Advertisement

Chitosan-Based Nanostructures in Plant Protection Applications

  • Fahad A. Al-Dhabaan
  • Manal Mostafa
  • Hassan Almoammar
  • Kamel A. Abd-Elsalam
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Biopolymer chitosan is presently one of the most favorable natural polymers for use in micro- and nanotechnology, and it is very effective for use in agricultural sector when combined with natural functional compounds or metal nanoparticles to eliminate problems associated with the waste of destructive chemicals. In the current chapter, the primary uses of nanochitosan in agriculture and its potential uses in plant protection control are reviewed. Nanochitosan has been reported to possess antifungal and antibacterial activity and shown to be effective against seed-borne pathogens when applied as seed treatment. Chitosan behaves as a resistance elicitor inducing both local and systemic plant defense responses even when applied to the seeds. The chitosan used as soil improvement was shown to provide many benefits to different plant species by reducing pathogen attack and infection and promoting growth. The authors outline the plant protection and growth regulatory applications of chitosan nanomaterials. Current and possible utilization of chitosan nanomaterials in plant nutrition, abiotic stress management, pesticides remediation, plant transformation, and post-harvest application is also highlighted.

Keywords

Chitosan nanomaterial Plant protection Fungicide Food preservation Phytotoxicity 

Notes

Acknowledgment

This research was supported by the Science and Technology Development Fund (STDF), Joint Egypt (STDF)–South Africa (NRF) Scientific Cooperation, Grant ID. 27837 to Kamel Abd-Elsalam.

References

  1. Abdel-Aziz HMM, Hasaneen MNA, Omar AM (2018) Effect of foliar application of nano chitosan NPK fertilizer on the chemical composition of wheat grains. Egypt J Bot. https://doi.org/10.21608/EJBO.2018.1907.1137
  2. Abdel-Razik AB, Hammad IA, Tawfik E (2017) Transformation of Thionin genes using chitosan nanoparticle into potato plant to be resistant to fungal infection. IOSR J Biotechnol Biochem 3(3):1–13CrossRefGoogle Scholar
  3. Abd–Elsalam KA, Vasil’kov AY, Said–Galiev EE, Rubina MS, Khokhlov AR, Naumkin AV, Shtykova EV, Alghuthaymi MA (2017) Bimetallic and chitosan nanocomposites hybrid with trichoderma: novel antifungal agent against cotton soil–borne fungi. Eur J Plant Pathol. https://doi.org/10.1007/s10658–017–1349–8
  4. Agnihotri AA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100(1):5–28Google Scholar
  5. Alves NM, Mano JF (2008) Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biol Macromol 43:401–414PubMedCrossRefGoogle Scholar
  6. Ambrosio L (2009) Biomedical composites. Woodhead Publishing, CambridgeGoogle Scholar
  7. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081 CrossRefPubMedGoogle Scholar
  8. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Badawy MEI, Rabea EI, Rogge TM, Stevens CV, Steurbaut W, Höfte M, Smagghe G (2005) Fungicidal and insecticidal activity of O-acyl chitosan derivatives. Polym Bull 54:279–289CrossRefGoogle Scholar
  10. Behboudi F, Tahmasebi SZ, Kassaee MZ, Modares Sanavi SAM, Sorooshzadeh A (2017) Phytotoxicity of chitosan and SiO2 nanoparticles to seed germination of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) plants. Not Sci Biol 9(2):242–249CrossRefGoogle Scholar
  11. Berscht PC, Nies B, Liebendorfer A, Kreuter J (1994) Incorporation of basic ibroblast growth factor into methylpyrrolidinone chitosan leeces and determination of the in vitro release characteristics. Biomaterials 15:593–600PubMedCrossRefPubMedCentralGoogle Scholar
  12. Beyki M, Zhaveh S, Tahere S, Rahmani-Cherati T, Abollahi A, Mansour B, Bayat Tabatabaei M, Mohsenifarc A (2014) Encapsulation of Mentha piperita essential oils in chitosan–cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Ind Crop Prod 54:310–319CrossRefGoogle Scholar
  13. Bharani RA, Namasivayam SKR, Shankar SS (2014) Biocompatible chitosan nanoparticles incorporated pesticidal protein beauvericin (CSNp-BV) preparation for the improved pesticidal activity against major groundnut defoliator Spodoptera litura (Fab.) (Lepidoptera; Noctuidae). Int J Chem Tech Res 6:5007–5012Google Scholar
  14. Bhattacharyya A, Bhaumik A, Usha Rani P, Suvra Mandal S, Epidi TT (2010) Nano- particles - a recent approach to insect pest control. Afr J Biotechnol 9(24):3489–3493Google Scholar
  15. Bin Hussein MZ, Hashim N, Yahaya AH, Zainal Z (2009) Controlled release formulation of agrochemical pesticide based on 4-(2,4-dichlorophenoxy)butyrate nanohybrid. J Nanosci Nanotechnol 9:2140–2147CrossRefGoogle Scholar
  16. Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20:433–441PubMedCrossRefPubMedCentralGoogle Scholar
  17. Borges J, Mano JF (2014) Molecular interactions driving the layer-by-layer assembly of multilayers. Chem Rev 114:8883–8942PubMedCrossRefPubMedCentralGoogle Scholar
  18. Borges J, Rodrigues LC, Reis RL et al (2014) Layer-by-layer assembly of light-responsive polymeric multilayer systems. Adv Funct Mater 24:5624–5648CrossRefGoogle Scholar
  19. Brunel F, El Gueddari NE, Moerschbacher BM (2013) Complexation of copper(II) with chitosan nanogels: Toward control of microbial growth. Carbohydr Polym 92(2):1348–1356Google Scholar
  20. Bueter CL, Specht CA, Levitz SM (2013) Innate sensing of chitin and chitosan. PLoS Pathog 9(1):e1003080PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cabrera JC, Wégria G, Onderwater RCA, González G, Nápoles MC, Falcón-Rodríguez AB, Costales D, Rogers HJ, Diosdado E, González S, Cabrera G, González L, Wattiez R (2013) In: Saa Silva S et al (eds) Proc. 1st world Congresson the use of biostimulants in agriculture, Acta horticultural 1009 ISHSGoogle Scholar
  22. Cammue BPA, De Bolle MFC, Terras FRG, Proost P, Van Damme J, Rees SB, Vanderleydenand J, Broekaert WF (1992) Isolation and characterization of a novel class of plant antimicrobial peptides from Mirabilis jalapa L. seeds. J Biol Chem 267:2228–2233PubMedPubMedCentralGoogle Scholar
  23. Campos EVR, Proença PLF, Oliveira JL, Melville CC, Della Vechia JF, de Andrade DJ, Fraceto LF (2018) Chitosan nanoparticles functionalized with β-cyclodextrin: a promising carrier for botanical pesticides. Sci Rep 8:2067. https://doi.org/10.1038/s41598-018-20602-y CrossRefPubMedPubMedCentralGoogle Scholar
  24. Caridade SG, Merino EG, Alves NM, Bermudez VZ, Boccaccini AR, Manoa JF (2013) Chitosan membranes containing micro or nano-size bioactive glass particles: evolution of biomineralization followed by in situ dynamic mechanical analysis. J Mech Behav Biomed Mater 20:173–183PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cea M, Cartes P, Palma G, Mora ML (2010) Atrazine efficiency in an andisol as affected by clays and nanoclays in ethylcellulose controlled release formulations. R C Suelo Nutr Veg 10:62–77CrossRefGoogle Scholar
  26. Celis R, Adelino MA, Hermosín MC, Cornejo J (2012) Montmorillonite–chitosan bionanocomposites as adsorbents of the herbicide clopyralid in aqueous solution and soil/water suspensions. J Hazard Mater 209:21067–21076Google Scholar
  27. Chandra JH, Raj LFAA, Namasivayam SKR, Bharani RSA (2013) Improved pesticidal activity of fungal metabolite from nomureae rileyi with chitosan nanoparticles. Proceedings of the international conference on advanced nanomaterials and emerging engineering technologies. Chennai. pp 387–390Google Scholar
  28. Chandra S, Chakarborty N, Dasgupt A, Sarkar J, Panda K, Acharya K (2015) Chitosan nanoparticle: a positive modulator of innate immune responses in plants. Sci Rep 5:1–13Google Scholar
  29. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam Part A 25:241–258CrossRefGoogle Scholar
  30. Chen J, Zou X, Liu Q, Wang F, Feng W, Wan W (2014) Combination effect of chitosan and methyl jasmonate on controlling Alternaria alternata and enhancing activity of cherry tomato fruit defense mechanisms. Crop Prot 56:31–36CrossRefGoogle Scholar
  31. Chirkov SN (2002) The antiviral activity of chitosan (review). Appl Biochem Microbiol 38:1–8CrossRefGoogle Scholar
  32. Chookhongkha N, Sopondilok T, Photchanachai S (2012) Effect of chitosan and chitosan nanoparticles on fungal growth and chilliseed quality. International conference on postharvest pest and diseas e management in exporting horticultural crops-PPDM2012 973:231–237Google Scholar
  33. Chookhongkha N, Sopondilok T, Photchanachai S (2013) Effect of chitosan and chitosan nanoparticles on fungal growth and chilli seed quality. Acta Hortic 973:231–237CrossRefGoogle Scholar
  34. Choudhary MK (2017) Development and evaluation of Cu chitosan nanocomposite for its antifungal activity against post flowering stalk rot (PFSR) disease of maize caused by Fusarium verticillioids (Sheldon). Ph.D. Thesis, Maharana Pratap University of Agriculture and Technology, Udaipur, India. 79 pagesGoogle Scholar
  35. Chowdappa P, Shivakumar C, Chethana S, Madhura S (2014) Antifungal activity of chitosan-silver nanoparticles composite against Colletotrichum gloeosporioides associated with mango anthracnose. Afr J Microbiol Res 81:1803–1812Google Scholar
  36. Cindi MD, Shittu T, Sivakumar D, Bautista-Baños S (2015) Chitosan boehmite alumina nanocomposite films and thyme oil vapour control brown rot in peaches (Prunus persica L.) during postharvest storage. Crop Prot 72:127–131CrossRefGoogle Scholar
  37. Corradini E, De Moura M, Mattoso L (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 4(8):509–515CrossRefGoogle Scholar
  38. Costa RR, Mano JF (2014) Polyelectrolyte multilayered assemblies in biomedical technologies. Chem Soc Rev 43:3453–3479PubMedCrossRefPubMedCentralGoogle Scholar
  39. Cota-Arriola O, Cortez-Rocha MO, Ezquerra-Brauer JM, Lizardi-Mendoza J, Burgos-Hernández A, Robles-Sánchez RM (2013) Ultrastructural, morphological, and antifungal properties of micro and nanoparticles of chitosan crosslinked with sodium tripolyphosphate. J Polym Environ 21:971–980CrossRefGoogle Scholar
  40. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237CrossRefGoogle Scholar
  41. Dehaghi SM, Rahmanifar B, Moradi AM, Azar PA (2014) Removal of permethrin pesticide from water by chitosan–zinc oxide nanoparticles composite as an adsorbent. J Saudi Chem Soc 18:348–355CrossRefGoogle Scholar
  42. Di Carlo G, Curulli A, Toro RG, Bianchini C, De Caro T, Padeletti G, Zane D, Ingo GM (2012) Green synthesis of gold? Chitosan nanocomposites for caffeic acid sensing. Langmuir 28:5471–5479PubMedCrossRefPubMedCentralGoogle Scholar
  43. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24PubMedCrossRefPubMedCentralGoogle Scholar
  44. Dzung NA, Khanh VTP, Dung TT (2011) Research on impact of chitosan oligomer on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydr Polym 84:751–755CrossRefGoogle Scholar
  45. El Hadrami A, El Hadrami I, Daayf F (2009) Suppression of induced plant defense responses by fungal pathogens. In: Bouarab K, Brisson N, Daayf F (eds) Molecular-plant microbe interactions. CABI, Wallingford Chapter 10, pp 231–268CrossRefGoogle Scholar
  46. El Hassni M, El Hadrami A, Daayf F, Chérif M, Ait Barka E, El Hadrami I (2004) Chitosan, antifungal product against fusarium oxysporum f. Sp. albedinis and elicitor of defence reactions in date palm roots. Phytopathol Mediterr 43:195–204Google Scholar
  47. El-Sawy NM, Abd El-Rehim HA, Elbarbary AM, Hegazy E-SA (2010) Radiation-induced degradation of chitosan for possible use as a growth promoter in agricultural purposes. Carbohydr Polym 79:555–562CrossRefGoogle Scholar
  48. Fang H, Huang J, Ding L, Li M, Chen Z (2009) Preparation of magnetic chitosan nanoparticles and immobilization of laccase. J Wuhan Univ Technol Mater Sci Ed 24:42–47. https://doi.org/10.1007/s11595–009–1042–7 CrossRefGoogle Scholar
  49. Faoro F, Sant S, Iriti M, Appiano A (2001) Chitosan-elicited resitance to plant viruses: a histochemical and cytochemical study. In: Muzzarelli RAA (ed) Chitin enzymology. Atec, Grottammare, pp 57–62Google Scholar
  50. Feng J, He J, Ma Z, Wang Z, Zhang X (2009) Plant source fruit and vegetable fresh-keeping agent and its preparation method. Patent number: CN101305747–AGoogle Scholar
  51. Fernández-Saiz P, Lagaron JM (2011) Chitosan for film and coating applications. In: Plackett D (ed) Biopolymers: new materials for sustainable films and coatings. Wiley, West Sussex, pp 87–105CrossRefGoogle Scholar
  52. Freire TM, Dutra LMU, Queiroz DC, Ricardo NMPS, Barreto K, Denardin JC, Wurm FR, Sousa CP, Correia AN, de Lima-Neto P, Fechine PBA (2016) Fast ultrasound assisted synthesis of chitosan-based magnetite nanocomposites as a modified electrode sensor. Carbohydr Polym 151:760–769PubMedCrossRefPubMedCentralGoogle Scholar
  53. Furbank RT, White RJ, Palta A, Turner NC (2004) Internal recycling of respiratory CO2 in pods of chickpea (Cicerarietinum L.): the role of pod wall, seed coat, and embryo. J Exp Bot 55:1687–1696PubMedCrossRefPubMedCentralGoogle Scholar
  54. Geng B, Jin Z, Li T, Qi X (2009) Preparation of chitosan-stabilized Fe(0) nanoparticles for removal of hexavalent chromium in water. Sci Total Environ 407:4994–5000PubMedCrossRefPubMedCentralGoogle Scholar
  55. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803PubMedPubMedCentralCrossRefGoogle Scholar
  56. Gornik K, Grzesik M, Duda BR (2008) The effect of chitosan on rooting of gravevine cuttings and on subsequent plant growth under drought and temperature stress. J Fruit Ornamental Plant Resour 16:333–343Google Scholar
  57. Grillo R, Pereira AES, Nishisaka CS, de Lima R, Oehlke K, Greiner R, Fraceto LF (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J Hazard Mater 278:163–171PubMedCrossRefGoogle Scholar
  58. Guan H, Chi D, Yu J, Li X (2008) A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-Imidacloprid. Pestic Biochem Physiol 92:83–91CrossRefGoogle Scholar
  59. Guan YJ, Hu J, Wang XJ, Shao CX (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci B 10:427–433PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hammerschmidt R (1999) Phytoalexins: what have we learned after 60 years? Annu Rev Phytopathol 37:285–306PubMedCrossRefPubMedCentralGoogle Scholar
  61. Hasaneen MNA, Abdel-Aziz HMM, El-Bialy DMA, Omer AM (2014) Preparation of chitosan nanoparticles for loading with NPK. Afr J Biotech 13:3158–3164CrossRefGoogle Scholar
  62. He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215PubMedCrossRefGoogle Scholar
  63. Higueras L, López-Carballo G, Cerisuelo JP et al (2013) Preparation and characterization of chitosan/HP-β-cyclodextrins composites with high sorption capacity for carvacrol. Carbohydr Polym 97:262–268PubMedCrossRefPubMedCentralGoogle Scholar
  64. Hussain MR, Devi RR, Maji TK (2012) Controlled release of urea from chitosan microspheres prepared by emulsification and cross-linking method. Iran Polym J 21:473–479CrossRefGoogle Scholar
  65. Hwang IC, Kim TH, Bang SH, Kim KS, Kwon HR, Seo MJ, Youn YN, Park HJ, Yasunaga-Aoki C, Yu YM (2011) Insecticidal effect of controlled release formulations of etofenprox based on nano-bio technique. J Fac Agric Kyushu Univ 56:33–40Google Scholar
  66. Ibrahima EA, Ramadan WA (2015) Effect of zinc foliar spray alone and combined with humic acid or/and chitosan on growth, nutrient elements content and yield of dry bean (Phaseolus vulgaris L.) plants sown at different dates. Sci Hortic 184:101–105CrossRefGoogle Scholar
  67. Ichikawa S, Iwamoto S, Watanabe J (2005) Formation of biocopmpatible nanoparticles by selfassembly of enzymatic hydrolysates of chitosan and carboxymethyl cellulose. Biosci Biotechnol Biochem 69:1637–1642 PMID: 16195579PubMedCrossRefPubMedCentralGoogle Scholar
  68. Iler RK (1966) Multilayers of colloidal particles. Colloid Interf Sci J 21:569–594CrossRefGoogle Scholar
  69. Ing LY, Zin NM, Sarwar A, Katas H (2012) Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomater 2012:632698. https://doi.org/10.1155/2012/632698 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Jaiswal M, Chauhan D, Sankararamakrishnan N (2012) Copper chitosan nanocomposites: synthesis, characterization, and application in removal of organophosphorous pesticide from agricultural runoff. Environ Sci Pollut Res 19:2005–2062CrossRefGoogle Scholar
  71. Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmo schusesculentus and its antifungal activity. Ind Crop Prod 45:423–429CrossRefGoogle Scholar
  72. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043CrossRefGoogle Scholar
  73. Juárez-Maldonado A, Ortega-Ortiz, H, Pérez-Labrada F, Cadenas-Pliego G, Benavidez-Mendoza A (2016) Cu nanoparticle absorbed on chitosan hydrogels positively alter morphological production and quality characteristics of tomato. J Appl Bot Food Qual 89:183–189Google Scholar
  74. Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235PubMedCrossRefPubMedCentralGoogle Scholar
  75. Kashyap PL, Kumar S, Srivastava AK, Sharma AK (2013) Myconanotechnology in agriculture: a perspective. World J Microbiol Biotechnol 29(2):191–207PubMedCrossRefPubMedCentralGoogle Scholar
  76. Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51PubMedCrossRefPubMedCentralGoogle Scholar
  77. Katiyar D, Hemantarajan A, Sing B (2015) Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian J Plant Physiol 20(1):1–9CrossRefGoogle Scholar
  78. Kaur P, Thakur R, Choudhary A (2012) An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. Int J Sci Technol Res 1:83–86Google Scholar
  79. Kendra DF, Hadwiger LA (1984) Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation by Pisum sativum. Exp Mycol 8:276–281CrossRefGoogle Scholar
  80. Khalili ST, Mohsenifar A, Beyki M, Zhaveh S, Rahmani-Cherati T, Bayat M et al (2015) Encapsulation of thyme essential oils in chitosan–benzoic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. LWT Food Sci Technol 60:502–508CrossRefGoogle Scholar
  81. Kheiri A, Moosawi Jorf SA, Malihipour A, Saremi H, Nikkhah M (2016) Application of chitosan and chitosan nanoparticles for the control of fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse. Int J Biol Macromol 93:1261–1272PubMedCrossRefPubMedCentralGoogle Scholar
  82. Kiang T, Wen J, Lim HW, Leong KW (2004) The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials 25(22):5293–5301PubMedCrossRefPubMedCentralGoogle Scholar
  83. Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40:53–58PubMedPubMedCentralCrossRefGoogle Scholar
  84. Koping-Hoggard M, Mel’nikova YS, Varum KM, Lindman B, Artursson B (2003) Relationship between the physical shape and the efficiency of oligomeric chitosan as a gene delivery system in vitro and in vivo. J Gene Med 5:30–141CrossRefGoogle Scholar
  85. Kowalski B, Terry FJ, Herrera L, Peñalver DA (2006) Application of soluble chitosan in vitro and in the greenhouse to increase yield and seed quality of potato minitubers. Potato Res 49:167–176CrossRefGoogle Scholar
  86. Kulikov SN, Chirkov SN, Il’ina AV, Lopatin SA, Varlamov VP (2006) Effect of the molecular weight of chitosan on its antiviral activity in plants. Prikl Biokhim Mikrobiol 42(2):224–228PubMedGoogle Scholar
  87. Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39:26–32PubMedPubMedCentralCrossRefGoogle Scholar
  88. Lao S-B, Zhang Z-X, Xu H-H, Jiang G-B (2010) Novel amphiphilic chitosan derivatives: synthesis, characterization and micellar solubilization of rotenone. Carbohydr Polym 82:1136–1142CrossRefGoogle Scholar
  89. Lee P-W, Peng S-F, Su C-J, Mi F-L, Chen H-L, Wei M-C, Lin H-J, Sung H-W (2008) The use of biodegradable polymeric nanoparticles in combination with a low-pressure gene gun for transdermal DNA delivery. Biomaterials 29:742–751PubMedCrossRefGoogle Scholar
  90. Li SJ, Zhu TH (2013) Biochemical response and induced resistance against anthracnose (Colletotrichum camelliae) of camellia (Camellia pitardii) by chitosan oligosaccharide application. For Pathol 43:67–76. https://doi.org/10.1111/j.1439-0329.2012.00797 CrossRefGoogle Scholar
  91. Li B, Wang GL, Wu ZY, Qiu W, Tang QM, Xie GL (2009a) First report of bacterial head rot of broccoli caused by Pseudomonas fluorescens in China. Plant Dis 93:12–19Google Scholar
  92. Li B, Yu RR, Yu SH, Qiu W, Fang Y, Xie GL (2009b) First report on bacterial heart rot of garlic caused by Pseudomonas fluorescens in China. Plant Pathol J 25:91–94CrossRefGoogle Scholar
  93. Li B, Fang Y, Zhang GQ, Yu RR, Lou MM, Xie GL, Wang YL, Sun GC (2010) Molecular characterization of Burkholderia cepacia complex isolates causing bacterial fruit rot of apricot. Plant Pathol J 26:223–230CrossRefGoogle Scholar
  94. Li C, Guo T, Zhou D, Hu Y, Zhou H, Wang S, Chen J, Zhang Z (2011) A novel glutathione modified chitosan conjugate for efficient gene delivery. J Control Release 154:177–188PubMedCrossRefGoogle Scholar
  95. Liu Y, Yan L, Heiden P, Laks P (2001) Use of nanoparticles for controlled release of biocides in solid wood. J Appl Polym Sci 79:458–465CrossRefGoogle Scholar
  96. Liu H, Cai X, Wang Y, Chen J (2011) Adsorption mechanism-based screening of cyclodextrin polymers for adsorption and separation of pesticides from water. Water Res 45:3499–3511PubMedCrossRefPubMedCentralGoogle Scholar
  97. Liu H, Tian WX, Li B, Wu GX, Ibrahim M, Tao ZY, Wang YL, Xie GL, Li HY, Sun GC (2012) Antifungal effect and mechanism of chitosan against the rice sheath blight pathogen, Rhizoctonia solani. Biotechnol Lett 34:2291–2298PubMedCrossRefPubMedCentralGoogle Scholar
  98. Llorens A, Lloret E, Picouet PA, Trbojevich R, Fernandez A (2012) Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Technol 24:19–29CrossRefGoogle Scholar
  99. Lopez-Leon T, Carvalho ELS, Seijo B, OrtegaVinuesa JL, Bastos-Gonzalez D (2005) Physicochemical characterization of chitosan nanoparticles: Electrokinetic and stability behavior. Colloid Interf Sci J 283:344–351. https://doi.org/10.1016/j.jcis.2004.08.186 CrossRefGoogle Scholar
  100. Lou MM, Zhu B, Muhammad I, Li B, Xie GL, Wang YL, Li HY, Sun GC (2011) Antibacterial activity and mechanism of action of chitosan solutions against apricot fruit rot pathogen Burkholderia seminalis. Carbohydr Res 346:1294–1301. https://doi.org/10.1016/j.carres.2011.04.042 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Ma L, Li J, Yy YCM, Wang Y, Xm L, Li N (2014) Germination and physiological response of wheat (Triticum aestivum) to pre-soaking with oligochitosan. Int J Agric Biol 16:766–770Google Scholar
  102. Malerba M, Cerana R (2016) Chitosan effects on plant systems. Int J Mol Sci 17:996. https://doi.org/10.3390/ijms17070996 CrossRefPubMedCentralGoogle Scholar
  103. Malerba M, Crosti P, Cerana R (2012) Defense/stress responses activated bychitosan in sycamore cultured cells. Protoplasma 249:89–98. https://doi.org/10.1007/s00709–011–0264–7 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Manikandan A, Sathiyabama M (2016) Preparation of chitosan nanoparticles and its effect on detached rice leaves infected with Pyricularia grisea. Int J Biol Macromol 84:58–61PubMedCrossRefGoogle Scholar
  105. Mano JF (2008) Stimuli-responsive polymeric systems for biomedical applications. Adv Eng Mater 10:515–527CrossRefGoogle Scholar
  106. Mao S, Sun W, Kissel T (2010) Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev 62:12–27PubMedCrossRefPubMedCentralGoogle Scholar
  107. Martelli MR, Barros TT, de Moura MR, Mattoso LH, Assis OB (2013) Effect of chitosan nanoparticles and pectin content on mechanical properties and water vapor permeability of banana puree films. J Food Sci 78:N98–N104PubMedCrossRefPubMedCentralGoogle Scholar
  108. Martins A, Reis RL, Neves NM (2008) Electrospinning: processing technique for tissue engineering scaffolding. Int Mater Rev 53:257–274CrossRefGoogle Scholar
  109. Maruyama CR, Guilger M, Pascoli M et al (2016) Nanoparticles based on chitosan as carriers for the combined herbicides Imazapic and Imazapyr. Sci Rep 6:19768. https://doi.org/10.1038/srep19768 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Mathew T, Kuriakose S (2013) Photochemical and antimicrobial properties of silver nanoparticle-encapsulated chitosan functionalized with photoactive groups. Mater Sci Eng C 33:4409–4415CrossRefGoogle Scholar
  111. Meng XH, Yang LY, Kennedy JF, Tian SP (2010) Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydr Polym 81:70–75CrossRefGoogle Scholar
  112. Mihindukulasuriya SDF, Lim LT (2014) Nanotechnology development in food packaging: a review. Trends Food Sci Technol 40:149–167CrossRefGoogle Scholar
  113. Mohammadi A, Hashemi M, Hosseini SM (2015) Chitosan nanoparticles loaded with Cinnamomum zeylanicum essential oil enhance the shelf life of cucumber during cold storage. Postharvest Biol Technol 110:203–213CrossRefGoogle Scholar
  114. Molina EB, Mejía LZ (2016) New bioactive biomaterials based on chitosan A2 – Baños B, Silvia. In: Chitosan in the preservation of agricultural commodities. Chapter 2, pp 33–64, Academic Press, Elsevier, USAGoogle Scholar
  115. Moura D, Mano JF, Paiva MC, Alves NM (2016) Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications. Sci Technol Adv Mater 17(1):626–643Google Scholar
  116. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Sakthi Kumar D (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163CrossRefGoogle Scholar
  117. Namasivayam SKR, Aruna A, Gokila G (2014) Evaluation of silver nanoparticles-chitosan encapsulated synthetic herbicide paraquat (AgNp-CS-PQ) preparation for the controlled release and improved herbicidal activity against Eichhornia crassipes. Res J Biotechnol 9:19–27Google Scholar
  118. Nguyen VS, Dinh MH, Nguyen AD (2013) Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. Biocatal Agric Biotechnol 2:289–294Google Scholar
  119. Palerice DRG, Gatehouse JA (2008) RNAi-mediated crop protection against insects. Trends Biotechnol 26:393–309CrossRefGoogle Scholar
  120. Palma-Guerrero J, López-Jiménez JA, Pérez-Berná AJ, Huang IC, Jansson HB, Salinas J, Villalaín J, Read ND, Lopez-Llorca LV (2010) Membrane fluidity determines sensitivity of fiamentous fungi to chitosan. Mol Microbiol 75:1021–1032PubMedCrossRefGoogle Scholar
  121. Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica–silver for control of various plant diseases. Plant Pathol J 22:295–302CrossRefGoogle Scholar
  122. Park Y, Kim MH, Park SC, Cheong H, Jang MK, Nah JW, Hahm KS (2008) Investigation of the antifungal activity and mechanism of action of LMWS-chitosan. J Microbiol Biotechnol 18:1729–1734PubMedGoogle Scholar
  123. Perez-de-Luque A, Cifuentes Z, Beckstead JA, Sillero JC, Anila C, Rubio J, Ryan RO (2012) Effect of amphotericin B nanodisks on plant fungal disease. Pest Manag Sci 68:67–74PubMedCrossRefGoogle Scholar
  124. PichyaIriti M, Varoni EM (2015) Chitosan-induced antiviral activity and innate immunity in plants. Environ Sci Pollut Res 22:2935–2944CrossRefGoogle Scholar
  125. Pospieszny H, Chirkov S, Atabekov J (1991) Induction of antiviral resistance in plants by chitosan. Plant Sci 79:63–68CrossRefGoogle Scholar
  126. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart:963961. https://doi.org/10.1155/2014/963961
  127. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  128. Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Prasad R, Gupta N, Kumar M, Kumar V, Abd-Elsalam KA (2017b) Nanomaterials acts as plant defense mechanism. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology: food and environmental paradigm. Springer Pvt Ltd, Cham, pp 253–269CrossRefGoogle Scholar
  130. Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700PubMedCrossRefGoogle Scholar
  131. Qiu M, Wu C, Ren G, Liang X, Wang X, Huang X (2014) Effect of chitosan and its derivatives as antifungal and preservative agents on postharvest green asparagus. Food Chem155:105–111Google Scholar
  132. Rabea EI, Badawy MEI, Rogge TM, Stevens CV, Hofte M, Steurbaut W, Smagghe G (2005) Insecticidal and fungicidal activity of new synthesized chitosan derivatives. Pest Manag Sci 61:951–960PubMedCrossRefPubMedCentralGoogle Scholar
  133. Racovita S, Vasiliu S, Popa M, Luca C (2008) Polysaccharides based on micro-and nanoparticles obtained by ionic gelation and their applications as drug delivery systems. Rev Roum Chim 54:709–718Google Scholar
  134. Raftery R, O’Brien FJ, Cryan SA (2013) Chitosan for gene delivery and orthopedic tissue engineering applications. Molecules 18:5611–5647PubMedCrossRefGoogle Scholar
  135. Ragelle H, Vandermeulen G, Préa V (2013) Chitosan-based siRNA delivery systems. J Control Release 172:207–218PubMedCrossRefPubMedCentralGoogle Scholar
  136. Raho N, Ramirez L, Lanteri ML, Gonorazky G, Lamattina L, ten Have A, Laxalt AM (2011) Phosphatidic acid production in chitosan-elicited tomato cells, via both phospholipase D and phospholipase C/diacylglycerol kinase, requires nitric oxide. J Plant Physiol 168:534–539. https://doi.org/10.1016/j.jplph.2010.09.004 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Reddy MV, Arul J, Angers P, Couture L (1999) Chitosan treatment of wheat seeds induces resistance to Fusarium graminearun and improves seed quality. J Agric Food Chem 47:1208–1216CrossRefGoogle Scholar
  138. Reglinski T, Elmer PAG, Taylor JT, Wood PN, Hoyte SM (2010) Inhibition of Botrytis cinerea growth and suppression of botrytis bunch rot in grapes using chitosan. Plant Pathol 59:882–890CrossRefGoogle Scholar
  139. Rhim JW, Hong SI, Park HM, Ng PKW (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobialactivity. J Agric Food Chem 54:5814–5822PubMedCrossRefPubMedCentralGoogle Scholar
  140. Rhoades J, Roller S (2000) Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Appl Environ Microbiol 66:80–86PubMedPubMedCentralCrossRefGoogle Scholar
  141. Richardson JJ, Bjornmalm M, Caruso F (2015) Multilayer assembly. Technology-driven layer-by-layer assembly of nanofilms. Science (New York, NY) 348:2348–2491CrossRefGoogle Scholar
  142. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632CrossRefGoogle Scholar
  143. Rubina RS, Vasil’kov AY, Naumkin AV, Shtykova EV, Abramchuk SS, Alghuthaymi MA, Abd–Elsalam KA (2017) Synthesis and characterization of chitosan–copper nanocomposites and their fungicidal activity against two sclerotia–forming plant pathogenic fungi. J Nanostruct Chem. https://doi.org/10.1007/s40097–017–0235–4
  144. Sabbour MM (2016) Observations of the effect of Nano chitosan against the locust Schistocerca gregaria (Orthoptera: Acrididae). J Nanosci Nanoengin 2:28–33Google Scholar
  145. Sahab AF, Waly AI, Sabbour MM, Lubna SN (2015) Synthesis, antifungal and insecticidal potential of chitosan (CS)-g-poly (acrylic acid) (PAA) nanoparticles against some seed borne fungi and insects of soybean. Int J ChemTech Res 8(2):589–598Google Scholar
  146. Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683PubMedCrossRefPubMedCentralGoogle Scholar
  147. Saharan V, Khatik R, Choudhary MK, Mehrotra A, Jakhar S, Raliya R, Nallamuthu I, Pal A (2014) Nano-materials for plant protection with special reference to Nano chitosan. In: Proceedings of 4th annual international conference on advances in biotechnology. GSTF, Dubai, pp 23–25Google Scholar
  148. Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma SS, Pal A, Biswas P (2015) Synthesis and in vitro antifungal efficacy of cu–chitosan nanoparticles against pathogenic fungi of tomato. Int J Biol Macromol 75:346–353PubMedCrossRefGoogle Scholar
  149. Saharan V, Kumaraswamy RV, Choudhary RC, Kumari S, Pal A, Raliya R, Biswas P (2016) Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. J Agric Food Chem 64(31):6148–6155PubMedCrossRefPubMedCentralGoogle Scholar
  150. Saifuddin N, Nian CY, Zhan LW, Ning KX (2011) Chitosan-silver nanoparticles composite as point of-use drinking water filtration system for household to remove pesticides in water. Asian J Biochem 6:142–159CrossRefGoogle Scholar
  151. Sailaja AK, Amareshwar P, Chakravarty P (2013) Chitosan nanoparticles as a drug delivery system. Res J Pharm Biol Chem Sci 1(3):474–484Google Scholar
  152. Salaberria AM, Diaz RH, Andrés MA, Fernandes SCM, Labidi J (2017) The antifungal activity of functionalized chitin nanocrystals in poly (Lactid acid) films. Anzai J, ed. Materials 10(5):546PubMedCentralCrossRefGoogle Scholar
  153. Sánchez EA, Tiznado HME, Ojeda CAJ, Valenzuela-Quintanar AI, Troncoso-Rojas R (2009) Induction of enzymes and phenolic compounds related to the natural defence response of netted melon fruit by a bio-elicitor. J Phytopathol 157:24–32CrossRefGoogle Scholar
  154. Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. pp 73–97, Springer Nature, Singapore Pte Ltd.Google Scholar
  155. Sanuja S, Agalya A, Umapathy MJ (2015) Synthesis and characterization of zinc oxide–neem oil–chitosan bionanocomposite for food packaging application. Int J Biol Macromol 74:76–84PubMedCrossRefPubMedCentralGoogle Scholar
  156. Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013). Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683Google Scholar
  157. Sarmento B, Neves J (2012) Chitosan-based systems for biopharmaceuticals: deliver, targeting and polymer therapeutics. John Wiley & Sons, Ltd.Google Scholar
  158. Shantha Siri JG, Fernando CAN, De Silva N (2017) Eco-friendly chitosan nanoparticles cross linked with genipin: basis to develop control release nanofertilizer. J SciTech Res 7:26–31Google Scholar
  159. Sharon M, Choudhary A, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2:83–92Google Scholar
  160. Sharp RG (2013) A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy 3:757–793CrossRefGoogle Scholar
  161. Shi LE, Fang XJ, Xing LY, Chen M, Zhu DS et al (2011) Chitosan nanoparticles as drug delivery carriers for biomedical engineering. J Chem So Pak 33:929–934Google Scholar
  162. Shikata F, Tokumitsu H, Ichikawa H, Fukumori Y (2002) In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer. Eur J Pharm Biopharm 53:57–63 PMID: 11777753PubMedCrossRefPubMedCentralGoogle Scholar
  163. Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58PubMedCrossRefPubMedCentralGoogle Scholar
  164. Siddaiah CN, Prasanth KVH, Satyanarayana NR, Mudili V, Gupta VK, Kalagatur NK, Satyavati T, Dai XF, Chen JY, Mocan A, Singh BP, Srivastava RK (2018) Chitosan nanoparticles having higher degree of acetylation induce resistance against pearl millet downy mildew through nitric oxide generation. Sci Rep 8(1):2485. https://doi.org/10.1038/s41598-017-19016-z CrossRefPubMedPubMedCentralGoogle Scholar
  165. Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015) Role of nanoparticles in plants. Nanotech Plant Sci:19–35. https://doi.org/10.1007/978-3-319-14502-0-2
  166. Silva MS, Cocenza DS, Grillo R, de Melo NFS, Tonello POS, deOliveira LC, Cassimiro DL, Rosa AH, Fraceto LF (2011) Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies. J Hazard Mater 190:366–374CrossRefGoogle Scholar
  167. Sivamani E, DeLong RK, Qu R (2009) Protamine-mediated DNA coating remarkably improves bombardment transformation efficiency in plant cells. Plant Cell Rep 28:213–221PubMedCrossRefPubMedCentralGoogle Scholar
  168. Sotelo-Boyás ME, Bautista-Baños S, Correa-Pacheco ZN, Jiménez-Aparicio A, Sivakumar D (2016) Biological activity of chitosan nanoparticles against pathogenic fungi and bacteria. Chapter 13. In: Bautista-Banos S, Romanazzi G, Jiménez-Aparicio A (eds) Chitosan in the preservation of agricultural commodities, pp 339–349,  Academic Press, Elsevier, USAGoogle Scholar
  169. Sun B, Zhang L, Yang L, Zhang F, Norse D, Zhu Z (2012) Agricultural non-point source pollution in China: causes and mitigation measures. Ambio 41:370–337PubMedPubMedCentralCrossRefGoogle Scholar
  170. Swati, Choudhary MK, Joshi A, Saharan V (2017) Assessment of cu-chitosan nanoparticles for its antibacterial activity against Pseudomonas syringae pv. glycinea. Int J Curr Microbiol App Sci 6(11):1335–1350CrossRefGoogle Scholar
  171. Tan H, Ma R, Lin C, Liu Z, Tang T (2013) Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int J Mol Sci 14:1854–1869PubMedPubMedCentralCrossRefGoogle Scholar
  172. Tao S, Pang R, Chen C et al (2012) Synthesis, characterization and slow release properties of O-naphthylacetyl chitosan. Carbohydr Polym 88:1189–1194CrossRefGoogle Scholar
  173. Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnolgy 17:R89–R106CrossRefGoogle Scholar
  174. Tiyaboonchai W (2003) Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ J 11:51–66Google Scholar
  175. Vander P, Vaêrum KM, Domard A, El Gueddari NE, Moerschbacher BM (1998) Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves. Plant Physiol 118:1353–1359PubMedPubMedCentralCrossRefGoogle Scholar
  176. Vasyukova NI, Zinovèva SV, Ilìnskaya LI, Perekhod EA, Chalenko GI, Gerasimova NG, Il’ina AV, Varlamov VP, Ozeretskovskaya OL (2001) Modulation of plant resistance to diseases by water-soluble chitosan. App Biochem Microbiol 37:103–109CrossRefGoogle Scholar
  177. Wang X, El Hadrami A, Adam LR, Daayf F (2008) Differential activation and suppression of potato defence responses by Phytophthora infestans isolates representing US-1 and US-8 genotypes. Plant Pathol 57:1026–1037CrossRefGoogle Scholar
  178. Wang Q, Chen JN, Zhan P, Zhang L, Kong QQ (2013) Establishment of a suspension cell system for transformation of Jatropha curcas using nanoparticles. Adv Mater Res 608–609:314–319CrossRefGoogle Scholar
  179. Wang P, Lombi E, Zhao FJ, Kopittke PM (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21:699–712PubMedCrossRefPubMedCentralGoogle Scholar
  180. Wani IA, Ahmad T (2013) Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida. Colloids Surf B101:162–170CrossRefGoogle Scholar
  181. Wazed AS, Joshi M, Rajendran S (2011) Novel, selfassembled antimicrobial textile coating containing chitosan nanoparticles. AATCC Rev 11:49–55Google Scholar
  182. Wen Y, Yuan Y, Chen H et al (2010) Effect of chitosan on the enantioselective bioavailability of the herbicide dichlorprop to Chlorella pyrenoidosa. Environ Sci Technol 44:4981–4949PubMedCrossRefPubMedCentralGoogle Scholar
  183. Wen Y, Chen H, Yuan Y et al (2011) Enantioselective ecotoxicity of the herbicide dichlorprop and complexes formed with chitosan in two fresh water green algae. J Environ Monitor JEM 13:879–88587CrossRefGoogle Scholar
  184. Wong MH, Misra RP, Giraldo JP, Kwak SY, Son Y, Landry MP, Swan JW, Blankschtein D, Strano MS (2016) Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett 16:1161–1172PubMedCrossRefPubMedCentralGoogle Scholar
  185. Wu L, Liu M (2008) Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water retention. Carbohydr Polym 72:240–247CrossRefGoogle Scholar
  186. Wu L, Liu M, Liang R (2008) Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention. Bioresour Technol 99:547–554PubMedCrossRefPubMedCentralGoogle Scholar
  187. Xing K, Zhu X, Peng X, Qin S (2014) Chitosan antimicrobial and eliciting properties for pest control in agricultural: a review. Agron Sustain Dev 35(2):569–588CrossRefGoogle Scholar
  188. Xing K, Zhu X, Peng X, Qin S (2015) Chitosan antimicrobial and eliciting prop erties for pest control in agriculture: a review. Agronomy for sustainable development. Springer Verlag/EDP Sci/INRA 35(2):569–588Google Scholar
  189. Xing K, Shen X, Zhu X, Ju X, Miao X, Tian J, Feng Z, Peng X, Jiang J, Qin S (2016) Synthesis and in vitro antifungal efficacy of oleoyl-chitosan nanoparticles against plant pathogenic fungi. Int J Biol Macromol 82:830–836PubMedCrossRefPubMedCentralGoogle Scholar
  190. Xu L, Cao LD, Li FM, Wang XJ, Huang QLJ (2014) Utilization of chitosan-lactide copolymer nanoparticles as controlled release pesticide carrier for pyraclostrobin against Colletotrichum gossypii Southw. Dispers Sci Technol 35:544–550CrossRefGoogle Scholar
  191. Yu-qin F, Lu-hua L, Pi-wu W, Jing Q, Yong-ping F, Hui W, Jing-ran S, Chang-li L (2012) Delivering DNA into plant cell by gene carriers of ZnS nanoparticles. Chem Res Chin Univ 28(4):672–676Google Scholar
  192. Zahid N, Alderson P, Ali A, Maqbool M, Manickam S (2013) In vitro control of Colletotrichum gloeosporioides by using chitosan loaded nanoemulsions. Acta Hortic 1012:769–774CrossRefGoogle Scholar
  193. Zeng D, Luo X, Tu R (2012) Application of bioactive coatings based on chitosan for soybean seed protection. Int J Carbohydr Chem 1:1–5CrossRefGoogle Scholar
  194. Zhang X, Zhang J, Zhu KY (2010) Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol Biol 19(5):683–693PubMedCrossRefGoogle Scholar
  195. Zhao X, She X, Du Y, Liang X (2007) Induction of antiviral resistance and stimulary effect by oligochitosan in tobacco. Pestic Biochem Phys 87:78–84CrossRefGoogle Scholar
  196. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–91PubMedCrossRefGoogle Scholar
  197. Zheng YY, Monty J, Linhardt RJ (2015) Polysaccharide-based nanocomposites and their applications. Carbohydr Res 405:23–32PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Fahad A. Al-Dhabaan
    • 1
  • Manal Mostafa
    • 2
    • 3
    • 4
  • Hassan Almoammar
    • 5
  • Kamel A. Abd-Elsalam
    • 4
  1. 1.Department of Biology, Science and Humanities CollegeShaqra UniversityAlquwayiyahSaudi Arabia
  2. 2.CIHEAM IAMB – Mediterranean Agronomic Institute of BariValenzanoItaly
  3. 3.Microbiology Department, Faculty of AgricultureCairo UniversityGizaEgypt
  4. 4.Plant Pathology Research Institute, Agricultural Research Center (ARC)GizaEgypt
  5. 5.National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST)RiyadhSaudi Arabia

Personalised recommendations