Advertisement

Nanoantimicrobials for Plant Pathogens Control: Potential Applications and Mechanistic Aspects

  • Mohamed A. Mohamed
  • Kamel A. Abd–Elsalam
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

The advances of nanotechnology in the field of plant science have been steadily making its unique mark as a recent technology to reckon with. Recently, the use of engineered nanomaterials provides great opportunities in plant disease control. The unique size, shape, structure, and surface characteristics of those nanomaterials result in novel physicochemical and biological properties different from their corresponding bulk counterparts. In medicine, the antimicrobial, anticancer, and antiviral properties of different nanomaterial types have been reported. However, despite this financial interest, very few studies have been reported demonstrating the beneficial effect of using those nanomaterials as antimicrobial and antiviral agents against plant pathogens. Recently, scientists strongly suggested that antimicrobial nanomaterials are able to unlock the restrictions experienced by conventional pesticides and other antimicrobial agents. Consequently, in this chapter we focus on demonstrating a variety of nanomaterials being utilized in plant disease management as antimicrobial and antiviral agents with description of their proposed mechanisms of action. In parallel to their merits, the demerits were also highlighted and the possibility of large-scale adaptability for them by integrating into present practices, thus avoiding crop loss.

Keywords

Antimicrobials Plant pathogens Engineered nanomaterials Antiviral Nanoparticles 

References

  1. Ahmad A, Rafatullah M, Sulaiman O, Ibrahim MK, Chii YY, Siddique BM (2009) Removal of Cu(II) and Pb(II) ions from aqueous solutions by adsorption on sawdust of Meranti wood. Desalination 247:636–646CrossRefGoogle Scholar
  2. Ahn JM, Eom HJ, Yang X, Meyer JN, Choi J (2014) Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode, Caenorhabditis elegans. Chemosphere 108:343–352CrossRefPubMedGoogle Scholar
  3. Ali SM, Yousef NM, Nafady NA (2015) Application of biosynthesized silver nanoparticles for the control of land snail Eobania vermiculata and some plant pathogenic fungi. J Nanomater 1:3Google Scholar
  4. Alexander JW (2009) History of the medical use of silver. Surg Infect 10(3):289–292CrossRefGoogle Scholar
  5. Allahverdiyev AM, Abamor ES, Bagirova M, Rafailovich M (2011) Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug–resistant bacteria and leishmania parasites. Future Microbiol 6(8):933–940CrossRefPubMedGoogle Scholar
  6. Amro NA, Kotra LP, Wadu–Mesthrige K, Bulychev A, Mobashery S, Liu G (eds) (2000) High–resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 16:2789–2796Google Scholar
  7. Asharani PV, Hande MP, Valiyaveettil S (2009) Anti–proliferative activity of silver nanoparticles. BMC Cell Biol 10(65):65CrossRefPubMedPubMedCentralGoogle Scholar
  8. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanoparticles 2014 https://doi.org/10.1155/2014/689419
  10. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081 CrossRefPubMedGoogle Scholar
  11. Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 5:244–249CrossRefPubMedGoogle Scholar
  12. Banik S, Pérez–de–Luque A (2017) In vitro effects of copper nanoparticles on plant pathogens, beneficial microbes and crop plants. Span J Agric Res 15(2):1005CrossRefGoogle Scholar
  13. Baram–Pinto D, Shukla S, Perkas N, Gedanken A, Sarid R (2009) Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug Chem 20:1497–1502CrossRefPubMedGoogle Scholar
  14. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: Emerging trend in insect pest control. In: Prasad R (ed) Advances and Applications through Fungal Nanobiotechnology. Springer International Publishing, Switzerland, pp 307–319CrossRefGoogle Scholar
  15. Borkow G, Gabbay J (2004) Putting copper into action: copper–impregnated products with potent biocidal activities. FASEB J 18:1728–1730CrossRefPubMedGoogle Scholar
  16. Borkow G, Gabbay J (2009) Copper, an ancient remedy returning to fight microbial, fungal and viral infections. ACS Chem Biol 3(3):272–278Google Scholar
  17. Brecht MO, Datnoff LE, Kucharek TA, Nagata RT (2004) Influence of silicon and chlorothalonil on the suppression of gray leaf spot and increase plant growth in St. Augustine grass. Plant Dis 88:338–344CrossRefGoogle Scholar
  18. Carré G, Hamon E, Ennahar S, Estner M, Lett MC, Horvatovich P, Andre P (2014) TiO2 photocatalysis damages lipids and proteins in Escherichia coli. Appl Environ Microbiol 80(8):2573–2581CrossRefPubMedPubMedCentralGoogle Scholar
  19. Castellano JJ, Shafii SM, Ko F, Donate G, Wright TE, Mannari RJ et al (2007) Comparative evaluation of silver–containing antimicrobial dressings and drugs. Int Wound J 4(2):114–122CrossRefPubMedGoogle Scholar
  20. Chirkov SN (2002) The antiviral activity of chitosan (review). Appl Biochem Microbiol 38:1–8CrossRefGoogle Scholar
  21. Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588CrossRefPubMedGoogle Scholar
  22. Choudhary RC, Kumaraswamy RV, Kumari S, Sharma SS, Pal A, Raliya R, Saharan V (2017) Cu–chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Sci. Rep 7(1):9754CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cioffi N, Rai M (eds) (2012) Nano–antimicrobials: progress and prospects. Springer Science & Business Media, Heidelberg, Dordrecht, London, New YorkGoogle Scholar
  24. Cordero T, Mohamed MA, López-Moya J.-J, Daròs J.-A (2017) A Recombinant Potato virus Y infectious clone tagged with the rosea1 visual marker (pvy–ros1) facilitates the analysis of viral infectivity and allows the production of large amounts of Anthocyanins in plants. Front Microbiol 8:611. https://doi.org/10.3389/fmicb.2017.00611
  25. Cui X, Kim HM, Kawashita M, Wang L, Xiong T, Kokubo T, Nakamura T (2009) Preparation of bioactive titania films on titanium metal via anodic oxidation. Dent Mater 25(1):80–86CrossRefPubMedGoogle Scholar
  26. Danilczuk M, Lund A, Sadlo J, Yamada H, Michalik J (2006) Conduction electron spin resonance of small silver particles. Spectrochim Acta A Mol Biomol Spectrosc 63:189–191CrossRefPubMedGoogle Scholar
  27. Dasgupta J, Sikder J, Chakraborty S, Curcio S, Drioli E (2015) Remediation of textile effluents by membrane based treatment techniques: a state of the art review. J Environ Manag 147:55–72CrossRefGoogle Scholar
  28. Dibrov P, Dzioba J, Gosink KK, Hase CC (2002) Chemiosmotic mechanism of antimicrobial activity of ag(+) in Vibrio cholerae. Antimicrob Agents Chemother 46:2668–2670CrossRefPubMedPubMedCentralGoogle Scholar
  29. El Hadrami A, Adam LR, El Hadrami I, Daayf F (2010) Chitosan in plant protection. Mar Drugs 8(4):968–987CrossRefPubMedPubMedCentralGoogle Scholar
  30. Elbeshehy EK, Elazzazy AM, Aggelis G (2015) Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Front Microbiol 6:453CrossRefPubMedPubMedCentralGoogle Scholar
  31. El–Sawy MM, Elsharkawy MM, Abass JM, Kasem MH (2017) Antiviral activity of 2–nitromethyl phenol, zinc nanoparticles and seaweed extract against cucumber mosaic virus (CMV) in Eggplant. J Virol Antivir Res 6:2. https://doi.org/10.4172/2324–8955.1000173 CrossRefGoogle Scholar
  32. El–Sharkawy MS, El–Beshsbeshy TR, Mahmoud EK, Abdelkader NI, Al– Shal RM, Missaoui AM (2017) Response of alfalfa under salt stress to the application of potassium sulfate nanoparticles. Am J Plant Sci 8(08):1751CrossRefGoogle Scholar
  33. Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behavior and effects in the aquatic environment. Environ Int 37:517–531CrossRefPubMedGoogle Scholar
  34. Faoro, F, Sant S, Iriti M, Appiano A (2001) Chitosan–elicited resistance to plant viruses: a histochemical and cytochemical study. In Muzzarelli, R.A.A (ed)Chitin Enzymology. Atec: Grottammare, Italy, 2001, pp. 57–62Google Scholar
  35. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res B 52(4):662–668CrossRefGoogle Scholar
  36. Georgopoulos G, Roy A, MJ Y–L, Opiekun RE, Lioy P (2001) Environmental copper: its dynamics and human exposure issues. J Toxicol Environ Health B Crit Rev 4(4):341–394CrossRefPubMedGoogle Scholar
  37. Gholami–Shabani M, Gholami–Shabani Z, Shams–Ghahfarokhi M, Jamzivar F, Razzaghi–Abyaneh M (2017) Green nanotechnology: biomimetic synthesis of metal nanoparticles using plants and their application in agriculture and forestry. In: Nanotechnology. Springer, Singapore, pp 133–175CrossRefGoogle Scholar
  38. Guerrero SIC, Brito EMS, Castillo HAP, Rivero SHT, Caretta CA, Velasco AL Duran R, Borunda EO (2014) Effect of CuO nanoparticles over isolated bacterial strains from agricultural soil. J Nanomater 2014:1–13. https://doi.org/10.1155/2014/148743 CrossRefGoogle Scholar
  39. Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich K, Kleinsasser N (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201(1):27–33CrossRefPubMedGoogle Scholar
  40. Haghighi F, Roudbar Mohammadi S, Mohammadi P, Hosseinkhani S, Shipour R (2013) Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms. Infection Epidemiol Microbiol 1(1):33–38Google Scholar
  41. Illingworth B, Bianco RW, Weisberg S (2000) In vivo efficacy of silver–coated fabric against Staphylococcus epidermidis. J Heart Valve Dis 9:135–141PubMedGoogle Scholar
  42. Elechiguerra JL, Burt JL, Morones JR, Camacho– Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV–1. J Nanobiotechnology 3(1):6CrossRefPubMedPubMedCentralGoogle Scholar
  43. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93(10):1037–1043CrossRefGoogle Scholar
  44. Joshi N, Jain N, Pathak A, Singh J, Prasad R, Upadhyaya CP (2018) Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J Sol-Gel Sci Techn. https://doi.org/10.1007/s10971-018-4666-2
  45. Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17CrossRefGoogle Scholar
  46. Kasyanenko N, Varshavskii M, Ikonnikov E, Tolstyko E, Belykh R, Sokolov P, Lopatko K (2016) DNA modified with metal nanoparticles: preparation and characterization of ordered metal–DNA nanostructures in a solution and on a substrate. J Nanomater 2016:1–12. https://doi.org/10.1155/2016/3237250 CrossRefGoogle Scholar
  47. Khan SA, Mulvaney RL, Ellsworth TR (2013) The potassium paradox: implications for soil fertility, crop production and human health. Renew Agri Food Syst 29:3–27. https://doi.org/10.1017/S1742170513000318
  48. Khodakovskaya MV, Biris AS (2009) Method of using carbon nanotubes to affect seed germination and plant growth. WO 2011059507 A1—patent applicationGoogle Scholar
  49. Kim SW, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764PubMedGoogle Scholar
  50. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ (2007) Antimicrobial effect of silver nanoparticles. Nanomedicine 3:95–101. https://doi.org/10.1016/j.nano.2006.12.001 CrossRefPubMedGoogle Scholar
  51. Kole GK, Vittal JJ (2013) Solid–state reactivity and structural transformations involving coordination polymers. Chem Soc Rev 42(4):1755–1775CrossRefPubMedGoogle Scholar
  52. Kreibig U, Vollmer M (1995) In “Optical Properties of Metal Clusters,” Springer Series in Mater Sci 532Google Scholar
  53. Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. Plant growth metabolism. Process Biochem 47(4):51–658CrossRefGoogle Scholar
  54. Kulikov SN, Chirkov SN, Il’ina AV, Lopatin SA, Varlamov VP (2006) Effect of the molecular weight of chitosan on its antiviral activity in plants. Prik Biokhim Mikrobiol 42(2):224–228Google Scholar
  55. Lara HH, NV A–N, Ixtepan–Turrent L, Rodriguez–Padilla C (2010) Bactericidal effect of silver nanoparticles against multidrug–resistant bacteria. World J Microbiol Biotechnol 26:615–621CrossRefGoogle Scholar
  56. Liu S, Yuan L, Yue X, Zheng Z, Tang Z (2008) Recent advances in nanosensors for organophosphate pesticide detection. Adv Powder Technol 19:419–441CrossRefGoogle Scholar
  57. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924CrossRefPubMedGoogle Scholar
  58. Lu JM, Wang X, Muller CM, Wang H, Lin PH, Qizhi Y et al (2009) Current advances in research and clinical applications of PLGA based Nanotechnology. Expert Rev Mol Diagn 9:325–341. https://doi.org/10.1586/erm.09.15 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Lu L, Sun RW, Chen R, Hui CK, Ho CM, Luk JM, Lau GK, Che CM (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther 13:253–262PubMedGoogle Scholar
  60. Lyu S, Wei X, Chen J, Wang C, Wang X, Pan D (2017) Titanium as a beneficial element for crop production. Front Plant Sci 8:597Google Scholar
  61. Mao HQ, Roy K, VL T–L, Janes KA, Lin KY, Wang Y, August JT, Leong KW (2001) Chitosan–DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release 70:399–421CrossRefPubMedGoogle Scholar
  62. Mehrbod P, Motamed N, Tabatabaian M, Soleimani Estyar R, Amini E, Shahidi M (2009) In Vitro Antiviral Effect of “Nanosilver” on Influenza Virus. DARU 17:88–93Google Scholar
  63. Mishra V, Mishra RK, Dikshit A, Pandey AC (2014) Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance: Biolog Techniq, vol 1. Academic Press, Elsevier, USA, pp 159–180CrossRefGoogle Scholar
  64. Mondal KK, Mani C (2012) Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann Microbiol 62(2):889–893CrossRefGoogle Scholar
  65. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRefPubMedGoogle Scholar
  66. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12(3):788–800CrossRefGoogle Scholar
  67. Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK (2012) Unimpeded permeation of water through helium–leak–tight graphene–based membranes. Science 335(6067):442–444CrossRefPubMedGoogle Scholar
  68. Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA–directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7:8972–8980CrossRefPubMedPubMedCentralGoogle Scholar
  69. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram–negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720CrossRefPubMedPubMedCentralGoogle Scholar
  70. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3(11):1941–1949CrossRefPubMedGoogle Scholar
  71. Pangule RC, Brooks SJ, Dinu CZ, Bale SS, Salmon SL, Zhu G, Dordick JS (2010) Antistaphylococcal nanocomposite films based on enzyme− nanotube conjugates. ACS Nano 4(7):3993–4000CrossRefPubMedPubMedCentralGoogle Scholar
  72. Papp I, Sieben C, Ludwig K, Roskamp M, Böttcher C, Schlecht S (2010) Inhibition of influenza virus infection by multivalent sialic–acid functionalized gold nanoparticles. Small 6:2900–2906CrossRefPubMedGoogle Scholar
  73. Paret M, Palmateer A, Knox G (2013a) Evaluation of a lightactivated nanoparticle formulation of TiO2/Zn for management of bacterial leaf spot on Rosa ‘Noare. Hortscience 48(2):189–192Google Scholar
  74. Paret ML, Vallad GE, Averett DR, Jones JB, Olson SM (2013b) Photocatalysis: effect of light–activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology 103(3):228–236CrossRefPubMedPubMedCentralGoogle Scholar
  75. Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica–silver for control of various plant diseases. J Plant Pathol 22:295–302CrossRefGoogle Scholar
  76. Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Prasad R, Gupta N, Kumar M, Kumar V, Wang S, Abd-Elsalam KA (2017b) Nanomaterials act as plant defense mechanism. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology. Springer, Singapore, pp 253–269CrossRefGoogle Scholar
  78. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363 CrossRefGoogle Scholar
  79. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  80. Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. Journal of Nanoparticles 2013:1. https://doi.org/10.1155/2013/431218 CrossRefGoogle Scholar
  81. Rabea EI, El Badawy MT, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465CrossRefPubMedGoogle Scholar
  82. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83CrossRefPubMedGoogle Scholar
  83. Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 3:315–324CrossRefGoogle Scholar
  84. Raimondi F, Scherer GG, Kötz R, Wokaun A (2005) Nanoparticles in energy technology: examples from electrochemistry and catalysis. Angew Chem Int Ed 44(15):2190–2209CrossRefGoogle Scholar
  85. Raliya R, Nair R, Chavalmane S, Wang WN, Biswas P (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7(12):1584–1594CrossRefPubMedGoogle Scholar
  86. Raveendran P, Fu J, Wallen SL (2003) Completely “Green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125(46):13940–13941CrossRefPubMedPubMedCentralGoogle Scholar
  87. Rico CM, Majumdar S, Duarte–Gardea M, Peralta–Videa JR, Gardea–Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498CrossRefPubMedPubMedCentralGoogle Scholar
  88. Rogers JV, Parkinson CV, Choi YW, Speshock JL, Hussain SM (2008) A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res Lett 3:129CrossRefPubMedCentralGoogle Scholar
  89. Roy AS, Parveen A, Koppalkar AR, Prasad MA (2010) Effect of nano–titanium dioxide with different antibiotics against methicillin–resistant Staphylococcus aureus. J Biomater Nanobiotechnol 1:37CrossRefGoogle Scholar
  90. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716CrossRefPubMedGoogle Scholar
  91. Savard T, Beaulieu C, Boucher I, Champagne CP (2002) Antimicrobial action of hydrolyzed chitosan against spoilage yeasts and lactic acid bacteria of fermented vegetables. J Food Prot 65:828–833CrossRefPubMedGoogle Scholar
  92. Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 73–97CrossRefGoogle Scholar
  93. Shah SNA, Shah Z, Hussain M, Khan M (2017) Hazardous effects of titanium dioxide nanoparticles in ecosystem. Bioinorg Chem Appl 2017:1. https://doi.org/10.1155/2017/4101735 CrossRefGoogle Scholar
  94. Shahrokh S, Hosseinkhani B, Emtiazi G (2014) The impact of nano–silver on bacterial aerobic nitrate reductase. J Bioprocess Biotechnol 4:162CrossRefGoogle Scholar
  95. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3:168–171CrossRefPubMedGoogle Scholar
  96. Shende S, Ingle AP, Gade A, Rai M (2015) Green synthesis of copper nanoparticles by Citrus medica Linn.(Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol 31:865–873CrossRefPubMedGoogle Scholar
  97. Singh A, Sharma B, Deswal R (2018) Green silver nanoparticles from novel Brassicaceae cultivars with enhanced antimicrobial potential than earlier reported Brassicaceae members. J Trace Elem Med Biol 47:1. https://doi.org/10.1016/j.jtemb.2018.01.001 CrossRefPubMedGoogle Scholar
  98. Sondi I, Salopek–Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E coli as a model for Gram negative bacteria. J Colloid Interf Sci 275:177–182CrossRefGoogle Scholar
  99. Speshock JL, Murdock RC, LK B–S, Schrand AM, Hussain SM (2010) Interaction of silver nanoparticles with Tacaribe virus. J Nanobiotechnol 8:19CrossRefGoogle Scholar
  100. Struszczyk MH (2002) Chitin and chitosan – Part II. Applications of chitosan Polimery 47:396–403Google Scholar
  101. Sun RW, Chen R, Chung NP, Ho CM, Lin CL, Che CM (2005) Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV–1 infected cells. Chem Commun (Camb) 40:5059–5061Google Scholar
  102. Swamy VS, Prasad R (2012) Green synthesis of silver nanoparticles from the leaf extract of Santalum album and its antimicrobial activity. J Optoelectronic and Biomedical Materials 4(3):53–59Google Scholar
  103. Taran NY, Gonchar OM, Lopatko KG, Batsmanova LM, Patyka MV, Volkogon MV (2014) The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res Lett 9:289CrossRefPubMedPubMedCentralGoogle Scholar
  104. Throbäck IN, Johansson M, Rosenquist M, Pell M, Hansson M, Hallin S (2007) Silver (Ag + ) reduces denitrification and induces enrichment of novel nirK genotypes in soil. FEMS Microbiol Lett 270:189–194CrossRefPubMedGoogle Scholar
  105. Trewyn BG, Slowing II, Giri S, Chen HT, Lin VSY (2007) Synthesis and functionalization of a mesoporous silican based on the Sol–Gel process and applications in controlled release. Acc Chem Res 40:846–853. https://doi.org/10.1021/ar600032u CrossRefPubMedGoogle Scholar
  106. VandeVoort AR, Arai Y (2012) Effect of silver nanoparticles on soil denitrification kinetics. Ind Biotechnol 8(6):358–364CrossRefGoogle Scholar
  107. Viet PV, Nguyen HT, Cao TM, Hieu LV (2016) Fusarium antifungal activities of copper nanoparticles synthesized by a chemical reduction method. J Nanomater 6:7Google Scholar
  108. Wang Z, Wei F, Liu SY, Xu Q, Huang JY (2010) Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticles–modified gold electrode and its detection in oilseed rape infected with fungal pathogen Sclerotinia sclerotiorum. Talanta 80:1277–1281CrossRefGoogle Scholar
  109. Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy–filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71:7589–7593CrossRefPubMedPubMedCentralGoogle Scholar
  110. Yang H, Wang Y, Huang H, Gell L, Lehtovaara L, Malola S, Zheng N (2013) All–thiol–stabilized Ag44 and Au12Ag32 nanoparticles with single–crystal structures. Nat Commun 4:2422Google Scholar
  111. Yen HJ, Hsu SH, Tsai CL (2009) Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 5:1553–1561CrossRefPubMedGoogle Scholar
  112. Yaseen T, Pu H, Sun DW (2018) Functionalization techniques for improving SERS substrates and their applications in food safety evaluation: a review of recent research trends. Trends Food Sci Technol 72:162–174CrossRefGoogle Scholar
  113. Zhang F, Ali Z, Amin F, Feltz A, Oheim M, Parak WJ (2010) Ion and pH sensing with colloidal nanoparticles: influence of surface charge on sensing and colloidal properties. Chem Phys Chem 11:730–735CrossRefPubMedGoogle Scholar
  114. Zhao X, Wang J, Wu F, Wang T, Cai Y, Shi Y, Jiang G (2010) Removal of fluoride from aqueous media by Fe 3 O 4 @Al(OH) 3 magnetic nanoparticles. J Hazard Mater 173:102–109CrossRefPubMedGoogle Scholar
  115. Zinjarde S (2012) Bio–inspired nanomaterials and their applications as antimicrobial agents. Chron Young Sci 3(1):74–74CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mohamed A. Mohamed
    • 1
  • Kamel A. Abd–Elsalam
    • 1
  1. 1.Plant Pathology Research Institute, Agricultural Research Center (ARC)GizaEgypt

Personalised recommendations