Advertisement

Nanoparticle-Based Plant Disease Management: Tools for Sustainable Agriculture

  • Anurag Yadav
  • Kusum Yadav
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Plant diseases cause huge crop loss on a global scale and are the chief yield-limiting factor in agriculture. Due to greater utilization of land for agriculture and excessive use of fungicides and pesticides, resistant plant pathogens are spreading unprecedentedly and require an immediate check to corroborate food security. Based on need the newer crop protection technologies are emerging to ensure higher crop yield and are contributing in feeding the rapidly growing human population. Nanotechnology is one such novel technology with great potentials. From the last decade, nanotechnology as a technological science has grown to the extent that its presence can now be felt in the fields of automobiles, construction, cosmetics, electronics, and medicine. But, unlike medical nanotechnology, agriculture nanotechnology is one such technology whose potential in agriculture is yet to be fully explored. Nanotechnology deals with materials in the size range of 0.1–100 nm. Due to their minuscule size, such particles interact at an atomic or molecular level to form structures in the nanometer range. These very small particles, called nanoparticles (NPs), show properties very different from larger particles of the same element. NPs show phenomenon like Coulomb blockade, quantum nature, superparamagnetism, and surface plasmon resonance. They show surface effects due to higher surface atoms (Sharma et al Adv Colloid Interface Sci 145(1–2): 83–96, 2009) because the small size increases the surface area to volume ratio of particles (Prasad J Nanopart 2014:963961, 2014; Prasad et al. WIREs Nanomed Nanobiotechnol 8:316–330, 2016; Prasad et al Front Microbiol 8:1014, 2017a). Due to variable surface compositions, NPs have different reactivities to processor like adsorption and redox reactions (Waychunas et al. J Nanopart Res 7(4): 409-433, 2005). NPs are made from materials like carbon nanotubes, magnetic particles, metals, metal oxides, polymers (synthetic and natural), and quantum dots. They can be a designed application specific to catalyze chemical reactions.

Based on NP type, the nanotechnological devices can detect pathogen quickly and cost-effectively with high accuracy. Besides, NPs can act against pathogens like chemical fungicides or pesticides or are used as carriers to deliver such agents. Because of their very small size, the targeted delivery of agents can be ensured inside the pathogen or pest at the cellular level. The targeted delivery can ensure lesser soil contamination due to xenobiotic agricultural chemicals. Besides this nanotechnological intervention can be used in fertilizer nanoformulations, understanding the mechanism of host-parasite interaction, food preservation, salt-affected land reclamation, reducing soil erosion, etc.

Keywords

Nanoparticles Phytotoxicity Disease management Genotoxicity Nanodiagnostics Nanoformulations Agronanotechnology Crop protection 

References

  1. Abd-Elsalam KA (2015) Nanodiagnostic tools in plant breeding. Ommega Publishers 2(2):1–8Google Scholar
  2. Abdelmalek GAM, Salaheldin TA (2016) Silver nanoparticles as a potent fungicide for citrus phytopathogenic fungi. J Nanomed Res 3(5):1–8Google Scholar
  3. Abraçado L, Esquivel D, Alves O, Wajnberg E (2005) Magnetic material in head, thorax, and abdomen of Solenopsis substituta ants: a ferromagnetic resonance study. J Magn Reson 175(2):309–316PubMedCrossRefGoogle Scholar
  4. Abreu FO, Oliveira EF, Paula HC, de Paula RC (2012) Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydr Polym 89(4):1277–1282PubMedCrossRefGoogle Scholar
  5. Agrios G (2012) Plant Pathology. Academic Press, LondonGoogle Scholar
  6. An J, Zhang M, Wang S, Tang J (2008) Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT- Food Sci Technol 41(6):1100–1107CrossRefGoogle Scholar
  7. Antisari LV, Carbone S, Gatti A, Vianello G, Nannipieri P (2013) Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biol Biochem 60:87–94CrossRefGoogle Scholar
  8. Anwunobi A, Emeje M (2011) Recent applications of natural polymers in nanodrug delivery. J Nanomed Nanotechnol 4:2–7Google Scholar
  9. Ao M, Zhu Y, He S, Li D, Li P, Li J, Cao Y (2012) Preparation and characterization of 1-naphthylacetic acid–silica conjugated nanospheres for enhancement of controlled-release performance. Nanotechnology 24(3):035601PubMedCrossRefGoogle Scholar
  10. Arora S, Sharma P, Kumar S, Nayan R, Khanna P, Zaidi M (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66(3):303–310CrossRefGoogle Scholar
  11. Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827PubMedCrossRefGoogle Scholar
  12. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081 CrossRefPubMedGoogle Scholar
  13. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bailey K, Boyetchko S, Längle T (2010) Social and economic drivers shaping the future of biological control: a Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biol Control 52(3):221–229CrossRefGoogle Scholar
  15. Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385(3):452–468PubMedCrossRefPubMedCentralGoogle Scholar
  16. Barik TK, Sahu B, Swain V (2008) Nanosilica—from medicine to pest control. Parasitol Res 103(2):253–258PubMedCrossRefGoogle Scholar
  17. Bhaskar B, Ahammed SK, Chaitanya BH, Rasheed VA, Prasad TNVKV (2016) Silver nanoparticles: mycogenesis, characterization and its anti plant pathogenic applications. Int J Res Appl Nat Soc Sci 4(10):105–114Google Scholar
  18. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham, pp 307–319CrossRefGoogle Scholar
  19. Bhatia S (2016) Marine polysaccharides based nano-materials and its applications. In: Natural polymer drug delivery systems. Springer International Publishing, Switzerland, pp 185–225Google Scholar
  20. Bhau B, Phukon P, Ahmed R, Gogoi B, Borah B, Baruah J, Sharma D, Wann S (2016) A novel tool of nanotechnology: nanoparticle mediated control of nematode infection in plants. In: Singh D., Singh H., Prabha R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi, pp 253–269Google Scholar
  21. Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61CrossRefGoogle Scholar
  22. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26(10):1146–1153PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cañas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionalized single‐walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27(9):1922–1931PubMedCrossRefPubMedCentralGoogle Scholar
  24. Cao J, Guenther RH, Sit TL, Lommel SA, Opperman CH, Willoughby JA (2015) Development of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode control. ACS Appl Mater Interfaces 7(18):9546–9553PubMedCrossRefGoogle Scholar
  25. Chakravarthi S, Robinson D, De S (2007) Nanoparticles prepared using natural and synthetic polymers. In: Thassu D., Deleers M., Pathak Y.V. (eds) Nanoparticulate drug delivery systems. CRC Press, Boca Raton, pp 51–60Google Scholar
  26. Chauhan N, Narang J, Pundir C (2012) An amperometric glutathione biosensor based on chitosan–iron coated gold nanoparticles modified Pt electrode. Int J Biol Macromol 51(5):879–886PubMedCrossRefGoogle Scholar
  27. Chichiriccò G, Poma A (2015) Penetration and toxicity of nanomaterials in higher plants. Nanomaterials 5(2):851–873PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chitwood DJ (2003) Research on plant‐parasitic nematode biology conducted by the United States Department of Agriculture–Agricultural Research Service. Pest Manag Sci 59(6‐7):748–753PubMedCrossRefGoogle Scholar
  29. Chuan Li S, Hua Chen J, Cao H, Sheng Yao D, Ling Liu D (2011) Amperometric biosensor for aflatoxin B 1 based on aflatoxin-oxidase immobilized on multiwalled carbon nanotubes. Food Control 22(1):43–49CrossRefGoogle Scholar
  30. Cioffi N, Torsi L, Ditaranto N, Sabbatini L, Zambonin PG, Tantillo G, Ghibelli L, D’Alessio M, Bleve-Zacheo T, Traversa E (2004) Antifungal activity of polymer-based copper nanocomposite coatings. Appl Phys Lett 85(12):2417–2419CrossRefGoogle Scholar
  31. Cromwell W, Yang J, Starr J, Jo Y-K (2014) Nematicidal effects of silver nanoparticles on root-knot nematode in bermudagrass. J Nematol 46(3):261PubMedPubMedCentralGoogle Scholar
  32. da Silva AC, Deda DK, Bueno CC, Moraes AS, Da Roz AL, Yamaji FM, Prado RA, Viviani V, Oliveira ON, Leite FL (2014) Nanobiosensors exploiting specific interactions between an enzyme and herbicides in atomic force spectroscopy. J Nanosci Nanotechnol 14(9):6678–6684PubMedCrossRefGoogle Scholar
  33. Danks C, Barker I (2000) On‐site detection of plant pathogens using lateral‐flow devices. EPPO Bull 30(3‐4):421–426CrossRefGoogle Scholar
  34. Dar J, Soytong K (2014) Construction and characterization of copolymer nanomaterials loaded with bioactive compounds from Chaetomium species. J Agri Sc Technol 10:823–831Google Scholar
  35. Dehkourdi EH, Mosavi M (2013) Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro. Biol Trace Elem Res 155(2):283–286PubMedCrossRefGoogle Scholar
  36. Dimkpa CO (2014) Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? J Basic Microbiol 54(9):889–904PubMedCrossRefGoogle Scholar
  37. Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2012) Bioactivity and biomodification of Ag, ZnO, and CuO nanoparticles with relevance to plant performance in agriculture. Ind Biotechnol 8(6):344–357CrossRefGoogle Scholar
  38. Dinesh R, Anandaraj M, Srinivasan V, Hamza S (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173:19–27CrossRefGoogle Scholar
  39. Du D, Huang X, Cai J, Zhang A (2007) Comparison of pesticide sensitivity by electrochemical test based on acetylcholinesterase biosensor. Biosens Bioelectron 23(2):285–289PubMedCrossRefGoogle Scholar
  40. Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J (2016) Understanding the role of nanomaterials in agriculture. In: Singh D., Singh H., Prabha R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi, pp 271–288Google Scholar
  41. Eastman PS, Ruan W, Doctolero M, Nuttall R, de Feo G, Park JS, Chu JSF, Cooke P, Gray JW, Li S, Chen FF (2006) Qdot nanobarcodes for multiplexed gene expression analysis. Nano Lett 6(5):1059–1064PubMedCrossRefGoogle Scholar
  42. Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water‐suspended nanoparticles. Physiol Plant 134(1):151–160PubMedCrossRefGoogle Scholar
  43. El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27(1):42–49PubMedCrossRefGoogle Scholar
  44. Elmer WH, White JC (2016) The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ Sci Nano 3(5):1072–1079CrossRefGoogle Scholar
  45. Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharromán C, Moya J (2009) Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology 20(50):505701PubMedCrossRefGoogle Scholar
  46. Fang Y, Ramasamy RP (2015) Current and prospective methods for plant disease detection. Biosensors 5(3):537–561PubMedPubMedCentralCrossRefGoogle Scholar
  47. Fang Y, Umasankar Y, Ramasamy RP (2014) Electrochemical detection of p-ethylguaiacol, a fungi infected fruit volatile using metal oxide nanoparticles. Analyst 139(15):3804–3810PubMedCrossRefGoogle Scholar
  48. Farkas GL, Kiraaly Z (1962) Role of phenolic compounds in the physiology of plant diseases and disease resistance. J Phytopathol 44(2):105–150CrossRefGoogle Scholar
  49. Feizi H, Kamali M, Jafari L, Moghaddam PR (2013) Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91(4):506–511PubMedCrossRefGoogle Scholar
  50. Ghosh M, Jana A, Sinha S, Jothiramajayam M, Nag A, Chakraborty A, Mukherjee A, Mukherjee A (2016) Effects of ZnO nanoparticles in plants: cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutat Res Genet Toxicol Environ Mutagen 807:25–32PubMedCrossRefGoogle Scholar
  51. Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3(44):21743–21752CrossRefGoogle Scholar
  52. Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408PubMedCrossRefGoogle Scholar
  53. Gitipour A, El Badawy A, Arambewela M, Miller B, Scheckel K, Elk M, Ryu H, Gomez-Alvarez V, Santo Domingo J, Thiel S (2013) The impact of silver nanoparticles on the composting of municipal solid waste. Environ Sci Technol 47(24):14385–14393PubMedCrossRefGoogle Scholar
  54. Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792PubMedCrossRefGoogle Scholar
  55. González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano P, Risueño MC, Marquina C, Ibarra MR, Rubiales D, Pérez-de-Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101(1):187–195PubMedCrossRefPubMedCentralGoogle Scholar
  56. Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519(3):1252–1257CrossRefGoogle Scholar
  57. Grahl T, Märkl H (1996) Killing of microorganisms by pulsed electric fields. Appl Microbiol Biotechnol 45(1):148–157PubMedCrossRefGoogle Scholar
  58. Gruyer N, Dorais M, Bastien C, Dassylva N, Triffault-Bouchet G (2013) Interaction between silver nanoparticles and plant growth, International symposium on new technologies for environment control, energy-saving and crop production in greenhouse and plant 1037, pp 795–800Google Scholar
  59. Hatschek E (1931) Electro Chem Processes Ltd assignee Brouisol., BritianGoogle Scholar
  60. He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166(3):207–215PubMedCrossRefGoogle Scholar
  61. Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105(1-3):269–279PubMedCrossRefGoogle Scholar
  62. Huang G, Yeh L, Chen Y (2008) Nanoparticle-enhanced magnetic field induces apoptosis in nematode. NSTI Nanotech 2008, Vol 2, technical proceedings. pp 497–500Google Scholar
  63. Huang S, Wang L, Liu L, Hou Y, Li L (2015) Nanotechnology in agriculture, livestock, and aquaculture in China. A review. Agron Sustain Dev 35(2):369–400CrossRefGoogle Scholar
  64. Huang X-J, Ge D, Xu Z-K (2007) Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization. Eur Polym J 43(9):3710–3718CrossRefGoogle Scholar
  65. Ismail M, Prasad R, Ibrahim AIM, Ahmed ISA (2017) Modern prospects of nanotechnology in plant pathology. In: Prasad R., Kumar M., Kumar V. (eds) Nanotechnology. Springer, Singapore, pp 305–317Google Scholar
  66. Jackson P, Jacobsen NR, Baun A, Birkedal R, Kühnel D, Jensen KA, Vogel U, Wallin H (2013) Bioaccumulation and ecotoxicity of carbon nanotubes. Chem Cent J 7(1):154PubMedPubMedCentralCrossRefGoogle Scholar
  67. Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao KB (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A 90:78–84CrossRefGoogle Scholar
  68. Jerobin J, Sureshkumar R, Anjali C, Mukherjee A, Chandrasekaran N (2012) Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A. Carbohydr Polym 90(4):1750–1756PubMedCrossRefGoogle Scholar
  69. Jha AK, Prasad K, Prasad K (2009) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 43(3):303–306CrossRefGoogle Scholar
  70. Jo Y-K, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93(10):1037–1043CrossRefGoogle Scholar
  71. Joyner JJ, Kumar DV (2015) Nanosensors and their applications in food analysis: a review. Int J Sci Technol 3(4):80Google Scholar
  72. Juhel G, Batisse E, Hugues Q, Daly D, van Pelt FN, O’Halloran J, Jansen MA (2011) Alumina nanoparticles enhance growth of Lemna minor. Aquat Toxicol 105(3):328–336PubMedCrossRefGoogle Scholar
  73. Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235PubMedCrossRefPubMedCentralGoogle Scholar
  74. Kang MA, Seo MJ, Hwang IC, Jang C, Park HJ, Yu YM, Youn YN (2012) Insecticidal activity and feeding behavior of the green peach aphid, Myzus persicae, after treatment with nano types of pyrifluquinazon. J Asia Pac Entomol 15(4):533–541CrossRefGoogle Scholar
  75. Kashyap PL, Rai P, Sharma S, Chakdar H, Kumar S, Pandiyan K, Srivastava AK (2016) Nanotechnology for the detection and diagnosis of plant pathogens. In: Ranjan S., Dasgupta N., Lichtfouse E. (eds) Nanoscience in Food and Agriculture 2. Sustainable Agriculture Reviews, vol 21. Springer, Cham, pp 253–276Google Scholar
  76. Kasprowicz MJ, Kozioł M, Gorczyca A (2010) The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol 56(3):247–253PubMedCrossRefGoogle Scholar
  77. Kattke MD, Gao EJ, Sapsford KE, Stephenson LD, Kumar A (2011) FRET-based quantum dot immunoassay for rapid and sensitive detection of Aspergillus amstelodami. Sensors 11(6):6396–6410PubMedCrossRefGoogle Scholar
  78. Khalil M (2013) Alternative approaches to manage plant parasitic nematodes. J Plant Pathol Microbiol 4:e105CrossRefGoogle Scholar
  79. Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13(3):214–231CrossRefGoogle Scholar
  80. Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28(5):775–785PubMedPubMedCentralCrossRefGoogle Scholar
  81. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227PubMedCrossRefGoogle Scholar
  82. Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y, Kim Y-K, Lee Y-S, Jeong DH, Cho M-H (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3(1):95–101CrossRefGoogle Scholar
  83. Kim SG, Kim KW, Park EW, Choi D (2002) Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology 92(10):1095–1103PubMedCrossRefGoogle Scholar
  84. Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40(1):53–58PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kovacs I, Durner J, Lindermayr C (2015) Crosstalk between nitric oxide and glutathione is required for nonexpressor of pathogenesis-related genes 1 (NPR1)-dependent defense signaling in Arabidopsis thaliana. New Phytol 208(3):860–872PubMedCrossRefGoogle Scholar
  86. Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan P (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A 93:95–99CrossRefGoogle Scholar
  87. Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468PubMedCrossRefGoogle Scholar
  88. Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190(1):613–621PubMedCrossRefGoogle Scholar
  89. Kuźniar T, Ropek D, Lemek T (2011) Impact of multi--walled carbon nanotubes on viability and pathogenicity of enthomopathogenic nematodes. Ecol Chem Eng 18(5-6):757–762Google Scholar
  90. Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39(3):194–199PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lee W-M, Kwak JI, An Y-J (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86(5):491–499PubMedCrossRefGoogle Scholar
  92. Li Y, Yu S, Wu Q, Tang M, Pu Y, Wang D (2012) Chronic Al2O3-nanoparticle exposure causes neurotoxic effects on locomotion behaviors by inducing severe ROS production and disruption of ROS defense mechanisms in nematode Caenorhabditis elegans. J Hazard Mater 219–220:221–230PubMedCrossRefGoogle Scholar
  93. Lin C, Fugetsu B, Su Y, Watari F (2009) Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. J Hazard Mater 170(2):578–583PubMedCrossRefGoogle Scholar
  94. Liu F, Wen L-X, Li Z-Z, Yu W, Sun H-Y, Chen J-F (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41(12):2268–2275CrossRefGoogle Scholar
  95. López-Moreno ML, de la Rosa G, Hernández-Viezcas JÁ, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320PubMedPubMedCentralCrossRefGoogle Scholar
  96. Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1(7):768–778CrossRefGoogle Scholar
  97. Ma H, Bertsch PM, Glenn TC, Kabengi NJ, Williams PL (2009) Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ Toxicol Chem 28(6):1324–1330PubMedCrossRefGoogle Scholar
  98. Mak AC, Osterfeld SJ, Yu H, Wang SX, Davis RW, Jejelowo OA, Pourmand N (2010) Sensitive giant magnetoresistive-based immunoassay for multiplex mycotoxin detection. Biosens Bioelectron 25(7):1635–1639PubMedCrossRefGoogle Scholar
  99. Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, Villa P, Stroppiana D, Boschetti M, Goulart LR (2015) Advanced methods of plant disease detection. A review. Agron Sustain Dev 35(1):1–25CrossRefGoogle Scholar
  100. Mattiello A, Filippi A, Pošćić F, Musetti R, Salvatici MC, Giordano C, Vischi M, Bertolini A, Marchiol L (2015) Evidence of phytotoxicity and genotoxicity in Hordeum vulgare L. exposed to CeO2 and TiO2 nanoparticles. Front Plant Sci 6:1043PubMedPubMedCentralCrossRefGoogle Scholar
  101. McCartney HA, Foster SJ, Fraaije BA, Ward E (2003) Molecular diagnostics for fungal plant pathogens. Pest Manag Sci 59(2):129–142PubMedCrossRefGoogle Scholar
  102. Meng Y, Li Y, Galvani CD, Hao G, Turner JN, Burr TJ, Hoch H (2005) Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. J Bacteriol 187(16):5560–5567PubMedPubMedCentralCrossRefGoogle Scholar
  103. Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54PubMedCrossRefGoogle Scholar
  104. Mody HR (2011) Cancer nanotechnology: recent trends and developments. Int J Med Updt 6(1):3Google Scholar
  105. Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172PubMedPubMedCentralCrossRefGoogle Scholar
  106. Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71PubMedPubMedCentralCrossRefGoogle Scholar
  107. Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A (2010) Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour Technol 101(22):8772–8776PubMedCrossRefGoogle Scholar
  108. Navarro DA, Bisson MA, Aga DS (2012) Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. J Hazard Mater 211:427–435PubMedCrossRefGoogle Scholar
  109. Neethirajan S, Freund M, Jayas D, Shafai C, Thomson D, White N (2010) Development of carbon dioxide (CO2) sensor for grain quality monitoring. Biosyst Eng 106(4):395–404CrossRefGoogle Scholar
  110. Neethirajan S, Jayas DS, Sadistap S (2009) Carbon dioxide (CO2) sensors for the agri-food industry—A review. Food Bioproc Tech 2(2):115–121CrossRefGoogle Scholar
  111. Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7(10):8972–8980PubMedCrossRefPubMedCentralGoogle Scholar
  112. Omanović-Mikličanina E, Maksimović M (2016) Nanosensors applications in agriculture and food industry. Bull Chem Technol Bosnia Herzegovina 47:59–70Google Scholar
  113. Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mat 9(3):035004CrossRefGoogle Scholar
  114. Pal S, Ying W, Alocilja EC, Downes FP (2008) Sensitivity and specificity performance of a direct-charge transfer biosensor for detecting Bacillus cereus in selected food matrices. Biosyst Eng 99(4):461–468CrossRefGoogle Scholar
  115. Park H-J, Kim S-H, Kim H-J, Choi S-H (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22(3):295–302CrossRefGoogle Scholar
  116. Pawlett M, Ritz K, Dorey RA, Rocks S, Ramsden J, Harris JA (2013) The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environ Sci Pollut Res 20(2):1041–1049CrossRefGoogle Scholar
  117. Peteu SF, Oancea F, Sicuia OA, Constantinescu F, Dinu S (2010) Responsive polymers for crop protection. Polymer 2(3):229–251CrossRefGoogle Scholar
  118. Pimentel D (2009) Pesticides and pest control. In: Peshin R., Dhawan A.K. (eds) Integrated Pest Management: Innovation-Development Process. Springer, Dordrecht, pp 83–87Google Scholar
  119. Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452:321–332PubMedCrossRefGoogle Scholar
  120. Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Prasad R, Gupta N, Kumar M, Kumar V, Wang S, Abd-Elsalam KA (2017b) Nanomaterials act as plant defense mechanism. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology. Springer, Singapore, pp 253–269CrossRefGoogle Scholar
  122. Prasad R, Pandey R, Varma A, Barman I (2017c) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. CAB International, CABI, pp 53–70Google Scholar
  123. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  124. Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J Nanopart. https://doi.org/10.1155/2013/431218
  125. Rabab EMA, EL-Shafey RAS (2013) Inhibition effects of silver nanoparticles against rice blast disease caused by Magnaporthe grisea. Egypt J Agric Res 91(4):1271–1283Google Scholar
  126. Racuciu M, Creanga D-E (2007) TMA-OH coated magnetic nanoparticles internalized in vegetal tissue. Rom J Phys 52(3/4):395Google Scholar
  127. Rad F, Mohsenifar A, Tabatabaei M, Safarnejad M, Shahryari F, Safarpour H, Foroutan A, Mardi M, Davoudi D, Fotokian M (2012) Detection of Candidatus Phytoplasma aurantifolia with a quantum dots FRET-based biosensor. J Plant Pathol 94(3):525–534Google Scholar
  128. Radoi A, Targa M, Prieto-Simon B, Marty J-L (2008) Enzyme-Linked Immunosorbent Assay (ELISA) based on superparamagnetic nanoparticles for aflatoxin M 1 detection. Talanta 77(1):138–143PubMedCrossRefGoogle Scholar
  129. Ragaei M, Sabry A-kH (2014) Nanotechnology for insect pest control. Int J Sci Environ Technol 3(2):528–545Google Scholar
  130. Rai M, Deshmukh S, Gade A (2012) Strategic Nanoparticle-mediated gene transfer in plants and animals-a novel approach. Curr Nanosci 8(1):170–179CrossRefGoogle Scholar
  131. Rajiv P, Rajeshwari S, Venckatesh R (2013) Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim Acta A 112:384–387CrossRefGoogle Scholar
  132. Rispail N, De Matteis L, Santos R, Miguel AS, Custardoy L, Testillano PS, Risueño MC, Pérez-de-Luque A, Maycock C, Fevereiro P (2014) Quantum dot and superparamagnetic nanoparticle interaction with pathogenic fungi: internalization and toxicity profile. ACS Appl Mater Interfaces 6(12):9100–9110PubMedCrossRefGoogle Scholar
  133. Riveros A, Srygley R (2010) Migration, orientation and navigation: magnetic compasses in insects. In: Encyclopedia of animal behavior, vol 2. Elsevier/Academic Press, Oxford, pp 305–313CrossRefGoogle Scholar
  134. Roh J-Y, Park Y-K, Park K, Choi J (2010) Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ Toxicol Pharmacol 29(2):167–172PubMedCrossRefGoogle Scholar
  135. Rosen J, Yoffe S, Meerasa A, Verma M, Gu F (2011) Nanotechnology and diagnostic imaging: new advances in contrast agent technology. J Nanomed Nanotechnol 2:115CrossRefGoogle Scholar
  136. Rousk J, Ackermann K, Curling SF, Jones DL (2012) Comparative toxicity of nanoparticulate CuO and ZnO to soil bacterial communities. PLoS One 7(3):e34197PubMedPubMedCentralCrossRefGoogle Scholar
  137. Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J 2014:8CrossRefGoogle Scholar
  138. Sadanandom A, Napier RM (2010) Biosensors in plants. Curr Opin Plant Biol 13(6):736–743PubMedCrossRefGoogle Scholar
  139. Sadowski Z (2010) Biosynthesis and application of silver and gold nanoparticles. In: Perez DP (ed) Silver nanoparticlesGoogle Scholar
  140. Sah S, Sorooshzadeh A, Rezazadeh H, Naghdibadi H (2011) Effect of nano silver and silver nitrate on seed yield of borage. J Med Plant Res 5(5):706–710Google Scholar
  141. Saini RK, Bagri LP, Bajpai AK (2017) Smart nanosensors for pesticide detection. In: Grumezescu A.M. (ed) New pesticides and soil sensors. Academic Press, United Kingdom, pp 519–559Google Scholar
  142. Sankaran S, Mishra A, Ehsani R, Davis C (2010) A review of advanced techniques for detecting plant diseases. Comput Electron Agric 72(1):1–13CrossRefGoogle Scholar
  143. Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017a) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer, Singapore, pp 73–97Google Scholar
  144. Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Manowade KR, Mujeeb MA, Mundaragi AC, Jogaiah S, David M, Thimmappa SC, Prasad R, Harish ER (2017b) Production of bionanomaterials from agricultural wastes. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology, Springer, Singapore, pp 33–58Google Scholar
  145. Sarkar DJ, Kumar J, Shakil N, Walia S (2012) Release kinetics of controlled release formulations of thiamethoxam employing nano-ranged amphiphilic PEG and diacid based block polymers in soil. J Environ Sci Health A 47(11):1701–1712CrossRefGoogle Scholar
  146. Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision 2(1):2Google Scholar
  147. Schofield CL, Haines AH, Field RA, Russell DA (2006) Silver and gold glyconanoparticles for colorimetric bioassays. Langmuir 22(15):6707–6711PubMedCrossRefGoogle Scholar
  148. Schreiber L (2005) Polar paths of diffusion across plant cuticles: new evidence for an old hypothesis. Ann Bot 95(7):1069–1073PubMedPubMedCentralCrossRefGoogle Scholar
  149. Serag MF, Kaji N, Habuchi S, Bianco A, Baba Y (2013) Nanobiotechnology meets plant cell biology: carbon nanotubes as organelle targeting nanocarriers. RSC Adv 3(15):4856–4862CrossRefGoogle Scholar
  150. Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2(4):83Google Scholar
  151. Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93(6):906–915PubMedCrossRefGoogle Scholar
  152. Shaymurat T, Gu J, Xu C, Yang Z, Zhao Q, Liu Y, Liu Y (2012) Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study. Nanotoxicology 6(3):241–248PubMedCrossRefGoogle Scholar
  153. Silva AT, Nguyen A, Ye C, Verchot J, Moon JH (2010) Conjugated polymer nanoparticles for effective siRNA delivery to tobacco BY-2 protoplasts. BMC Plant Biol 10:291PubMedPubMedCentralCrossRefGoogle Scholar
  154. Singh D, Kumar A, Singh AK, Tripathi H (2013) Induction of resistance in field pea against rust disease through various chemicals/micronutrients and their impact on growth and yield. Plant Pathol J 12(2):36CrossRefGoogle Scholar
  155. Singh P, Kumari K, Vishvakrma VK, Mehrotra GK, Chandra R, Kumar D, Patel R, Shahare VV (2017) Metal NPs (Au, Ag, and Cu): Synthesis, stabilization, and their role in green chemistry and drug delivery. In: Singh R., Kumar S. (eds) Green Technologies and Environmental Sustainability. Springer, Cham, pp 309–337Google Scholar
  156. Srinivasan B, Tung S (2015) Development and applications of portable biosensors. J Lab Autom 20(4):365–389PubMedCrossRefGoogle Scholar
  157. Srinivasan C, Saraswathi R (2010) Nano-agriculture–carbon nanotubes enhance tomato seed germination and plant growth. Curr Sci 99(3):274–275Google Scholar
  158. Sun Y-F, Liu S-B, Meng F-L, Liu J-Y, Jin Z, Kong L-T, Liu J-H (2012) Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12(3):2610–2631PubMedCrossRefGoogle Scholar
  159. Suriyaprabha R, Karunakaran G, Kavitha K, Yuvakkumar R, Rajendran V, Kannan N (2014) Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnol 8(3):133–137PubMedCrossRefGoogle Scholar
  160. Swamy VS, Prasad R (2012) Green synthesis of silver nanoparticles from the leaf extract of Santalum album and its antimicrobial activity. J Optoelectron Biomed Mater 4(3):53–59Google Scholar
  161. Tan X-m, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47(15):3479–3487CrossRefGoogle Scholar
  162. Tiwari D, Dasgupta-Schubert N, Cendejas LV, Villegas J, Montoya LC, Garcia SB (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 4(5):577–591CrossRefGoogle Scholar
  163. Singhal U, Khanuja M, Prasad R, Varma A (2017) Impact of synergistic association of ZnO-nanorods and symbiotic fungus Piriformospora indica DSM 11827 on Brassica oleracea var. botrytis (Broccoli). Front Microbiol 8:1909. https://doi.org/10.3389/fmicb.2017.01909 CrossRefPubMedPubMedCentralGoogle Scholar
  164. Vamvakaki V, Chaniotakis NA (2007) Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 22(12):2848–2853PubMedCrossRefGoogle Scholar
  165. Verma ML (2017) Enzymatic nanobiosensors in the agricultural and food industry. In: Ranjan S., Dasgupta N., Lichtfouse E. (eds) Nanoscience in Food and Agriculture 4. Sustainable Agriculture Reviews, vol 24. Springer, Cham, pp 229–245Google Scholar
  166. Villagarcia H, Dervishi E, de Silva K, Biris AS, Khodakovskaya MV (2012) Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 8(15):2328–2334PubMedCrossRefPubMedCentralGoogle Scholar
  167. Wainwright M, Grayston SJ, De Jong P (1986) Adsorption of insoluble compounds by mycelium of the fungus Mucor flavus. Enzyme Microb Technol 8(10):597–600CrossRefGoogle Scholar
  168. Wajnberg E, Acosta-Avalos D, Alves OC, de Oliveira JF, Srygley RB, Esquivel DM (2010) Magnetoreception in eusocial insects: an update. J R Soc Interface 7(Suppl 2):S207–S225PubMedPubMedCentralCrossRefGoogle Scholar
  169. Wakeil NE, Alkahtani S, Gaafar N (2017) 7 - Is nanotechnology a promising field for insect pest control in IPM programs? A2 - Grumezescu. In: Mihai A (ed) New pesticides and soil sensors. Academic Press, United Kingdom, pp 273–309Google Scholar
  170. Wang H, Kou X, Pei Z, Xiao JQ, Shan X, Xing B (2011a) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5(1):30–42PubMedCrossRefGoogle Scholar
  171. Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157(4):1171–1177PubMedCrossRefPubMedCentralGoogle Scholar
  172. Wang J, Deo RP, Musameh M (2003a) Stable and sensitive electrochemical detection of phenolic compounds at carbon nanotube modified glassy carbon electrodes. Electroanalysis 15(23‐24):1830–1834CrossRefGoogle Scholar
  173. Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang Q, Schnoor JL, Colvin VL, Braam J, Alvarez PJ (2013) Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ Sci Technol 47(10):5442–5449PubMedCrossRefGoogle Scholar
  174. Wang J, Liu G, Jan MR, Zhu Q (2003b) Electrochemical detection of DNA hybridization based on carbon-nanotubes loaded with CdS tags. Electrochem Commun 5(12):1000–1004CrossRefGoogle Scholar
  175. Wang S, Kurepa J, Smalle JA (2011b) Ultra‐small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ 34(5):811–820PubMedCrossRefGoogle Scholar
  176. Wang Z, Wei F, Liu S-Y, Xu Q, Huang J-Y, Dong X-Y, Yu J-H, Yang Q, Zhao Y-D, Chen H (2010) Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticles-modified gold electrode and its detection in oilseed rape infected with fungal pathogen Sclerotinia sclerotiorum. Talanta 80(3):1277–1281PubMedCrossRefGoogle Scholar
  177. Weigl B, Domingo G, LaBarre P, Gerlach J (2008) Towards non-and minimally instrumented, microfluidics-based diagnostic devices. Lab Chip 8(12):1999–2014PubMedPubMedCentralCrossRefGoogle Scholar
  178. West JS, Bravo C, Oberti R, Moshou D, Ramon H, McCartney HA (2010) Detection of fungal diseases optically and pathogen inoculum by air sampling. In: Oerke EC., Gerhards R., Menz G., Sikora R. (eds) Precision Crop Protection - the Challenge and Use of Heterogeneity. Springer, Dordrecht, pp 135–149Google Scholar
  179. Wu K, Sun Y, Hu S (2003) Development of an amperometric indole-3-acetic acid sensor based on carbon nanotubes film coated glassy carbon electrode. Sens Actuators B 96(3):658–662CrossRefGoogle Scholar
  180. Wu S, Huang L, Head J, Chen D, Kong I, Tang Y (2012) Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J Pet Environ Biotechnol 3(4):126Google Scholar
  181. Xiang C, Taylor AG, Hinestroza JP, Frey MW (2013) Controlled release of nonionic compounds from poly (lactic acid)/cellulose nanocrystal nanocomposite fibers. J Appl Polym Sci 127(1):79–86CrossRefGoogle Scholar
  182. Xue J, Luo Z, Li P, Ding Y, Cui Y, Wu Q (2014) A residue-free green synergistic antifungal nanotechnology for pesticide thiram by ZnO nanoparticles. Sci Rep 4:5408PubMedPubMedCentralCrossRefGoogle Scholar
  183. Yoosaf K, Ipe BI, Suresh CH, Thomas KG (2007) In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. J Phys Chem C 111(34):12839–12847CrossRefGoogle Scholar
  184. Yu X, Chattopadhyay D, Galeska I, Papadimitrakopoulos F, Rusling JF (2003) Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochem Commun 5(5):408–411CrossRefGoogle Scholar
  185. Zafar H, Ali A, Ali JS, Haq IU, Zia M (2016) Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response. Front Plant Sci 7:535PubMedPubMedCentralCrossRefGoogle Scholar
  186. Zhang Y, Arugula MA, Wales M, Wild J, Simonian AL (2015) A novel layer-by-layer assembled multi-enzyme/CNT biosensor for discriminative detection between organophosphorus and non-organophosphrus pesticides. Biosens Bioelectron 67:287–295PubMedCrossRefGoogle Scholar
  187. Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2013) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61(49):11945–11951PubMedCrossRefGoogle Scholar
  188. Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, Jin S, Tan W (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Pro Natl Acad Sci USA 101(42):15027–15032CrossRefGoogle Scholar
  189. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–91PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Anurag Yadav
    • 1
  • Kusum Yadav
    • 2
  1. 1.Department of MicrobiologyCollege of Basic Science & Humanities, S.D. Agricultural UniversityBanaskanthaIndia
  2. 2.Department of BiochemistryUniversity of LucknowLucknowIndia

Personalised recommendations