Advertisement

Copper Nanostructures Applications in Plant Protection

  • Esraa Gabal
  • Mohamed M. Ramadan
  • Amal-Asran
  • Mousa A. Alghuthaymi
  • Kamel A. Abd-Elsalam
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Plant pathologists throughout the globe are working closely to develop a powerful solution for food and agricultural commodities protection from diverse pathogens. Nanobiotechnology has great potential in agriculture especially in plant health has been reported. Management of most beneficial micronutrient and pesticides for sustainable crop production is a priority-based area of research in agriculture. Copper nanoparticles are one among the critical nanosubstances because of their diverse characteristics and applications. The present chapter summarizes the modern-day knowledge and the future prospects in the applications of copper nanomaterials in plant pathology studies. Applications involve nanosensors, antibacterial agent, antifungal agent, plant growth promotion, and plant protection. The beneficial and deleterious effects of Cu nanoparticles through enhanced root and shoot length and fruit and crop yield and substantial increase in vegetative biomass of seedlings in different plant species were also explored.

Keywords

Copper nanostructures Plant protection Nanoagrochemicals Antimicrobial Antifungal Phytotoxicity 

Notes

Acknowledgment

This research was supported by the Science and Technology Development Fund (STDF), Joint Egypt (STDF)–South Africa (NRF) Scientific Cooperation, Grant ID. 27837 to Kamel Abd-Elsalam.

References

  1. Abd-Elsalam KA, Vasil’kov AY, Said-Galiev EE, Rubina MS, Khokhlov AR, Naumkin AV, Shtykova EV, Alghuthaymi MA (2018) Bimetallic and chitosan nanocomposites hybrid with trichoderma: novel antifungal agent against cotton soil–borne fungi. Eur J Plant Pathol 151:57–72. https://doi.org/10.1007/s10658-017-1349-8 CrossRefGoogle Scholar
  2. Adams J, Wright M, Wagner H, Valiente J, Britt D, Anderson A (2017) Cu from dissolution of CuO nanoparticles signals changes in root morphology. Plant Physiol Biochem 110:108–117PubMedCrossRefGoogle Scholar
  3. Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS (2012) Effect of copper oxide nano particle on seed germination of selected crops. J Agric Sci Technol A 2:815–823Google Scholar
  4. Adhikari T, Sarkar D, Mashayekhi H, Xing BS (2016) Growth and enzymatic activity of maize (Zea mays L.) plant: solution culture test for copper dioxide nano particles. J Plant Nutr 39:102–118Google Scholar
  5. Ahamed M, Alhadlaq HA, Khan MM, Karuppiah P, Aldhabi NA (2014) Synthesis, characterization and antimicrobial activity of copper oxide nanoparticles. J Nano Mater 2014:1–4. https://doi.org/10.1155/2014/637858 CrossRefGoogle Scholar
  6. Anderson A, McLean J, McManus P, Britt D (2017) Soil chemistry influences the phytotoxicity of metal oxide nanoparticles. Int J Nanotechnol 14(1–6):15–21CrossRefGoogle Scholar
  7. Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827PubMedCrossRefGoogle Scholar
  8. Banik S, Pérez-de-Luque A (2017) In vitro effects of copper nanoparticles on plant pathogens, beneficial microbes and crop plants. Spanish J Agric Res 15(2):1005. https://doi.org/10.5424/sjar/2017152-10305 CrossRefGoogle Scholar
  9. Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20:433–441PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bogdanović U, Lazić V, Vodnik V, Budimir M, Marković Z, Dimitrijević S (2014) Copper nanoparticles with high antimicrobial activity. Mater Lett 128:75–78CrossRefGoogle Scholar
  11. Boonham N, Glover R, Tomlinson J, Mumford R (2008) Exploiting generic platform technologies for the detection and identification of plant pathogens. Eur J Plant Pathol 121:355–363CrossRefGoogle Scholar
  12. Borkow G, Gabbay J (2005) Copper as a biocidal tool. Curr Med Chem 12:2163–2175PubMedCrossRefGoogle Scholar
  13. Borkow G, Gabbay J (2009) Copper, an ancient remedt returning to fight microbial, fungal and viral infections. Curr Chem Biol 3:272–278Google Scholar
  14. Bouson S, Krittayavathananon A, Phattharasupakun N, Siwayaprahm P, Sawangphruk M (2017) Antifungal activity of water–stable copper–containing metal–organic frameworks. R Soc Open Sci 4:170654 https://doi.org/10.1098/rsos.170654 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bramhanwade K, Shende S, Bonde S, Gade A, Rai M (2016) Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases. Environ Chem Lett 14(2):229–235CrossRefGoogle Scholar
  16. Brunel F, ElGueddari NE, Moerschbacher BM (2013) Complexation of copper (II) with chitosan nanogels: toward control of microbial growth. Carbohydr Polym 92:1348–1356PubMedCrossRefGoogle Scholar
  17. Cárdenaz G, Díaz JV, Meléndrez MF, Cruzat CC, Cancino AG (2009) Colloidal Cu nanoparticles/chitosan composite film obtained by microwave heating for food package applications. Polym Bull 62:511–524CrossRefGoogle Scholar
  18. Carmen IU, Chithra P, Huang Q, Takhistov P, Liu S, Kokini JL (2003) Nanotechnology: a new frontier in food science. Food Technol 57:24–29Google Scholar
  19. Chatterjee AK, Sarkar RK, Chattopadhyay AP, Aich P, Chakraborty R, Basu T (2012) A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against. Nanotechnology 23 (8):085103Google Scholar
  20. Chen S, Sommers JM (2001) Alkanethiolate–protected copper nanoparticles: spectroscopy, electrochemistry, and solid–state morphological evolution. J Phys Chem B 105:816–8820Google Scholar
  21. Choudhary RC, Kumaraswamy RV, Kumari S, Pal A, Raliya R, Biswas P, Saharan V (2017a) Synthesis, characterization, and application of chitosan nanomaterials loaded with zinc and copper for plant growth and protection. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology: food and environmental paradigm. Springer Nature Singapore Pte Ltd, Singapore, pp 227–248CrossRefGoogle Scholar
  22. Choudhary RC, Kumaraswamy RV, Kumari S, Sharma SS, Pal A, Raliya R, Biswas P, Saharan V (2017b) Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Sci Rep 7:9754. https://doi.org/10.1038/s41598-017-08571-0 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cioffi N, Rai M (2012) Nano-antimicrobials: progress and prospects. Springer-Verlag, Berlin, HeidelbergCrossRefGoogle Scholar
  24. Cioffi N, Torsi L, Ditaranto N (2004) Antifungal activity of polymer–based copper nanocomposite coatings. Appl Phys Lett 85(12):2417–2419CrossRefGoogle Scholar
  25. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17(21):5255–5262CrossRefGoogle Scholar
  26. Costa MVJD, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54:110–119CrossRefGoogle Scholar
  27. Dang V P, Vo TKL, Nguyen TKL, Nguyen ND, Nguyen DC, Bui DD, Bui DC, Nguyen QH (2010) Synthesis and antimicrobial effects of colloidal silver nanoparticles in chitosan by -irradiation. J Exp Nanosci 5(2):169–179Google Scholar
  28. Dimkpa CO, McLean GE, Britt DW, Anderson AJ (2013) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Bio Metals 26(6):913–924Google Scholar
  29. Dimkpa C, Bindraban P, Fugice J, Agyin-Birikorang S, Singh U, Hellums D (2017) Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agron Sustain Dev 37:5CrossRefGoogle Scholar
  30. Du WL, Niu SS, Xu YL, Xu ZR, Fan CL (2009) Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydr Polym 75:385–389CrossRefGoogle Scholar
  31. Eastman JA, Choi S, Li S, Yu W, Thompson L (2001) Anomalously increased effective thermal conductivities of ethylene glycol–based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720CrossRefGoogle Scholar
  32. Elmer W, White JC (2016) The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ Sci Nano 3:1072–1079CrossRefGoogle Scholar
  33. El-Sayed NR (2003) Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP–palladium nanoparticles. J Am Chem Soc 125:8340–8347PubMedCrossRefPubMedCentralGoogle Scholar
  34. Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharromn C, Moya JS (2009) Antibacterial and antifungal activity of a soda–lime glass containing copper nanoparticles. Nanotechnology 20(50):505701PubMedCrossRefGoogle Scholar
  35. Etefagh R, Azhir E, Shahtahmasebi N (2013) Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Sci Iran 20(3):1055–1058Google Scholar
  36. Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20. https://doi.org/10.3389/fenvs.2016.00020 CrossRefGoogle Scholar
  37. Garcıa VN, Gonzalez A, Fuentes M, Aviles M, Rios MY, Zepeda G, Rojas MG (2003) Antifungal activities of nine traditional Mexican medicinal plants. Jethnopharmacol 87(1):85–88.Google Scholar
  38. Garcia M, Forbe T, Gonzalez E (2010) Potential applications of nanotechnology in the agro–food sector. Ciênc Tecnol Aliment 30:573–581CrossRefGoogle Scholar
  39. Ghasemian E, Naghoni A, Tabaraie B, Tabaraie T (2012) In vitro susceptibility of filamentous fungi to copper nanoparticles assessed by rapid XTT colorimetry and agar dilution method. J Mycol Med 22:322–328PubMedCrossRefGoogle Scholar
  40. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano–biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803PubMedCrossRefGoogle Scholar
  41. Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3:21743–21752CrossRefGoogle Scholar
  42. Giannousi K, Pantazaki A, Dendrinou-Samara C (2017) Copper based nanoparticles as antimicrobials. In: Ficai A, Grumezescu AM (eds) Nanostructures for antimicrobial therapy. Elsevier, Amsterdam, pp 515–527CrossRefGoogle Scholar
  43. Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792PubMedCrossRefGoogle Scholar
  44. Guerrero SIC, Brito EMS, Castillo HAP, Rivero SHT, Caretta CA, Velasco AL, Duran R, Borunda EO (2014) Effect of CuO nanoparticles over isolated bacterial strains from agricultural soil. J Nanomater 2014:1–13CrossRefGoogle Scholar
  45. Gunawan C, Teoh WY, Marquis CP, Amal R(2011) Cytotoxic Origin of Copper(II) Oxide Nanoparticles: Comparative Studies with Micron-Sized Particles, Leachate, and Metal Salts. ACS Nano 5 (9):7214–7225Google Scholar
  46. Hafeez A, Razzaq A, Mahmood T, Jhanzab HM (2015) Potential of copper nanoparticles to increase growth and yield of wheat. J Nanosci Adv Technol 1:6–11Google Scholar
  47. Hernández-Hernández H, González-Morales S, Benavides-Mendoza A, Ortega-Ortiz H, Cadenas-Pliego G, Juárez-Maldonado A (2018) Effects of chitosan–PVA and Cu nanoparticles on the growth and antioxidant capacity of tomato under saline stress. Molecules 23(1):178CrossRefGoogle Scholar
  48. Hirsh S, Schiefer J, Gschwandtner A, Hartmann M (2014) The determinants of firm profitability differences in EU food processing. J Agric Econ 65:703–721CrossRefGoogle Scholar
  49. Honary H, Barabadi H, Gharaei-Fathabad E, Naghibi F (2012) Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Dig J Nanomater Biostruct 7(3):999–1005Google Scholar
  50. Hong J, Wang L, Sun Y, Zhao L, Niu G, Tan W, Gardea-Torresdey JL (2016) Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Sci Total Environ 563:904–911PubMedCrossRefGoogle Scholar
  51. Hooley G, Piercy NF, Nicoulaud B (2014) Marketing strategy and competitive positioning. Prentice Hall/Financial Times, London (ISBN 9780273740933)Google Scholar
  52. Ingle AP, Duran N, Rai M (2014) Bioactivity, mechanism of action, and cytotoxicity of copper–based nanoparticles: a review. Appl Microbiol Biotechnol 98:1001–1009PubMedCrossRefGoogle Scholar
  53. Jeong S, Woo K, Kim D, Lim S, Kim JS, Shin H, Moon J (2008) Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink–jet printing. Adv Funct Mater 18(5):679–686CrossRefGoogle Scholar
  54. Juarez-Maldonado A, Ortega-Ortiz H, Perez-Labrada F, Cadenas-Pliego G, Benavides-Mendoza A (2016) Cu nanoparticles absorbed on chitosan hydrogels positively alter morphological, production, and quality characteristics of tomato. J Appl Bot Food Qual 89:183–189Google Scholar
  55. Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235PubMedCrossRefPubMedCentralGoogle Scholar
  56. Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17CrossRefGoogle Scholar
  57. Karlsson HL, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732PubMedCrossRefPubMedCentralGoogle Scholar
  58. Karunakaran G, Suriyaprabha R, Manivasakan P, Yuvakkumar R, Rajendran V, Kannan N (2013) Impact of nano and bulk ZrO2, TiO2 particles on soil nutrient contents and PGPR. J Nanosci Nanotechnol 13(1):678–685PubMedCrossRefGoogle Scholar
  59. Kasana RC, Panwar NR, Kaul RK, Kumar P (2017) Biosynthesis and effects of copper nanoparticles on plants. Environ Chem Lett 15:233–240CrossRefGoogle Scholar
  60. Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28:775–785PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kim MH, Lim B, Lee EP, Xia Y (2008) Polyol synthesis of Cu2O nanoparticles: use of chloride to promote the formation of a cubic morphology. J Mater Chem 18:4069–4073CrossRefGoogle Scholar
  62. Konotop YO, Kovalenko MS, Ulynets VZ, Meleshko AO, Batsmanova LM, Taran NY (2014) Phytotoxicity of colloidal solutions of metal–containing nanoparticles. Cytol Genet 48:99–102CrossRefGoogle Scholar
  63. Kumar CSSR (2009) Metallic nanomaterials. Wiley-VCH Verlag GmbH and Co. KGaA, WeinheimGoogle Scholar
  64. Landa P, Cyrusova T, Jerabkova J, Drabek O, Vanek T, Podlipna R (2016) Effect of metal oxides on plant germination: phytotoxicity of nanoparticles, bulk materials, and metal ions. Water Air Soil Pollut 227:448. https://doi.org/10.1007/s11270–016–3156–9 CrossRefGoogle Scholar
  65. Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum) plant agar test for water–insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921PubMedCrossRefGoogle Scholar
  66. Lee S, Chung H, Kim S, Lee I (2013) The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water Air Soil Pollut 224(9):1668. https://doi.org/10.1007/S11270-013-1668-0 CrossRefGoogle Scholar
  67. Le Van N, Ma C, Shang J, Rui Y, Liu S, Xing B(2016) Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144:661–670Google Scholar
  68. Li Y, Yang D, Cui J (2017) Graphene oxide loaded with copper oxide nanoparticles as an antibacterial agent against Pseudomonas syringae pv. tomato. RSC Adv 7:38853–38860CrossRefGoogle Scholar
  69. Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139Google Scholar
  70. Liu J, Dhungana B, Cobb GP (2018) Environmental behavior, potential phytotoxicity, and accumulation of copper oxide nanoparticles and arsenic in rice plants. Environ Toxicol Chem 37 (1):11–20Google Scholar
  71. Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54PubMedCrossRefGoogle Scholar
  72. Mohan R, Shanmugharaj AM, Hun RS (2011) An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity. J Biomed Mater Res B 96:119–126CrossRefGoogle Scholar
  73. Mondal KK, Mani C (2012) Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann Microbiol 62(2):889–893CrossRefGoogle Scholar
  74. Montag J, Schreiber L, Schönherr J (2006) An in vitro study on the postinfection activities of copper hydroxide and copper sulfate against conidia of Venturia inaequalis. J Agric Food Chem 54(3):893–899PubMedCrossRefGoogle Scholar
  75. Nair PMG, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 113:302–313Google Scholar
  76. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao A-J, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17 (5):372–386Google Scholar
  77. Nelson SC (2008) Late blight of tomato (Phytophthora infestans). Honolulu (HI): University of Hawaii. 10 p. (Plant Disease; PD–45).Google Scholar
  78. Nhan LV, Ma C, Rui Y, Liu S, Li X, Xing B, Liu L (2015) Phytotoxic mechanism of nanoparticles: destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Sci Rep 5:11618. https://doi.org/10.1038/srep11618 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Nimse SB, Pal D (2015) Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv 5(35):27986–28006CrossRefGoogle Scholar
  80. Ouda SM (2014) Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Res J Microbiol 9:34–42CrossRefGoogle Scholar
  81. Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica–silver for control of various plant diseases. Plant Pathol J 22:295–302CrossRefGoogle Scholar
  82. Patolsky F, Zheng G, Lieber CM (2006) Nanowire sensors for medicine and life sciences. Nanomedicine 1:51–65PubMedCrossRefGoogle Scholar
  83. Pérez-de-Luque A, Hermosín MC (2013) Nanotechnology and its use in agriculture. Wiley-Blackwell, Chichester, pp 299–405Google Scholar
  84. Perreault F, Samadani M, Dewez D (2014) Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L. Nanotoxicology 8:374–382PubMedCrossRefGoogle Scholar
  85. Ponmurugan P, Manjukarunambika K, Elango V, Gnanamangai BM (2016) Antifungal activity of biosynthesized copper nanoparticles evaluated against red root–rot disease in tea plants. J Exp Nanosci 11(13):1019–1031CrossRefGoogle Scholar
  86. Pradhan S, Patra P, Mitra S, Dey KK, Basu S, Chandra S, Palit P, Goswami A (2015) Copper nanoparticle (CuNP) nanochain arrays with a reduced toxicity response: a biophysical and biochemical outlook on Vigna radiata. J Agric Food Chem 63:2606–2617PubMedCrossRefGoogle Scholar
  87. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart 2014:1–8 https://doi.org/10.1155/2014/963961 CrossRefGoogle Scholar
  88. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  89. Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Prasad R, Gupta N, Kumar M, Kumar V, Wang S, Abd-Elsalam KA (2017b) Nanomaterials act as plant defense mechanism. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 253–269CrossRefGoogle Scholar
  91. Rafique R, Arshad M, Khokhar MF, Qazi IA, Hamza A, Virk N (2014) Growth response of wheat to titania nanoparticles application. NUST J Eng Sci 7:42–46Google Scholar
  92. Rai M, Kratosova G (2015) Management of phytopathogens by application of green nanobiotechnology: emerging trends and challenges. J Agric Sci 66:15–22Google Scholar
  93. Rajasekaran P, Santra S (2015) Hydrothermally treated chitosan hydrogel loaded with copper and zinc particles as a potential micronutrient–based antimicrobial feed additive. Front Vet Sci 2:62PubMedPubMedCentralCrossRefGoogle Scholar
  94. Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA (2012) Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 71:114–116CrossRefGoogle Scholar
  95. Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78. https://doi.org/10.3389/fchem.2017.00078 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Regier N, Cosio C, von Moos N, Slaveykova VI (2015) Effects of copper–oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii. Chemosphere 128:56–61PubMedCrossRefGoogle Scholar
  97. Rubina RS, Vasil’kov AY, Naumkin AV, Shtykova EV, Abramchuk SS, Alghuthaymi MA, Abd-Elsalam KA (2017) Synthesis and characterization of chitosan–copper nanocomposites and their fungicidal activity against two sclerotia–forming plant pathogenic fungi. J Nanostruct Chem 7:249–258. https://doi.org/10.1007/s40097–017–0235–4 CrossRefGoogle Scholar
  98. Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683PubMedCrossRefPubMedCentralGoogle Scholar
  99. Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma SS, Pal A, Biswas P (2015) Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. Int J Biol Macromol 75:346–353PubMedCrossRefGoogle Scholar
  100. Saharan V, Kumaraswamy RV, Choudhary RC, Kumari S, Pal A, Raliya R, Biswas P (2016) Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. J Agric Food Chem 64(31):6148–6155PubMedCrossRefPubMedCentralGoogle Scholar
  101. Salavati-Niasari M, Davar F, Mir N (2008) Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron 27 (17):3514–3518Google Scholar
  102. Salzemann C, Lisiecki I, Urban J, Pileni MP (2004). Anisotropic copper nanocrystals synthesized in a supersaturated medium: Nanocrystal growth. Langmuir 20(26): 11772–11777.Google Scholar
  103. Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Manowade KR, Mujeeb MA, Mundaragi AC, Jogaiah S, David M, Thimmappa SC, Prasad R, Harish ER (2017a) Production of bionanomaterials from agricultural wastes. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 33–58CrossRefGoogle Scholar
  104. Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017b) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 73–97CrossRefGoogle Scholar
  105. Schlich K, Hund-Rinke K (2015) Influence of soil properties on the effect of silver nanomaterials on microbial activity in five soils. Environ Pollut 196:321–330PubMedCrossRefGoogle Scholar
  106. Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. Int J Sociol Agric Food 15:22–44Google Scholar
  107. Sekhon BB (2014) Nanotechnology in agri-food production: an overview. Nanotechnology, Nanotechnol Sci Appl. 7:31–53Google Scholar
  108. Servin A, Elmer W, Mukherjee A, Torre-Roche RD, Hamdi H, White JC, Bindraban P, Dimkpa C (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17:92 https://doi.org/10.1007/s11051-015-2907-7 CrossRefGoogle Scholar
  109. Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L) seedlings. Chemosphere 93:906–915PubMedCrossRefGoogle Scholar
  110. Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L). Environ Exp Bot 102:37–47CrossRefGoogle Scholar
  111. Shende S, Ingle AP, Gade A, Rai M (2015) Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol 31:865–873PubMedCrossRefGoogle Scholar
  112. Shi J, Abid AD, Kennedy IM, Hristova KR, Silk WK (2011) To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environ Poll 159 (5):1277–1282Google Scholar
  113. Singh D, Kumar A (2016) Impact of irrigation using water containing CuO and ZnO nanoparticles on Spinacia oleracea grown in soil media. Bull Environ Contam Toxicol 97(4):548–553Google Scholar
  114. Sodano V, Verneau F (2014) Competition policy and food sector in the European Union. J Int Food Agribusiness Mark 26:155–172CrossRefGoogle Scholar
  115. Somers E (1959) The preparation of bordeaux mixture. J Sci Food Agric 10 (1):68–72Google Scholar
  116. Sonkaria S, Ahn SH, Khare V (2012) Nanotechnology and its impact on food and nutrition: a review. Recent Pat Food Nutr Agric 4(1):8–18.Google Scholar
  117. Song G, Hou W, Gao Y, Wang Y, Lin L, Zhang Z, Wang H (2016) Effects of CuO nanoparticles on Lemna minor. Bot Stud 57:3. https://doi.org/10.1186/s40529-016-0118-x CrossRefPubMedPubMedCentralGoogle Scholar
  118. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43(24):9473–9479.Google Scholar
  119. Subramanian B, Anu Priya K, Thanka Rajan S, Dhandapani P, Jayachandran M (2014) Antimicrobial activity of sputtered nanocrystalline CuO impregnated fabrics. Mater Lett 128:1–4CrossRefGoogle Scholar
  120. Suresh AK, Pelletier DA, Doktycz MJ (2013) Relating nanomaterial properties and microbial toxicity. Nanoscale 5(2):463–474PubMedCrossRefGoogle Scholar
  121. Theivasanthi T, Alagar M (2011) Studies of copper nanoparticles effects on micro-organisms. arXiv preprint arXiv:1110: 1372.Google Scholar
  122. Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L) seedlings. Plant Physiol Biochem 96:189–198PubMedCrossRefPubMedCentralGoogle Scholar
  123. Van Acker H, Van Dijck P, Coenye T (2014) Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol 22 (6):326–333Google Scholar
  124. Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Chauhan DK (2017) Nitric oxide alleviates silver nanoparticles (AgNps)–induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177PubMedCrossRefPubMedCentralGoogle Scholar
  125. Viet PV, Nguyen HT, Cao TM, Hieu LV (2016) Fusarium antifungal activities of copper nanoparticles synthesized by a chemical reduction method. J Nanomater 2016:1–7 https://doi.org/10.1155/2016/1957612 Google Scholar
  126. Wang WC, Freemark K (1995) The Use of Plants for Environmental Monitoring and Assessment. Ecotoxicol Environ Safe 30 (3):289–301Google Scholar
  127. Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L). Environ Sci Technol 46:4434–4441PubMedCrossRefGoogle Scholar
  128. Wang P, Lombi E, Zhao FJ, Kopittke PM (2016a) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21:699–712PubMedCrossRefPubMedCentralGoogle Scholar
  129. Wang Z, Xu L, Zhao J, Wang X, White JC, Xing B (2016b) CuO nanoparticle interaction with Arabidopsis thaliana: toxicity, parent-progeny transfer, and gene expression. Environ Sci Technol 50:6008–6016PubMedCrossRefGoogle Scholar
  130. Wang L, Liu Y, Liu J, Zhang Y, Zhang X, Pan H (2016c) The Gene Is Required for Apothecial Development . Phytopathology 106 (5):484–490Google Scholar
  131. Wani IA, Ahmad T (2013) Size and shape dependent antifungal activity of gold nanoparticles: a case study of Candida. Colloids Surf B 101:162–170CrossRefGoogle Scholar
  132. Wei TY, Huang CT, Hansen BJ, Lin YF, Chen L J, Lu SY, Wang ZL (2010) Large enhancement in photon detection sensitivity via Schottky-gated CdS nanowire nanosensors. Appl Physics Lett 96(1):013508.Google Scholar
  133. Weir E, Lawlor A, Whelan A, Regan F (2008) The use of nanoparticles in antimicrobial materials and their characterization. Analyst 133:835–845PubMedCrossRefGoogle Scholar
  134. Whitesides GM (2003) The “right” size in nanobiotechnology. Nat Biotechnol 21:1161–1165PubMedCrossRefGoogle Scholar
  135. Yang Z, Chen J, Dou R, Gao X, Mao C, Wang L(2015) Assessment of the Phytotoxicity of Metal Oxide Nanoparticles on Two Crop Plants, Maize (Zea mays L.) and Rice (Oryza sativa L.). Int J Environ Rese Public Health 12 (12):15100–15109Google Scholar
  136. Yasmeen F, Raja NI, Razzaq A, Komatsu S (2017) Proteomic and physiological analyses of wheat seeds exposed to copper and iron nanoparticles. Biochim Biophys Acta 1865:28–42PubMedCrossRefGoogle Scholar
  137. Young M, Santra S (2014) Copper (Cu)–Silica nanocomposite containing valence-engineered Cu: a new strategy for improving the antimicrobial efficacy of Cu biocides. J Agric Food Chem 62:6043–6052PubMedCrossRefGoogle Scholar
  138. Youssef K, Hashim AF, Rubina RS, Alghuthaymi MA, Abd-Elsalam KA (2017) Fungicidal efficacy of chemically–produced copper nanoparticles against Penicillium digitatum and Fusarium solani on citrus fruit. Philipp Agric Sci 100:69–78Google Scholar
  139. Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156CrossRefGoogle Scholar
  140. Zabrieski Z, Morrell E, Hortin J, Dimkpa C, McLean J, Britt D, Anderson A (2015) Pesticidal activity of metal oxide nanoparticles on plant pathogenic isolates of Pythium. Ecotoxicology 24(6):1305–1314PubMedCrossRefGoogle Scholar
  141. Zhao L, Huang Y, Keller AA (2017) Comparative metabolic response between cucumber (Cucumis sativus) and corn (Zea mays) to a Cu(OH)2 nanopesticide. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.7b01306
  142. Zuverza-Mena N, Medina-Velo IA, Barrios AC, Tan W, Peralta-Videa JR, Gardea-Torresdey JL (2015) Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environ Sci Process Impacts 17(10):1783–1793PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Esraa Gabal
    • 1
  • Mohamed M. Ramadan
    • 2
  • Amal-Asran
    • 2
  • Mousa A. Alghuthaymi
    • 3
  • Kamel A. Abd-Elsalam
    • 2
  1. 1.Agricultural Sciences and Resource Management in the Tropics and Subtropics (ARTS), Faculty of AgricultureUniversity of BonnBonnGermany
  2. 2.Plant Pathology Research Institute, Agricultural Research Center (ARC)GizaEgypt
  3. 3.Department of Biology, Science and Humanities CollegeShaqra UniversityAlquwayiyahSaudi Arabia

Personalised recommendations