixa S, Neves MC, Almeida A, Oliveira J, Trindade T (2009) Anti-fungal activity of SiO2/Ag2 S nanocomposites against Aspergillus niger. Colloids Surfaces B 74:304–308CrossRefGoogle Scholar
  22. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2008) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668CrossRefGoogle Scholar
  23. Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4(20). https://doi.org/10.3389/fenvs.2016.00020
  24. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5:382–386CrossRefGoogle Scholar
  25. González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueño MC, Marquina C, Ibarra MR, Rubiales D, Pérez-de-Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101:187–195CrossRefPubMedGoogle Scholar
  26. Gruyer N, Dorais M, Bastien C, Dassylva N, Triffault-Bouchet G (2013) Interaction between sliver nanoparticles and plant growth. In: International symposium on new technologies for environment control, energy-saving and crop production in greenhouse and plant factory– greensys, Jeju, Korea, 6–11 Oct 2013Google Scholar
  27. Hatchett DW, Henry S (1996) Electrochemistry of sulfur adlayers on the low-index faces of silver. J Phys Chem 100:9854–9859CrossRefGoogle Scholar
  28. Jasim B, Thomas R, Mathew J, Radhakrishnan EK (2016) Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenumgraecum L.). Saudi Pharm J 25:443–447CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jayaseelan C, Rahaman AA, Rajkumar G, Vishnu Kirthi A, Santhoshkumar T, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heart leaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109:185–194CrossRefPubMedGoogle Scholar
  30. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93(10):1037–1043CrossRefGoogle Scholar
  31. Joshi N, Jain N, Pathak A, Singh J, Prasad R, Upadhyaya CP (2018) Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J Sol-Gel Sci Techn https://doi.org/10.1007/s10971-018-4666-2
  32. Kamran S, Forogh M, Mahtab E, Mohammad A (2011) In vitro antibacterial activity of nanomaterials for using in tobacco plants tissue culture. World Acade Sci Eng Technol 79:372–373Google Scholar
  33. Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13:214–231CrossRefGoogle Scholar
  34. Khiyami MA, Almoammar H, Awad YM, Alghuthaym MA et al (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28(5):775–785CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kim H, Kang H, Chu G, Byun H (2008) Antifungal effectiveness of nanosilver colloid against rose powdery mildew in greenhouses. Solid State Phenomenon 135:15–18CrossRefGoogle Scholar
  36. Kim JS, Kuk E, Yu K, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Wang C-Y, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101CrossRefPubMedGoogle Scholar
  37. Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40(1):53–58CrossRefPubMedPubMedCentralGoogle Scholar
  38. Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. Plant growth metabolism. Process Biochem 47(4):51–658CrossRefGoogle Scholar
  39. Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39(1):26–32CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11(6):371–384CrossRefPubMedGoogle Scholar
  41. Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L (2012) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 3:466–476Google Scholar
  42. Lü JM, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, Chen C (2009) Current advances in research and clinical applications of PLGA based Nanotechnology. Expert Rev Mol Diagn 9:325–341CrossRefPubMedPubMedCentralGoogle Scholar
  43. Manimegalai G, Kumar SS, Sharma C (2011) Pesticide mineralization in water using silver nanoparticles. Int J Chem Sci 9:1463–1471Google Scholar
  44. Marimuthu S, Rahuman AA, Rajkumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108:1541–1549CrossRefPubMedGoogle Scholar
  45. Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T (2003) Mode of bacterial action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:4278–4281CrossRefPubMedPubMedCentralGoogle Scholar
  46. Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25:376–380CrossRefGoogle Scholar
  47. Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54CrossRefPubMedGoogle Scholar
  48. Mondal NK, Chowdhury A, Dey U et al (2014) Green synthesis of silver nanoparticles and its application for mosquito control. Asian Pac J Trop Dis 4:S204–S210CrossRefGoogle Scholar
  49. Nair S, Pradeep T (2003) Halocarbon mineralization and catalytic destruction by metal nanoparticles. Curr Sci 84:12Google Scholar
  50. Nangmenyi G, Economy J (2009) Nonmetallic particles for oligodynamic microbial disinfection. In: Street A, Sustich R, Duncan J, Savage N (eds) Nanotechnol application for clean water. William Andrew, Norwich, NY, pp 3–15CrossRefGoogle Scholar
  51. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13CrossRefGoogle Scholar
  52. Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7(10):8972–8980CrossRefPubMedPubMedCentralGoogle Scholar
  53. Oh SD, Lee S, Choi SH, Lee IS, Lee YM, Chun JH, Park HJ (2006) Synthesis of Ag and Ag-SiO2abil nanoparticles by у-irradiation and their antibacterial and antifungal efficiency against Salmonellaenteric serovar Typhimurium and Botrytis cinerea. Colloids Surf A 275:228–233CrossRefGoogle Scholar
  54. Ouda SM (2014) Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Res J Microbiol 9(1):34–42CrossRefGoogle Scholar
  55. Pal S, Tak UK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. App Environ Microbiol 73:1712–1720CrossRefGoogle Scholar
  56. Pallavi MCM, Srivastava R, Arora S, Sharma AK (2016) Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. Biotech 6(254):254. https://doi.org/10.1007/s13205-016-0567-7 CrossRefGoogle Scholar
  57. Panáček A, Kolář M, Večeřová R, Prucek R, Soukupová J, Kryštof V, Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302CrossRefGoogle Scholar
  58. Panyala NR, Pena Mendez EM, Havel J (2008) Silver or silver nanoparticle: a hazardous treat to the environment and human health? J Appl Med 6:117–129Google Scholar
  59. Papp I, Sieben C, Ludwig K, Roskamp M, Böttcher C, Schlecht S et al (2010) Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles. Small 6:2900–2906CrossRefPubMedGoogle Scholar
  60. Parashar UK, Saxena SP, Srivastava A (2009) Bioinspired synthesis of silver nanoparticles. Dig J Nanomat Biostruct 4:159–166Google Scholar
  61. Park H-J, Kim SH, Kim HJ, Choi S-H (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22(3):295–302CrossRefGoogle Scholar
  62. Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545CrossRefPubMedGoogle Scholar
  63. Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J Nanopart 2013:1. https://doi.org/10.1155/2013/431218 CrossRefGoogle Scholar
  64. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart 963961., https://doi.org/10.1155/2014/963961:1CrossRefGoogle Scholar
  65. Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Prasad R, Gupta N, Kumar M, Kumar V, Wang S, Abd-Elsalam KA (2017b) Nanomaterials act as plant defense mechanism. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology. Springer, Singapore, pp 253–269CrossRefGoogle Scholar
  67. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  68. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363 CrossRefGoogle Scholar
  69. Radwan DEM, Fayez KA, Mahmoud SY, Hamad A (2008) Protective action of salicylic acid against bean yellow mosaic virus infection in Vicia faba leaves. J Plant Physiol 165:845–857CrossRefPubMedGoogle Scholar
  70. Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293CrossRefPubMedGoogle Scholar
  71. Raza MA, Kanwal Z, Rauf A, Sabri AN, Riaz S, Shahzad Naseem S (2017) Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nano 6(74):1–15Google Scholar
  72. Rezvani N, Sorooshzadeh A, Farhadi N (2012) Effect of nano-silver on growth of saffron in flooding stress. World Acad Sci Eng Technol 1:517–522Google Scholar
  73. Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet JB (2008) Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 61:869–887CrossRefPubMedGoogle Scholar
  74. Rouhani M, Samih MA, Kalantri S (2012) Insecticidal effect of silica and silver nanoparticles on the cowpea seed beetle, Callosobruchus maculatus F (Col: Bruchidae). J Entomol Res 4:297–305Google Scholar
  75. Salama HMH (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotech 3(10):190–197Google Scholar
  76. Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision 2:61–68Google Scholar
  77. Schwenkbier L, Pollok S, König S, Urban M, Werres S, Dana Cialla-May D, Karina Weber K, Popp J (2015) Towards on-site testing of Phytophthora species. Anal Methods 7:211–217CrossRefGoogle Scholar
  78. Servin A, Elmer W, Mukherjee A, De La Torre-Roche R, Hamdi H, White JC, Bindraban P, Dimkpa C (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17:1–21CrossRefGoogle Scholar
  79. Sharma P, Bhatt D, Zaidi MG, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233CrossRefPubMedGoogle Scholar
  80. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:1–9CrossRefGoogle Scholar
  81. Singh S, Singh BK, Yadav SM, Gupta AK (2015) Applications of nanotechnology in agricultural and their role in disease management. Res J Nanosci Nanotechnol 5:1–5CrossRefGoogle Scholar
  82. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182CrossRefPubMedPubMedCentralGoogle Scholar
  83. Soni N, Prakash S (2015) Antimicrobial and mosquitocidal activity of microbial synthesized silver nanoparticles. Parasitol Res 114:1023–1030CrossRefPubMedGoogle Scholar
  84. Swamy VS, Prasad R (2012) Green synthesis of silver nanoparticles from the leaf extract of Santalum album and its antimicrobial activity. J Optoelectron Biom Mater 4(3):53–59Google Scholar
  85. Suman TY, Elumali D, Kaleena PK (2013) GCMS analysis of bioactive components and synthesis of silver nanoparticle using Ammannia baccifera aerial extract and its larvicidal activity against malaria and fiariasis vectors. Ind Crop Prod 47:239–245CrossRefGoogle Scholar
  86. Taniguchi N (1974) On the basic concept of ‘nano-technology’. Proceedings of the international conference on production engineering Tokyo, Part II; Tokyo: Japan Soc Precision Engineering. pp. 18–23Google Scholar
  87. Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S et al (2017) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177CrossRefPubMedGoogle Scholar
  88. Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198CrossRefGoogle Scholar
  89. Tsuji K (2001) Microencapsulation of pesticides and their improved handling safety. J Microencapsul 18:137–147CrossRefPubMedGoogle Scholar
  90. Upadhyayula VKK (2012) Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review. Anal Chim Acta 715:1–18CrossRefPubMedPubMedCentralGoogle Scholar
  91. Vinković T, Novák O, Strnad M, Goessler W, Jurašin DD, Paradiković N, Vrček IV (2017) Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. Environ Res 156:10–18CrossRefPubMedGoogle Scholar
  92. Winbo Ma (2011) How do plants fight disease? Breakthrough research by UC Riverside plant pathologist offers a clue. http://newsroom.ucr.edu/2587
  93. Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One 7:e47674. https://doi.org/10.1371/journal.pone.0047674 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Zeng F, Hou C, Wu SZ, Liu XX, Tong Z, Yu SN (2007) Silver nanoparticles directly formed on natural macroporous matrix and their anti-microbial activities. Nanotechnology 18:1–8Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nomita Gupta
    • 1
  • Chandrama Prakash Upadhyaya
    • 2
  • Amar Singh
    • 3
  • Kamel A. Abd-Elsalam
    • 4
  • Ram Prasad
    • 1
    • 5
  1. 1.Amity Institute of Microbial TechnologyAmity UniversityNoidaIndia
  2. 2.Department of BiotechnologyDR Harisingh Gour Central UniversitySagarIndia
  3. 3.Lal Bahadur Shastri Memorial CollegeJamshedpur (Kolhan University, Chaibasa)JamshedpurIndia
  4. 4.Plant Pathology Research Institute, Agricultural Research Center (ARC)GizaEgypt
  5. 5.School of Environmental Science and EngineeringSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations