Nano-carbon: Plant Growth Promotion and Protection

  • Mohamed A. Mohamed
  • Ayat F. Hashim
  • Mousa A. Alghuthaymi
  • Kamel A. Abd-Elsalam
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Carbon nanomaterials (CNMs) such as fullerenes, carbon nanoparticles, fullerol, single-walled carbon nanotubes/multi-walled carbon nanotubes, and carbon nanohorns, among others, have been in used in agriculture showing positive and adverse effects. Researchers reported both positive and negative effects of carbon nanomaterials on plant system. Some nanoparticles improved the seed germination and stimulated growth parameters in some plants; however, some produced contradictory effects on others. In the current chapter, both positive and negative effects of different CNMs on different plant species were reported. However, this chapter covers the plausible role of carbon-based nanomaterials that can be useful for the delivery of nucleic acid, pesticides, and fertilizers to plants, wastewater treatment, suppression of plant diseases caused by pathogens, and sensing of critical plant molecules with a high level of sensitivity. Carbon nanotubes for the construction of electrochemical sensors dedicated to the environmental monitoring of pesticides are also discussed. The future prospect of carbon nanomaterials is fairly bright as it is a low-cost solution to increase crop promotion and plant protection.


Carbon nanomaterials Fullerenes Graphene Carbon nanotubes Gene delivery Seed germination Phytotoxicity 



This research was supported by the Science and Technology Development Fund (STDF), Joint Egypt (STDF)-South Africa (NRF) Scientific Cooperation, Grant ID. 27837, to Kamel Abd-Elsalam. Also, this research was partly supported by the International Foundation for Science, Stockholm, Sweden, through a grant to Dr. Hashim Ayat (F5853).


  1. Al-Hakami SM, Khalil AB, Laoui T, Atieh MA (2013) Fast disinfection of Escherichia coli bacteria using carbon nanotubes interaction with microwave radiation. Bioinorg Chem Appl 45:8943Google Scholar
  2. Andreas H (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41:1853–1859CrossRefGoogle Scholar
  3. Anjum NA, Gill SS, Duarte AC, Pereira E, Ahmad I (2013) Silver nanoparticles in soil–plant systems. J Nanopart Res 15(9):1896CrossRefGoogle Scholar
  4. Asgari P, Moradi O, Tajeddin B (2014) The effect of nanocomposite packaging carbon nanotube base on organoleptic and fungal growth of mazafati brand dates. Int Nano Lett 4:1–5CrossRefGoogle Scholar
  5. Avanasi R, Jackson WA, Sherwin B, Mudge JF, Anderson TA (2014) C60 fullerene soil sorption, biodegradation, and plant uptake. Environ Sci Technol 48(5):2792–2797PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bai L, Bossa N, Qu F, Winglee J, Li G, Sun K, Liang H, Wiesner MR (2017) Comparison of hydrophilicity and mechanical properties of nanocomposite membranes with cellulose nanocrystals and carbon nanotubes. Environ Sci Technol 51:253–262PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bakajin O, Noy A, Fornasiero F, Grigoropoulos CP, Holt JK, In JB, Kim S, Park HG (2009) Nanofluidics carbon nanotube membranes: applications for water purification and desalination. In: Savage NF (ed) Nanotechnology applications for clean water. William Andrew Inc., Norwich, NY, pp 77–93Google Scholar
  8. Begum P, Fugetsu B (2012) Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L.) and the role of ascorbic acid as an antioxidant. J Hazard Mater 243:212–222PubMedCrossRefPubMedCentralGoogle Scholar
  9. Begum P, Ikhtiari R, Fugetsu B (2014) Potential impact of multi-walled carbon nanotubes exposure to the seedling stage of selected plant species. Nanomaterials 4(2):203–221PubMedPubMedCentralCrossRefGoogle Scholar
  10. Biris AS, Khodakovskaya M (2011) Method of using carbon nanotubes to affect seed germination and plant growth. WO 2011059507Google Scholar
  11. Boonyanitipong P, Kositsup B, Kumar P, Baruah S, Dutta J (2011) Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. Int J Biosci Biochem Bioinforma 1:282–285Google Scholar
  12. Burlaka OM, Pirko YV, Yemets AI, Blume YB (2015) Plant genetic transformation using carbon nanotubes for DNA delivery. Cytol Genet 49:349–357CrossRefGoogle Scholar
  13. Cañas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee H, Olszyk D (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chai M, Shi F, Li R, Liu L, Liu Y, Liu F (2013) Interactive effects of cadmium and carbon nanotubes on the growth and metal accumulation in a halophyte Spartina alterniflora (Poaceae). Plant Growth Regul 71:171–179CrossRefGoogle Scholar
  15. Chen C, Wang X (2006) Adsorption of Ni (II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind Eng Chem Res 45:9144–9149CrossRefGoogle Scholar
  16. Churilov GN (2008) Synthesis of fullerenes and other nanomaterials in arc discharge. Fullerenes, Nanotubes, Carbon Nanostruct 16:395–403CrossRefGoogle Scholar
  17. Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure safety issues, and risk assessment indicators. Int J Environ Res Public Health 8:1402–1419PubMedPubMedCentralCrossRefGoogle Scholar
  18. Das R, Abd Hamid SB, Ali ME, Ismail AF, Annuar MSM, Ramakrishna S (2014a) Multifunctional carbon nanotubes in water treatment: the present, past and future. Desalination 354:160–179CrossRefGoogle Scholar
  19. Das R, Ali ME, Hamid SBA, Ramakrishna S, Chowdhury ZZ (2014b) Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336:97–109CrossRefGoogle Scholar
  20. De La Torre-Roche R, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, Wang C, Ma X, White JC (2012) Fullerene-enhanced accumulation of p,p’-DDE in agricultural crop species. Environ Sci Technol 46(17):9315–9323CrossRefGoogle Scholar
  21. De Oliveira R, Hudari F, Franco J, Zanoni MVB (2015) Carbon nanotube-based electrochemical sensor for the determination of anthraquinone hair dyes in wastewaters. Chemosensors 3:22–35CrossRefGoogle Scholar
  22. Dichiara AB, Webber MR, Gorman WR, Rogers RE (2015) Removal of copper ions from aqueous solutions via adsorption on carbon nanocomposites. ACS Appl Mater Interface 7:15674–15680CrossRefGoogle Scholar
  23. El-Sheikh AH, Sweileh JA, Al-Degs YS, Insisi AA, Al-Rabady N (2008) Critical evaluation and comparison of enrichment efficiency of multi-walled carbon nanotubes, C18 silica and activated carbon towards some pesticides from environmental waters. Talanta 74:1675–1680PubMedCrossRefPubMedCentralGoogle Scholar
  24. Eun AJC, Wong SM (2000) Molecular beacons: a new approach to plant virus detection. Phytopathology 90(3):269–275PubMedCrossRefPubMedCentralGoogle Scholar
  25. European Commission (2011) European commission recommendations (2011) on the definition of nanomaterial. Off J Eur Union 54:38–40Google Scholar
  26. Fan LL, Wang YH, Shao XW, Geng YQ, Wang ZC, Ma Y, Liu J (2012) Effects of combined nitrogen fertilizer and nano-carbon application on yield and nitrogen use of rice grown on saline alkali soil. J Food Agric Environ 10:558–562Google Scholar
  27. Fang Y, Ramasamy RP (2015) Current and prospective methods for plant disease detection. Biosensors 5(3):537–561PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fathi Z, Nejad R-AK, Mahmoodzadeh H, Satari TS (2017) Investigating of a wide range of concentrations of multi-walled carbon nanotubes on germination and growth of castor seeds (Ricinus communis L.). J Plant Prot Res 57:228–236CrossRefGoogle Scholar
  29. Fernández-Baldo MA, Messina GA, Sanz MI, Raba J (2009) Screen-printed immunosensor modified with carbon nanotubes in a continuous-flow system for the Botrytis cinerea determination in apple tissues. Talanta 79(3):681–686PubMedCrossRefPubMedCentralGoogle Scholar
  30. Fernández-Baldo MA, Messina GA, Sanz MI, Raba J (2010) Microfluidic immunosensor with micromagnetic beads coupled to carbon-based screen-printed electrodes (SPCEs) for determination of Botrytis cinerea in tissue of fruits. J Agric Food Chem 58(21):1201–11206CrossRefGoogle Scholar
  31. Flores D, Chacón R, Alvarado L, Schmidt A, Alvarado C, Chaves J (2014) Effect of using two different types of carbon nanotubes for blackberry (Rubus adenotrichos) in vitro plant rooting, growth and histology. Am J Plant Sci 5:3510–3518CrossRefGoogle Scholar
  32. Fosso-Kankeu E, De Klerk CM, Botha TA, Waanders F, Phoku J, Pandey S (2016) The antifungal activities of multi-walled carbon nanotubes decorated with silver, copper and zinc oxide particles. In: International conference on advances in science, engineering, technology and natural resources (ICASETNR-16), Parys, South Africa, 24–25 November 2016, pp 55–59Google Scholar
  33. Ghodake G, Seo YD, Park D, Lee DS (2010) Phytotoxicity of carbon nanotubes assessed by Brassica juncea and Phaseolus mungo. J Nanoelectron Optoelectron 5(2):157–160CrossRefGoogle Scholar
  34. Gholipour Y, Erra-Balsells R, Nonami H (2012) Integrative analysis of physiological phenotype of plant cells by turgor measurement and metabolomics. Eng Lett 20(4):EL01Google Scholar
  35. Ghosh M, Bhadra S, Adegoke A, Bandyopadhyay M, Mukherjee A (2015) MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper methylation. Mutat Res 774:49–58PubMedCrossRefGoogle Scholar
  36. Giraldo JP, Landry MP, Kwak S, Jain RM, Wong MH, Iverson NM, Ben-Naim M, Strano MS (2015) A ratiometric sensor using single chirality near infrared fluorescent carbon nanotubes: application to in vivo monitoring. Small 32:3973–3984CrossRefGoogle Scholar
  37. Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gopalakrishnan Nair PM (2018) Toxicological impact of carbon nanomaterials on plants. In: Gothandam K, Ranjan S, Dasgupta N, Ramalingam C, Lichtfouse E (eds) Nanotechnology, food security and water treatment. Environmental chemistry for a sustainable world. Springer, ChamGoogle Scholar
  39. Gorczyca A, Kasprowicz MJ, Lemek T (2009) Physiological effect of multi–walled carbon nanotubes MWCNTs on conidia of the entomopathogenic fungus, Paecilomyces fumosoroseus Deuteromycotina, Hyphomycetes. J Environ Sci Health A 44(14):1592–1597CrossRefGoogle Scholar
  40. Gore JP, Sane A (2011) Flame synthesis of carbon nanotubes. INTECH Open Access Publisher, RijekaCrossRefGoogle Scholar
  41. Govindhan M, Lafleur T, Adhikari BR, Chen A (2015) Electrochemical sensor based on carbon nanotubes for the simultaneous detection of phenolic pollutants. Electroanalysis 27(4):902–909CrossRefGoogle Scholar
  42. Gu J, Xiao P, Zhang L, Lu W, Zhang G, Huang Y, Zhang J, Chen T (2016) Construction of superhydrophilic and under-water superoleophobic carbon-based membranes for water purification. RSC Adv 6:73399–73403CrossRefGoogle Scholar
  43. Gurunathan S (2015) Cytotoxicity of graphene oxide nanoparticles on plant growth promoting rhizobacteria. J Ind Eng Chem 32:282–291CrossRefGoogle Scholar
  44. Haghighi M, da Silva TJA (2014) Effect of N-TiO2 on tomato, onion and radish seed germination. J Crop Sci Biotechnol 17:221–227CrossRefGoogle Scholar
  45. Hajihosseini S, Nasirizadeh N, Hejazi MS, Yaghmaei P (2016) A sensitive DNA biosensor fabricated from gold nanoparticles and graphene oxide on a glassy carbon electrode. Mater Sci Eng C 61:506–515CrossRefGoogle Scholar
  46. Hasaneen MNA, Abdel-Aziz HMM, Omer AM (2017) Characterization of carbon nanotubes loaded with nitrogen, phosphorus and potassium fertilizers. Am J Nano Res Appl 5(2):12–18Google Scholar
  47. Hernandez-Fernandez P, Montiel M, Ocón P, de la Fuente JLG, Garcia-Rodriguez S, Rojas S, Fierro JL (2010) Functionalization of multi-walled carbon nanotubes and application as supports for electrocatalysts in proton exchange membrane fuel cell. Appl Catal B 99:343–352CrossRefGoogle Scholar
  48. Herrero M, Simó C, García-Cañas V, Ibáñez E, Cifuentes A (2012) Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrom Rev 31:49–69PubMedCrossRefPubMedCentralGoogle Scholar
  49. Hilding J, Grulke EA, Sinnot SB, Qian D, Andrews R, Jagtoyen M (2001) Sorption of butane on carbon multiwall nanotubes at room temperature. Langmuir 17:7540–7544CrossRefGoogle Scholar
  50. Hirsch A, Vostrowsky O (2005) Functionalization of carbon nanotubes. Top Curr Chem 245:193–237CrossRefGoogle Scholar
  51. Hu X, Zhou Q (2014) Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation. Sci Rep 4:3782PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hunter RJ (2001) Foundation of colloid science, 2nd edn. Oxford University Press, Oxford; New YorkGoogle Scholar
  53. Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plants system. J Nanobiotechnology 12:1–10CrossRefGoogle Scholar
  54. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56CrossRefGoogle Scholar
  55. Ikhtiar R, Begum P, Watari F, Fugetsu B (2013) Toxic effect of multiwalled carbon nanotubes on lettuce (Lactuca sativa). Nano Biomed 5:18–24Google Scholar
  56. Ilkhani H, Hughes T, Li J, Zhong CJ, Hepel M (2016) Nanostructured SERS electrochemical biosensors for testing of anticancer drug interactions with DNA. Biosens Bioelectron 80:257–264PubMedCrossRefGoogle Scholar
  57. Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E, Stricker S (2000) Application of electrochemical biosensors for detection of food pathogenic bacteria. Electroanalysis 12(5):317–325CrossRefGoogle Scholar
  58. Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877–880PubMedCrossRefPubMedCentralGoogle Scholar
  59. Jin L, Son Y, DeForest JL, Kang YJ, Kim W, Chung H (2014) Single-walled carbon nanotubes alter soil microbial community composition. Sci Total Environ 446:533–538CrossRefGoogle Scholar
  60. Johansen A, Pedersen AL, Jensen KA, Karlson U et al (2008) Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Environ Toxicol Chem 27:1895–1903PubMedCrossRefPubMedCentralGoogle Scholar
  61. Joshi N, Jain N, Pathak A, Singh J, Prasad R, Upadhyaya CP (2018) Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J Sol-Gel Sci Techn.
  62. Jung JH, Hwang GB, Lee JE, Bae GN (2011) Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Langmuir 27:10256–10264PubMedCrossRefPubMedCentralGoogle Scholar
  63. Kaphle A, Navya PN, Umapathi A, Chopra M, Daima HK (2017) Nanomaterial impact, toxicity and regulation in agriculture, food and environment. In: Ranjan S et al (eds) Nanoscience in food and agriculture 5. Sustainable agriculture reviews, vol 26. Springer International Publishing AG, Cham, pp 205–242. CrossRefGoogle Scholar
  64. Kerfahi D, Tripathi BM, Singh D, Kim H, Lee S, Lee J, Adams JM (2015) Effects of functionalized and raw multi-walled carbon nanotubes on soil bacterial community composition. PLoS One 10(3):e0123042PubMedPubMedCentralCrossRefGoogle Scholar
  65. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. Am Chem Soc 3(10):3221–3227Google Scholar
  66. Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. Am Chem Soc Nano 6(3):2128–2135Google Scholar
  67. Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123PubMedCrossRefGoogle Scholar
  68. Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13(13):37PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kratschmer W (2011) The story of making fullerenes. Nanoscale 3:2485–2489PubMedCrossRefPubMedCentralGoogle Scholar
  70. Kratschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358CrossRefGoogle Scholar
  71. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163CrossRefGoogle Scholar
  72. Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10:3739–3758PubMedCrossRefPubMedCentralGoogle Scholar
  73. Lahiani MH, Chen J, Irin F, Puretzky AA, Green MJ, Khodakovskaya MV (2015) Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon 81:607–619CrossRefGoogle Scholar
  74. Li H, Guan Y (2011) Foliar fertilizer containing carbon nanoparticles for plants under stress conditions. CN 102030595Google Scholar
  75. Li Y, Wang S, Wei J, Zhang X, Xu C, Luan Z, Wu D, Wei B (2002) Lead adsorption on carbon nanotubes. Chem Phys Lett 357:263–266CrossRefGoogle Scholar
  76. Li YH, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wu D, Wei B (2003a) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41:2787–2792CrossRefGoogle Scholar
  77. Li YH, Wang S, Luan Z, Ding J, Xu C, Wu D (2003b) Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41:1057–1062CrossRefGoogle Scholar
  78. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250PubMedCrossRefPubMedCentralGoogle Scholar
  79. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128PubMedCrossRefPubMedCentralGoogle Scholar
  80. Liu Y, Wangquan T (2012) Special fertilizer for rapeseed base fertilizer. CN 102816021Google Scholar
  81. Liu F, Wen LX, Li ZZ, Yu W, Sun HY, Chen JF (2006a) Porous hollow silica nanoparticles as controlled delivery system for water soluble pesticide. Mater Res Bull 41:2268–2275CrossRefGoogle Scholar
  82. Liu X, Feng Z, Zhang S, Zhang J, Xiao Q, Wang Y (2006b) Preparation and testing of cementing nano-subnano composites of slow- or controlled release of fertilizers. Sci Agric Sin 39:1598–1604Google Scholar
  83. Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010PubMedCrossRefPubMedCentralGoogle Scholar
  84. Liu Q, Zhang X, Zhao Y, Lin J, Shu C, Wang C, Fang X (2013a) Fullerene-induced increase of glycosyl residue on living plant cell wall. Environ Sci Technol 47:7490–7498PubMedCrossRefPubMedCentralGoogle Scholar
  85. Liu X, Wang M, Zhang S, Pan B (2013b) Application potential of carbon nanotubes in water treatment: a review. J Environ Sci (China) 25:1263–1280CrossRefGoogle Scholar
  86. Liu J, Li X, Jia W, Ding M, Zhang Y, Ren S (2016) Separation of emulsified oil from oily wastewater by functionalized multiwalled carbon nanotubes. J Dispers Sci Technol 37:1294–1302CrossRefGoogle Scholar
  87. Lu C, Chiu H (2006) Adsorption of zinc(II) from water with purified carbon nanotubes. Chem Eng Sci 61:1138–1145CrossRefGoogle Scholar
  88. Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061PubMedCrossRefPubMedCentralGoogle Scholar
  89. Mani S, Cheemalapati S, Chen SM, Devadas B (2015) Anti-tuberculosis drug pyrazinamide determination at multiwalled carbon nanotubes/graphene oxide hybrid composite fabricated electrode. Int J Electrochem Sci 10:7049–7062Google Scholar
  90. Matsuzawa Y, Takada Y, Kodaira T, Kihara H, Kataura H, Yoshida M (2014) Effective nondestructive purification of single-walled carbon nanotubes based on high-speed centrifugation with a photochemically removable dispersant. J Phys Chem C 118:5013–5019CrossRefGoogle Scholar
  91. Mauter M, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859PubMedCrossRefPubMedCentralGoogle Scholar
  92. Mercan H, Inam R, Aboul-Enein HY (2011) Square wave adsorptive stripping voltammetric determination of˙cyromazine insecticide with multi-walled carbon nanotube paste electrode. Anal Lett 44:1392–1404CrossRefGoogle Scholar
  93. Milne WI, Teo KBK, Amaratunga GAJ, Legagneux P, Ganglof L, Schnell JP, Semet V, Binh VT, Groening O (2004) Carbon nanotubes as field emission sources. J Mater Chem 14:933–943CrossRefGoogle Scholar
  94. Miralles P, Johnson E, Church TL, Harris AT (2012) Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J R Soc Interface 9:3514–3527PubMedPubMedCentralCrossRefGoogle Scholar
  95. Mishra A, Clark JH (2013) Green materials for sustainable water remediation and treatment. Royal Society of Chemistry, CambridgeCrossRefGoogle Scholar
  96. Mondal A, Basu R, Das S, Nandy P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13(10):4519CrossRefGoogle Scholar
  97. Morla S, Ramachandra Rao CSV, Chakrapani R (2011) Factors affecting seed germination and seedling growth of tomato plants cultured in vitro conditions. J Chem Biol Phys Sci B 1:328Google Scholar
  98. Morsy M, Helal M, El-Okr M, Ibrahim M (2014) Preparation, purification and characterization of high purity multi-wall carbon nanotube. Spectrochim Acta A Mol Biomol Spectrosc 132:594–598PubMedCrossRefPubMedCentralGoogle Scholar
  99. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154CrossRefGoogle Scholar
  100. Nair R, Mohamed SM, Gao W, Maekawa T, Yoshida Y, Ajayan PM, Kumar DS (2012) Effect of carbon nanomaterials on the germination and growth of rice plants. J Nanosci Nanotechnol 12:2212–2220PubMedCrossRefPubMedCentralGoogle Scholar
  101. Nalwade AR, Neharkar SB (2013) Carbon nanotubes enhance the growth and yield of hybrid Bt cotton Var. ACH-177-2. Int J Adv Sci Technol Res 3:840Google Scholar
  102. Namasivayam M, Shapter J (2017) Factors affecting carbon nanotube fillers towards enhancement of thermal conductivity in polymer nanocomposites: a review. J Compos Mater 51:3657–3668CrossRefGoogle Scholar
  103. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669PubMedCrossRefPubMedCentralGoogle Scholar
  104. Novoselov KS, Fal’Ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200PubMedCrossRefPubMedCentralGoogle Scholar
  105. Oleszczuk P, Josko I, Xing BS (2011) The toxicity to plants of the sewage sludges containing multiwalled carbon nanotubes. J Hazard Mater 186:436–442PubMedCrossRefPubMedCentralGoogle Scholar
  106. Oyelami AO, Semple KT (2015) Impact of carbon nanomaterials on microbial activity in soil. Soil Biol Biochem 86:172–180CrossRefGoogle Scholar
  107. Patel N, Desai P, Patel N, Jha A, Gautam HK (2014) Agronanotechnology for plant fungal disease management: a review. Int J Curr Microbiol Appl Sci 3(10):71–84Google Scholar
  108. Peng X, Li Y, Luan Z, Di Z, Wang H, Tian B, Jia Z (2003) Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chem Phys Lett 376:154–158CrossRefGoogle Scholar
  109. Pereira A, Grillo R, Mello NF, Rosa AH, Fraceto LF (2014) Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207–215PubMedCrossRefPubMedCentralGoogle Scholar
  110. Pourkhaloee A, Haghighi M, Saharkhiz MJ, Jouzi H, Doroodmand MM (2011) Carbon nanotubes can promote seed germination via seed coat penetration. J Seed Technol 33(2):155–169Google Scholar
  111. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  112. Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. CrossRefPubMedPubMedCentralGoogle Scholar
  113. Prasad R, Gupta N, Kumar M, Kumar V, Wang S, Abd-Elsalam KA (2017b) Nanomaterials act as plant defense mechanism. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology. Springer, Singapore, pp 253–269CrossRefGoogle Scholar
  114. Pyrzyńska K, Bystrzejewski M (2010) Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloids Surf A 362:102–109CrossRefGoogle Scholar
  115. Rasool K, Lee DS (2015) Influence of multi-walled carbon nanotubes on anaerobic biological sulfate reduction processes. J Nanoelectron Optoelectron 10:485–489CrossRefGoogle Scholar
  116. Ribeiro WF, Selva TMG, Lopes IC, Coelho ECS, Lemos SG, de Abreu FC, do Nascimento VB, de Araújo MCU (2011) Electroanalytical determination of carbendazim by square wave adsorptive stripping voltammetry with a multiwalled carbon nanotubes modified electrode. Anal Methods 3:1202–1206CrossRefGoogle Scholar
  117. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, LondonCrossRefGoogle Scholar
  118. Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Manowade KR, Mujeeb MA, Mundaragi AC, Jogaiah S, David M, Thimmappa SC, Prasad R, Harish ER (2017a) Production of bionanomaterials from agricultural wastes. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 33–58CrossRefGoogle Scholar
  119. Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017b) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 73–97CrossRefGoogle Scholar
  120. Sarlak N, Taherifar A, Salehi F (2014) Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. J Agric Food Chem 62:4833–4838PubMedCrossRefGoogle Scholar
  121. Sarno M, Tamburrano A, Arurault L, Fontorbes S, Pantani R, Datas L, Ciambelli P, Sarto MS (2013) Electrical conductivity of carbon nanotubes grown inside a mesoporous anodic aluminium oxide membrane. Carbon 55:10–22CrossRefGoogle Scholar
  122. Saurabh S, Bijendra KS, Yadav SM, Gupta AK (2015) Applications of nanotechnology in agricultural and their role in disease management. J Nanosci Nanotechnol 5:1–5Google Scholar
  123. Schierz A, Zanker H (2009) Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Environ Pollut 157:1088–1094PubMedCrossRefPubMedCentralGoogle Scholar
  124. Schmitt H, Creton N, Prashantha K, Soulestin J, Lacrampe MF, Krawczak P (2015) Melt-blended halloysite nanotubes/wheat starch nanocomposites as drug delivery system. Polym Eng Sci 55:573–580CrossRefGoogle Scholar
  125. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53PubMedPubMedCentralCrossRefGoogle Scholar
  126. Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M, Tokeshi M, Mizukami H, Bianco A, Baba Y (2011) Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5:493–499PubMedCrossRefPubMedCentralGoogle Scholar
  127. Serag MF, Kaji N, Habuchi S, Bianco A, Baba Y (2013) Nanobiotechnology meets plant cell biology: carbon nanotubes as organelle targeting nanocarriers. RSC Adv 3:4856–4862CrossRefGoogle Scholar
  128. Serag MF, Kaji N, Tokeshi M, Baba Y (2015) Carbon nanotubes and modern nanoagriculture. In: Siddiqui M, Al-Whaibi M, Mohammad F (eds) Nanotechnology and plant sciences. Springer, Cham, pp 183–201Google Scholar
  129. Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2(4):83–92Google Scholar
  130. Shen CX, Zhang QF, Li J, Bi FC, Yao N (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97:1602–1609PubMedCrossRefPubMedCentralGoogle Scholar
  131. Shrestha B, Acosta-Martinez V, Cox SB, Green MJ, Li S, Canas-Carrell JE (2013) An evaluation of the impact of multiwalled carbon nanotubes on soil microbial community structure and functioning. J Hazard Mater 261:188–197PubMedCrossRefGoogle Scholar
  132. Singh A, Bhati A, Gunture, Tripathi KM, Sonkar SM (2017) Nanocarbons in agricultural plants: can be a potential nanofertilizer? In: Hussain CM, Mishra AK (eds) Nanotechnology in environmental science, vol 2 Volumes. Wiley, Newark, NJ; WeinheimGoogle Scholar
  133. Smirnova EA, Gusev AA, Zaitseva ON, Lazareva EM, Onishchenko GE, Kuznetsova EV, Tkachev AG, Feofanov AV, Kirpichnikov MP (2011) Multi-walled сarbon nanotubes penetrate into plant cells and affect the growth of Onobrychis arenaria seedlings. Acta Nat 3(1):99–106Google Scholar
  134. Smirnova E, Gusev A, Zaytseva O, Sheina O, Tkachev A, Kuznetsova E, Kirpichnikov M (2012) Uptake and accumulation of multiwalled carbon nanotubes change the morphometric and biochemical characteristics of Onobrychis arenaria seedlings. Front Chem Sci Eng 6(2):132–138CrossRefGoogle Scholar
  135. Smith SC, Rodrigues DF (2015) Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon 91:122–143CrossRefGoogle Scholar
  136. Srinivasan C, Saraswathi R (2010) Nano-agriculture-carbon nanotubes enhance tomato seed germination and plant growth. Curr Sci 99:273–275Google Scholar
  137. Srivastava A, Rao DP (2014) Enhancement of seed germination and plant growth of whest, maize, peanut and garlic using multiwalled carbon nanotubes, enhancement of plant growth using multi-walled carbon nanotubes. Eur Chem Bull 3(5):502–504Google Scholar
  138. Srivastava M, Abhilash PC, Singh N (2011) Remediation of lindane using engineered nanoparticles. J Biomed Nanotechnol 7:172–174PubMedCrossRefGoogle Scholar
  139. Stampoulis D, Sinha SK, White JC (2009) Assay dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479PubMedCrossRefPubMedCentralGoogle Scholar
  140. Suvarnaphaet P, Pechprasarn S (2017) Graphene-based materials for biosensors: a review. Sensors 17(10):2161CrossRefGoogle Scholar
  141. Taha RA (2016) Nano carbon applications for plant. Adv Plants Agric Res 5(2):00172Google Scholar
  142. Tan XM, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487CrossRefGoogle Scholar
  143. Tiwari DK, Dasgupta-Schubert N, Villasenor Cendejas LM, Villegas J, Carreto Montoya L, Borjas García SE (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 4(5):577–591CrossRefGoogle Scholar
  144. Tong Z, Bischoff M, Nies L, Applegate B, Turco RF (2007) Impact of fullerene (C60) on a soil microbial community. Environ Sci Technol 41:2985–2991PubMedCrossRefPubMedCentralGoogle Scholar
  145. Torney F, Trewyn B, Lin VSY, Wang K (2007) Mesoporous silica nanoparticle deliver DNA and chemicals into plant. Nat Nanotechnol 2:295–300PubMedCrossRefPubMedCentralGoogle Scholar
  146. Torre-Roche RDL, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, Wang Q, Ma X, Hamdi H, White JC (2013) Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47:12539–12547CrossRefGoogle Scholar
  147. Tripathi S, Sarkar S (2015) Influence of water soluble carbon dots on the growth of wheat plant. Appl Nanosci 5:609–619CrossRefGoogle Scholar
  148. Tripathi BP, Shahi VK (2011) Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog Polym Sci 36(7):945–979Google Scholar
  149. Upadhyayula VKK, Deng S, Mitchell MC, Smith GB (2009) Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Sci Total Environ 408:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  150. Villagarcia H, Dervishi E, de Silva K, Biris AS, Khodakovskaya MV (2012) Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 8(15):2328–2334PubMedCrossRefPubMedCentralGoogle Scholar
  151. Wang YY, Hsu PK, Tsay YF (2012) Uptake, allocation and signaling of nitrate. Trends Plant Sci 17(8):458–467PubMedCrossRefPubMedCentralGoogle Scholar
  152. Wang L, Fortner JD, Hou L, Zhang C, Kan AT, Tomson MB, Chen W (2013) Contaminant-mobilizing capability of fullerene nanoparticles (nC60): effect of solvent-exchange process in nC60 formation. Environ Toxicol Chem 32:329–336PubMedCrossRefPubMedCentralGoogle Scholar
  153. Wang H, Ma H, Zheng W, An D, Na C (2014a) Multifunctional and recollectable carbon nanotube ponytails for water purification. ACS Appl Mater Interfaces 6:9426–9434PubMedCrossRefPubMedCentralGoogle Scholar
  154. Wang T, Zhao D, Guo X, Correa J, Riehl BL, Heineman WR (2014b) Carbon nanotube-loaded nafion film electrochemical sensor for metal ions: europium. Anal Chem 86:4354–4361PubMedCrossRefPubMedCentralGoogle Scholar
  155. Wang X, Liu X, Chen J, Han H, Yuan Z (2014c) Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon 68:798–806CrossRefGoogle Scholar
  156. Wang C, Zhang H, Ruan L, Chen L, Li H, Chang XL, Zhang X, Yang ST (2016) Bioaccumulation of 13C-fullerenol nanomaterials in wheat. Environ Sci Nano 3:799–805CrossRefGoogle Scholar
  157. Wang X, Zhou Z, Chen F (2017) Surface modification of carbon nanotubes with an enhanced antifungal activity for the control of plant fungal pathogen. Materials 10:1375. CrossRefPubMedCentralPubMedGoogle Scholar
  158. Wild E, Jones KC (2009) Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ Sci Technol 43:5290–5294PubMedCrossRefPubMedCentralGoogle Scholar
  159. Wong A, Silva TA, Caetano FR, Bergamini MF, Marcolino-Junior LH, Fatibello-Filho O, Janegitz BC (2017) An overview of pesticide monitoring at environmental samples using carbon nanotubes-based electrochemical sensors. J Carbon Res 3:8. CrossRefGoogle Scholar
  160. Wu M (2013) Effects of incorporation of nano-carbon into slow-released fertilizer on rice yield and nitrogen loss in surface water of paddy soil. Adv J Food Sci Technol 5:398–403 CrossRefGoogle Scholar
  161. Xie J, Liu J (2012) Nano-carbon synergism compound fertilizer for tobacco and preparation method thereof. CN 102718584Google Scholar
  162. Yadav BC, Kumar R (2008) Structure, properties and applications of fullerenes. Int J Nanotechnol Appl 2:15–24Google Scholar
  163. Yan H, Gong A, He H, Zhou J, Wei Y, Lv L (2006) Adsorption of microcystins by carbon nanotubes. Chemosphere 62:142–148PubMedCrossRefGoogle Scholar
  164. Yan S, Zhao L, Li H, Zhang Q, Tan J, Huang M, He S, Li L (2013) Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J Hazard Mater 246:110–118PubMedCrossRefPubMedCentralGoogle Scholar
  165. Yaqub S, Latif U, Dickert FL (2011) Plastic antibodies as chemical sensor material for atrazine detection. Sensors Actuators B 160:227–233CrossRefGoogle Scholar
  166. Yatim NM, Azizah S, Fairuz DM, Faridah Y (2015) Statistical evaluation of the production of urea fertilizer-multiwalled carbon nanotubes using Plackett Burman experimental design. Procedia Soc Behav Sci 195:315–323CrossRefGoogle Scholar
  167. Yoo J, Ozawa H, Fujigaya T, Nakashima N (2011) Evaluation of affinity of molecules for carbon nanotubes. Nanoscale 3:2517–2522PubMedCrossRefPubMedCentralGoogle Scholar
  168. Zarei F, Negahdari B, Eatemadi A (2018) Diabetic ulcer regeneration: stem cells, biomaterials, growth factors. Artif Cells Nanomed Biotechnol 46(1):26–32PubMedCrossRefPubMedCentralGoogle Scholar
  169. Zaytseva O, Neumann G (2016) Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem Biol Technol Agric 3:17. CrossRefGoogle Scholar
  170. Zhang Z, Chen J (2012) Method for preparation of compound organic fertilizer containing nanocarbon and sulfate radical organic fertilizer. CN 102816003Google Scholar
  171. Zhang Z, Liu J (2010) Synergistic fertilizer containing nanometer carbon and rare earth and its preparation. CN 101633590Google Scholar
  172. Zhang Y, Kang TF, Wan YW, Chen SY (2009) Gold nanoparticles-carbon nanotubes modified sensor for electrochemical determination of organophosphate pesticides. Microchim Acta 165:307–311CrossRefGoogle Scholar
  173. Zhang Q, Huang J, Zhao M, Qian W, Wei F (2011) Carbon nanotube mass production: principles and processes. ChemSusChem 4:864–889PubMedCrossRefPubMedCentralGoogle Scholar
  174. Zhang R, Zhang Y, Zhang Q, Xie H, Qian W, Wei F (2013) Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution. ACS Nano 7:6156–6161PubMedCrossRefPubMedCentralGoogle Scholar
  175. Zhang M, Gao B, Chen J, Li Y, Creamer AE, Chen H (2014) Slow-release fertilizer encapsulated by graphene oxide films. Chem Eng J 255:107–113CrossRefGoogle Scholar
  176. Zhang L, Gu J, Song L, Chen L, Huang Y, Zhang J, Chen T (2016) Underwater superoleophobic carbon nanotubes/core–shell polystyrene@Au nanoparticles composite membrane for flow-through catalytic decomposition and oil/water separation. J Mater Chem A 4:10810–10815CrossRefGoogle Scholar
  177. Zhao S, Wang Q, Zhao Y, Rui Q, Wang D (2015) Toxicity and translocation of graphene oxide in Arabidopsis thaliana. Environ Toxicol Pharmacol 39:145PubMedCrossRefPubMedCentralGoogle Scholar
  178. Zheng X, Su Y, Chen Y, Wei Y, Li M, Huang H (2014) The effects of carbon nanotubes on nitrogen and phosphorus removal from real wastewater in the activated sludge system. RSC Adv 4:45953–45959CrossRefGoogle Scholar
  179. Zulkifli H, Salam F, Saad SM, Rahman RA, Rani RM, Karim MSA, Ishak Z (2016) Preliminary study of electrochemical DNA sensor for cucumber mosaic virus. Procedia Chem 20:98–101CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mohamed A. Mohamed
    • 1
  • Ayat F. Hashim
    • 2
  • Mousa A. Alghuthaymi
    • 3
  • Kamel A. Abd-Elsalam
    • 1
  1. 1.Plant Pathology Research Institute, Agricultural Research Center (ARC)GizaEgypt
  2. 2.Food industries and Nutrition DivisionNational Research CenterGizaEgypt
  3. 3.Department of Biology, Science and Humanities CollegeShaqra UniversityAlquwayiyahSaudi Arabia

Personalised recommendations