Advertisement

Sustainable Nanotechnology: Mycotoxin Detection and Protection

  • Velaphi C. Thipe
  • Marshall Keyster
  • Kattesh V. Katti
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Advances in nanotechnology have demonstrated vast applications due to the properties of nanomaterials. One of the applications that have emerged is the utilization of nanotechnology in agriculture with the emphasis on precision agricultural practices. That is, using nanoformulations to maximize crop production while minimizing the use of pesticides and herbicides. The high surface-to-volume ratio of nanoparticles provides an improved matrix for the immobilization of desired biomolecules for signal amplification in biosensors for the detection of mycotoxins. Metallic and magnetic nanoparticles are widely used in the fabrication of nanosensors for mycotoxin detection. These nanoparticles are used in nanocomposite material for the production of nanopackaging to increase shelf life of agricultural produce. Green nanotechnology formulations of using phytochemicals from plant material to produce nanofungicides are feasible in the agriculture due to no toxic effect towards human and animal health. The present chapter provides recent work carried out in the field of nanotechnology for detection of mycotoxins and highlights some of the commercial nanoformulations used in agriculture.

Keywords

Nanoformulation Nanofungicide Mycotoxins Aflatoxins Ochratoxins Fumonisins Trichothecenes Zearalenone 

Reference

  1. Abd-Elsalam KA, Hashim AF, Alghuthaymi MA, Said-Galiev E (2017) Nanobiotechnological strategies for toxigenic fungi and mycotoxin control. In: Grumezescu AM (ed) Nanotechnology in the Agri-food industry, pp 337–364. https://doi.org/10.1016/B978-0-12-804303-5.00010-9 CrossRefGoogle Scholar
  2. Adhikari T, Kundu S, Rao AS (2016) Zinc delivery to plants through seed coating with nano - zinc oxide particles. J Plant Nutr 39:136–146CrossRefGoogle Scholar
  3. Actis P, Jejelowo O, Pourmand N (2010) Ultrasensitive mycotoxin detection by STING sensors. Biosensors and Bioelectronics 26(2):333–337.Google Scholar
  4. Akunyili D, Ivbijaro MFA (2006) Pesticide regulations and their implementation in Nigeria. In: MFA I, Akintola F, Okechukwu RU (eds) Sustainable environmental Management in Nigeria. Mattivi Production, Ibadan, pp 187–210Google Scholar
  5. Anfossi L, Giovannoli C, Baggiani C (2016) Mycotoxin detection. Curr Opin Biotechnol 37:120–126CrossRefPubMedGoogle Scholar
  6. AOAC International (ed) (2005) Official methods of analysis of AOAC international, 18th edn. AOAC International, GaithersburgGoogle Scholar
  7. Appell M, Jackson MA (2012) Sorption of ochratoxin a from aqueous solutions using β- Cyclodextrin-polyurethane polymer. Toxins (Basel) 4(2):98–109CrossRefGoogle Scholar
  8. Askary M, Amirjani MR, Saberi T (2016) Comparison of the effects of nano-iron fertilizer with iron chelate on growth parameters and some biochemical properties of Catharanthus roseus. J Plant Nutr 40(7):974–982CrossRefGoogle Scholar
  9. Banasiuk R, Krychowiak M, Swigon D, Tomaszewicz W, Michalak A, Chylewska A, Ziabka M, Lapinski M, Koscielska B, Narajczyk M, Krolicka A (2017) Carnivorous plants used for green synthesis of silver nanoparticles with broad-spectrum antimicrobial activity. Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.11.013
  10. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal Nanobiotechnology. Springer International Publishing, Switzerland, pp 307–319CrossRefGoogle Scholar
  11. Bosco F, Mollea C (2012) In: Valdez B (ed) Mycotoxins in food, food industrial processes - methods and equipment ISBN: 978-953-307-905-9, InTech, Available from: https://www.intechopen.com/books/food-industrial-processes-methods-and-equipment/mycotoxins-in-food Google Scholar
  12. Boulanouar SS, Mezzache A, Combes A, Pichon V (2018) Molecularly imprinted polymers for the determination of organophosphorus pesticides in complex samples. Talanta 176:465–478CrossRefPubMedGoogle Scholar
  13. Brandelli A, Lopes NA, Boelter JF (2017) Food applications of nanostructured antimicrobials. In: Grumezescu AM (ed) Nanotechnology in the Agri-food industry, pp 35–74. https://doi.org/10.1016/B978-0-12-804303-5.00002-X CrossRefGoogle Scholar
  14. Bugno A, Almodovar AAB, Pereira TC (2006) Occurrence of toxigenic fungi in herbal drugs. Braz J Microbiol 37:1–7CrossRefGoogle Scholar
  15. Capriotti AL, Cavaliere C, Foglia P, Samperi R, Stampachiacchiere S, Ventura S, Lagana A (2014) Multiclass analysis of mycotoxins in biscuits by high performance liquid chromatography-tandem mass spectrometry. Comparison of different extraction procedures. J Chromatogr A 1343:69–78CrossRefPubMedGoogle Scholar
  16. Cauerhff A, Martinez Y, Islan GA, Castro GR (2014) Nanostability. In: Durán N, Guterres SS, Alves OL (eds) Nanotoxycology: materials, methodologies, and assessments. Springer Science + Business Media, New York, pp 57–95CrossRefGoogle Scholar
  17. Chatterjee AK, Sarkar RK, Chattopadhyay AP, Aich P, Chakraborty R, Basu T (2012) A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology 23:085103CrossRefPubMedGoogle Scholar
  18. Cruz-Aguado JA, Penner G (2008) Fluorescence polarization based displacement assay for the determination of small molecules with aptamers. Anal Chem 80(22):8853–8855CrossRefPubMedGoogle Scholar
  19. De Costa C (2002) St Anthony’s fire and living ligatures: a short history of ergometrine. Lancet 359(9319):1768–1770CrossRefPubMedGoogle Scholar
  20. De Smet D, Dubruel P, Van Peteghem C, Schacht E, De Saeger S (2009) Molecularly imprinted solid-phase extraction of fumonisin B analogues in bell pepper, rice and corn flakes. Foof Addit Contam Part A 26(6):874–884CrossRefGoogle Scholar
  21. Deng X, Nikiforov AY, Leys C (2017) Antimicrobial nanocomposites for food packaging. In: Grumezescu AM (ed) Nanotechnology in the Agri-food industry. Elsevier, San Diego, pp 1–30Google Scholar
  22. Deshpande P, Dapkekar A, Oak MD, Paknikar KM, Rajwade JM (2017) Zinc complexed chitosan/tpp nanoparticles: a promising micronutrient nanocarrier suited for foliar application. Carbohydr Polym 165:394–401CrossRefPubMedGoogle Scholar
  23. Dimkpa CO, Bindraban PS, Fugice J, Agyin-Birikorang S, Singh U, Hellums D (2017) Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agron Sustain Dev 37(1):5CrossRefGoogle Scholar
  24. Direito GM, Almeida AP, Aquino S, Alves dos Reis T, Pozzi CR, Correa B (2008) Evaluation of sphingolipids in wistar rats treated to prolonged and single oral doses of fumonisin B1. Int J Mol Sci 10:50–61CrossRefPubMedPubMedCentralGoogle Scholar
  25. Dokka S, Toledo D, Shi X, Castranova V, Rojanasakul Y (2000) Oxygen radical- mediated pulmonary toxicity induced by some cationic liposomes. Pharm Res 17:521–525CrossRefPubMedGoogle Scholar
  26. Duhan JS Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23CrossRefGoogle Scholar
  27. Eadie MJ (2004) Ergot of rye - the first specific for migraine. J Clin Neurosci 11(1):4–7CrossRefPubMedGoogle Scholar
  28. El-Shemy HA, Aboul-Enein AM, Aboul-Enein KM, Fujita K (2007) Willow leaves’ extracts contain anti-tumor agents effective against three cell types. PLoS One 2:e178CrossRefPubMedPubMedCentralGoogle Scholar
  29. FAO IFAD UNICEF, WFP & WHO (2017) Fao The State of Food Security and Nutrition in the World. http://www.fao.org/state-of-food-security-nutrition/en/. Accessed February 2017
  30. Farhoodi M (2015) Nanocomposite materials for food packaging applications: charactization and safety evaluation. Food Eng Rev 8(1):35–51CrossRefGoogle Scholar
  31. Fortunati E, Puglia D, Armentano I, Valdés A, Ramos M, Juárez N, Garrigós M, Kenny JM (2017) Multifunctional antimicrobial nanocomposites for food packaging applications. In: Grumezescu AM (ed) Nanotechnology in the Agri-food industry, pp 265–303. https://doi.org/10.1016/B978-0-12-804303-5.00008-0 CrossRefGoogle Scholar
  32. Frost and Sullivan (2017a) Advances of Nanotechnology in F&B Packaging. TechVision Opportunity Engines. https://cds.frost.com/p/50959/#!/ppt/c?id=D787-00-5C-00-00&hq=Nanolok. Accessed February 2017
  33. Frost and Sullivan (2017b) Advances in nanotechnology for coatings, additives, healthcare, and materials. TechVision Opportunity Engines. https://cds.fro st.com/p/50959/#!/ppt/c?id=D787–00–54-00-00&hq=nanotechnology%20in%20agriculture. Accessed February 2017
  34. Gholami-Shabani M, Gholami-Shabani Z, Shams-Ghahfarokhi M, Jamzivar F, Razzaghi-Abyaneh M (2017) Green nanotechnology: biomimetic synthesis of metal nanoparticles using plants and their application in agriculture and forestry. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer, SingaporeGoogle Scholar
  35. Godfray H, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818CrossRefGoogle Scholar
  36. Hasan MM, Chowdhury SP, Alam S, Hossain B, Alam MS (2005) Antifungal effects of plant extracts on seed-borne fungi of wheat seed regarding seed germination, seedling health and vigour index. Pak J Biol Sci 8:1284–1289CrossRefGoogle Scholar
  37. Hassan AA, Howayda M, El-Shafei A, Mahmoud HH (2013) Effect of zinc oxide nanoparticles on the growth of some mycotoxigenic moulds. J Stud Chem Process Technol (SCPT) ASSE 1:16–25Google Scholar
  38. Heussner AH, Bingle LEH (2015) Comparative ochratoxin toxicity: a review of the available data. Toxins (Basel) 7(10):4253–4282CrossRefGoogle Scholar
  39. Hosseini SJ, Jamal S, Esmaeeli S, Ansari B (2011) Challenges in commercialization of nano and biotechnologies in agricultural sector of Iran. Afr J Biotechnol 10(34):6516–6521Google Scholar
  40. Hussain T (2017) Nanotechnology: diagnosis of plant diseases. ARTOAJ 10(1):1–2CrossRefGoogle Scholar
  41. Islam NU, Jalil K, Shahid M, Rauf A, Muhammad N, Khan A, Shah MR, Khan MA (2015) Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arab J Chem. https://doi.org/10.1016/j.arabjc.2015.06.025
  42. Jeyasubramanian K, Thoppey UUG, Hikku GS, Selvakumar N, Subramania A, Krishnamoorthy K (2016) Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles. RSC Adv 6(19):15451–15459CrossRefGoogle Scholar
  43. Juglal S, Govinden R, Odhav B (2002) Spice oils for the control of co-occurring mycotoxin producing fungi. J Food Prot 65:683–687CrossRefPubMedGoogle Scholar
  44. Katti K, Chanda N, Shukla R, Zambre A, Suibramanian T, Kulkarni RR, Kannan R, Katti KV (2009) Green nanotechnology from cumin phytochemicals: generation of biocompatible gold nanoparticles. Int J Green Nanotechnol Biomed 1(1):B39–B52CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kaushik A, Solanki PR, Ansari AA, Ahmad S, Malhotra BD (2009) A nanostructured cerium oxide film-based immunosensor for mycotoxin detection. Nanotechnology 20(5)Google Scholar
  46. Kaushik A, Arya SK, Vasudev A, Bhansali S (2013) Recent advances in detection of ochratoxin-A. OJAB 2:1): 1–1):11Google Scholar
  47. Khan R, Dhayal M (2008) Nanocrystalline bioactive TiO2-chitosan impedimetric immunosensor for ochratoxin-A. Electrochem Commun 10(3):492–495CrossRefGoogle Scholar
  48. Kim B, Kim D, Cho D, Cho S (2003) Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere 52:277–281CrossRefPubMedGoogle Scholar
  49. Kumar PS, Sudha S (2013) Biosynthesis of silver nanoparticles from Dictyota Bartayresiana extract and their antifungal activity. Nano Biomed Eng 5(2):72–75Google Scholar
  50. Kumar GD, Natarajan N, Nakkeeran S (2016) Antifungal activity of nanofungicide Trifloxystrobin 25%+ Tebuconazole 50% against Macrophomina phaseolina. Afr J Microbiol Res 10(4):100–105CrossRefGoogle Scholar
  51. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – an updated report. Saudi Pharm J 24(4):473–484CrossRefPubMedGoogle Scholar
  52. Lamberti I, Mosiello L, Cenciarelli C, Antoccia A, Tanzarella C (2010) A novel based protein microarray for the simultaneous analysis of activated caspases. In: Malcovati P, Baschirotto A, d'Amico A, Natale C (eds) Sensors and microsystems. Lecture notes in electrical engineering, vol 54. Springer, DordrechtGoogle Scholar
  53. Llana-Ruiz-Cabello M, Pichardo S, Maisanaba S, Puerto M, Prieto AI, Gutiérrez-Praena D, Jos A, Cameán AM (2015) In vitro toxicological evaluation of essential oils and their main compounds used in active food packaging: a review. Food Chem Toxicol 81:9–27CrossRefPubMedGoogle Scholar
  54. Llorens A, Lloret E, Picouet PA, Trbojevich R, Fernandez A (2012) Metallic- based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Technol 24:19–29CrossRefGoogle Scholar
  55. Logrieco A, Arrigan DW, Brengel-Pesce K, Siciliano P, Tothill I (2005) DNA arrays, electronic noses and tongues, biosensors and receptors for rapid detection of toxigenic fungi and mycotoxins: a review. Food Addit Contam 22(4):335–344CrossRefPubMedGoogle Scholar
  56. Lv X, Li Y, Yan T, Pang X, Cao W, Du B, Wu D, Wei Q (2015) Electrochemiluminescence modified electrodes based on RuSi@Ru(bpy)32+ loaded with gold functioned nanoporous CO/Co3O4 for detection of mycotoxin deoxynivalenol. Biosens Bioelectron 70:28–33CrossRefPubMedGoogle Scholar
  57. Mak AC, Osterfeld SJ, Yu H, Wang SX, Davis RW, Jejelowo OA, Pourmand N (2010) Magnetic nanotag-based immunoassay for multiplex mycotoxin and protein detection. Department of Materials Science and Engineering. Stanford University 3:27–30Google Scholar
  58. Mallikarjuna K, Sushma NJ, Narasimha G, Manoj L, Rajue DP (2014) Phytochemical fabrication and characterization of silver nanoparticles by using pepper leaf broth. Arab J Chem 7(6):1099–1103CrossRefGoogle Scholar
  59. Man Y, Liang G, Li A, Pan L (2017) Recent advances in mycotoxin determination for food monitoring via microchip. Toxins (Basel) 9(10):324CrossRefGoogle Scholar
  60. Mejri-Omrani N, Miodek A, Zribi B, Marrakchi M, Hamdi M, Marty JL, Korri-Youssoufi H (2016) Direct detection of OTA by impedimetric aptasensor based on modified polypyrrole-dendrimers. Analytica Chimica Acta 920:37–46Google Scholar
  61. Milicevic DR, Skrinjar M, Baltic T (2010) Real and perceived risks for mycotoxin contamination in foods and feeds: challenges for food safety control. Toxins (Basel) 2(4):572–592CrossRefGoogle Scholar
  62. Mondal P, Kumar R, Gogoi R (2017) Azomethine based nano-chemicals: development, in vitro and in vivo fungicidal evaluation against Sclerotium rolfsii, Rhizoctonia bataticola and Rhizoctonia solani. Bioorg Chem 70:153–162CrossRefPubMedGoogle Scholar
  63. Mondali NK, Mojumdar A, Chatterje SK, Banerjee A, Datta JK, Gupta S (2009) Antifungal activities and chemical characterization of Neem leaf extracts on the growth of some selected fungal species in vitro culture medium. J Appl Sci Environ Manage 13(1):49–53Google Scholar
  64. Montesano FF, Parente A, Santamaria P, Sannino A, Serio F (2015) Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth. Agric Agric Sci Procedia 4:451–458CrossRefGoogle Scholar
  65. Mosiello L, Lamberti I (2009, 60) Biosensors for aflatoxins detection. IntechopenCom:147 http://www.intechopen.com/source/pdfs/22037/InTech-Biosensors_for_aflatoxins_detection.pdf. Accessed February 2017
  66. Muñoz K, Blaszkewicz M, Degen GH (2010) Simultaneous analysis of ochratoxin a and its major metabolite ochratoxin alpha in plasma and urine for an advanced biomonitoring of the mycotoxin. J Chromatogr B Anal Technol Biomed Life Sci 878(27):2623–2629CrossRefGoogle Scholar
  67. Nabawy GA, Hassan AA, El-Ahl HS, Refai MK (2014) Effect of metal nanoparticles in comparison with commercial antifungal feed additives on the growth of Aspergillus flavus and aflatoxin b1 production. J Global Biosci 3:954–971Google Scholar
  68. Nune SK, Chanda N, Shukla R, Katti K, Kulkarni RR, Thilakavathi S, Mekapothula S, Kannan R, Katti KV (2009) Green nanotechnology from tea: phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. J Mater Chem 19(19):2912–2920CrossRefPubMedPubMedCentralGoogle Scholar
  69. OMAF (2004) Pesticide storage, handling and application. Ontario Ministry of Agriculture, Food and Rural Affairs, CaliforniaGoogle Scholar
  70. Othman SH, Abd Salam NR, Zainal N, Kadir Basha R, Talib RA (2014) Antimicrobial activity TiO2 nanoparticle-coated film for potential food packaging applications. Int J Photoenergy:1–6Google Scholar
  71. Owino JHO, Arotiba OA, Hendricks N, Songa EA, Jahed N, Waryo TT, Ngece RF, Baker P, Iwuoha EI (2008) Electrochemical immunosensor based on polythionine/gold nanoparticles for the determination of aflatoxin B1. Sensors (Basel):8262–8274Google Scholar
  72. Park J, Choi S, Moon H, Seo H, Kim J, Hong S, Lee B, Kang E, Lee J, Ryu D, Cho IS (2017) Antimicrobial spray nanocoating of supramolecular Fe(III)-tannic acid metal-organic coordination complex: applications to shoe insoles and fruits. Sci Rep 7:6980CrossRefPubMedPubMedCentralGoogle Scholar
  73. Peralta-Videa JR, Hernandez-Viezcas JA, Zhao L, Diaz BC, Ge Y, Priester JH, Holden PA, Gardea-Torresdey JL (2014) Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiol Biochem 80:128–135CrossRefPubMedGoogle Scholar
  74. Perricone M, Arace E, Corbo MR, Sinigaglia M, Bevilacqua A (2015) Bioactivity of essential oils: a review on their interaction with food components. Front Microbiol 6Google Scholar
  75. Peters R, Brandhoff P, Weigel S, Marvin H, Bouwmeester H, Aschberger K, Rauscher H, Amenta V, Arena M, Moniz FB, Gottardo S, Mech A (2014) Inventory of nanotechnology applications in the agricultural, feed and food sector. EFSA Supporting Publications 11(7)Google Scholar
  76. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles:963961. https://doi.org/10.1155/2014/963961
  77. Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer. In: International publishing Switzerland (ISBN: 978–3–319-42989-2)Google Scholar
  78. Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer Nature Singapore Pte Ltd. (ISBN 978-3-319-68423-9Google Scholar
  79. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  80. Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8(JUN):1–13Google Scholar
  81. Prasad R, Gupta N, Kumar M, Kumar V, Wang S, Abd-Elsalam KA (2017b) Nanomaterials act as plant defense mechanism. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology. Springer, Singapore, pp 253–269CrossRefGoogle Scholar
  82. Purohit R, Mittal A, Dalela S, Warudkar V, Purohit K, Purohit S (2017) Social, environmental and ethical impacts of nanotechnology. Mater Today (4, 4):5461–5467Google Scholar
  83. Putzbach W, Ronkainen NJ (2013) Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review. Sensors (Basel) 13(4):4811–4840CrossRefGoogle Scholar
  84. Radoi A, Targa M, Marty J (2008) Enzyme-linked immunosorbent assay (ELISA) based on superparamagnetic nanoparticles for aflatoxin M1 detection. Talanta 77:138–143CrossRefPubMedGoogle Scholar
  85. Reddy CS, Reddy KRN, Prameela M, Mangala UN, Muralidharan K (2007) Identification of antifungal component in clove that inhibits Aspergillus spp. colonizing rice grains. J Mycol Plant Pathol 37(1):87–94Google Scholar
  86. Rhouati A, Bulbul G, Latif U, Hayat A, Li ZH, Marty JL (2017) Nano-aptasensing in mycotoxin analysis: recent updates and progress. Toxins (Basel) 9(11):1–23CrossRefGoogle Scholar
  87. Ringot D, Chango A, Schneider YJ, Larondelle Y (2006) Toxicokinetics and toxicodynamics of ochratoxin A, an update. Chem Biol Interact 159(1):18–46CrossRefPubMedGoogle Scholar
  88. Roberts SL (1995) Mycotoxin list. Boletim Científico (46):1–13Google Scholar
  89. Sang-Ho C, Jin-Kyu L, Hak-Sung J, Sung-Hee K, Hyun-Jung K, Cheong-Up C, Hwan-Goo K (2010) Novel mycotoxin collection system using magnetic nanoparticles for determination of aflatoxin B1 and zearalenone in feed. J Vet Sci 3:569–571Google Scholar
  90. Sarkar PK, Prajapati PK, Shukla VJ, Ravishankar B, Choudhary AK (2009) Toxicity and recovery studies of two ayurvedic preparations of iron. Indian J Ecp Biol 47(12):987–992Google Scholar
  91. Selvaraj JN, Lu Z, Yan W, Yue-ju Z, Fu-guo X, Xiao-feng D, Yang L (2015) Mycotoxin detection-recent trends at global level. J Integr Agric 14(11):2265–2281CrossRefGoogle Scholar
  92. Sertova NM (2015) Application of nanotechnology in detection of mycotoxins and in agricultural sector. JCEA 16(2):117–130CrossRefGoogle Scholar
  93. Sharma A, Kumar A, Khan R (2018) A highly sensitive amperometric immunosensor probe based on gold nanoparticle functionalized poly (3, 4-ethylenedioxythiophene) doped with graphene oxide for efficient detection of aflatoxin B1. Synth Met 235:136–144CrossRefGoogle Scholar
  94. Shawkey AM, Abdulall AK, Rabeh MA, Abdellatif AO (2014) Enhanced biocidal activities of Citrullus colocynthis aqueous extracts by green nanotechnology. Int J Appl Res Nat Prod 7(2):1–10Google Scholar
  95. Shukla R, Nune SK, Chanda N, Katti K, Mekapothula S, Kulkarni RR, Welshons WV, Kannan R, Katti KV (2008) Soybeans as a phytochemical reservoir for the production and stabilization of biocompatible gold nanoparticles. Small (9):1425–1436Google Scholar
  96. Silva IM, Boelter JF, Silveira NP, Brandelli A (2014) Phosphatidylcholine nanovesicles coated with chitosan or chondroitin sulfate as novel devices for bacteriocin delivery. J Nanopart Res 16:2479CrossRefGoogle Scholar
  97. Singh T, Shukla S, Kumar P, Wahla V, Bajpai VK (2017) Application of nanotechnology in food science: perception and overview. Front Microbiol 8(AUG):1–7Google Scholar
  98. Soleimanpour MR, Hosseini SJF, Mirdamadi SM (2012) Exploring the mocel of nanotechnology dewvelopment in agriculture sector of Iran. ARPN J Agric Biol Sci 7(12):1002–1006Google Scholar
  99. Tang F, Li L, Chen D (2012) Mesoporus silica nanoparticles: synthesis, biocompatibility, and drug delivery. Adv Mater 24:1504–1534CrossRefPubMedGoogle Scholar
  100. Tang X, Li X, Li P, Zhang Q, Li R, Zhang W, Ding X, Lei J, Zhang Z (2014) Development and application of an immunoaffinity column enzyme immunoassay for mycotoxin zearalenone in complicated samples. PLoS One 9(1):1–7Google Scholar
  101. Tothill IE (2010) Peptides as molecular receptors. In: Zourob M (ed) Recognition receptors in biosensors. Springer New York, pp 249–274 ISBN: 978-1-4419- 0918-3Google Scholar
  102. Tothill IE (2011) Biosensors and nanomaterials and their application for mycotoxin determination. World Mycotoxin J 4(4):361–374CrossRefGoogle Scholar
  103. Tsai WC, Hsieh CK (2007) QCM-based immunosensor for the determination of ochratoxin A. Analytical Letters 40(10):1979–1991Google Scholar
  104. Turner NW, Piletska EV, Karim K, Whitcombe M, Malecha M, Magan N, Baggiani C, Piletsky SA (2004) Effect of the solvent on recognition properties of molecularly imprinted polymer specific for ochratoxin A. Biosens Bioelectron 20(6):1060–1067CrossRefPubMedGoogle Scholar
  105. Vundavalli R, Vundavalli S, Nakka M, Rao DS (2015) Biodegradable nano-hydrogels in agricultural farming – alternative source for water resources. Procedia Mater Sci 10:548–554CrossRefGoogle Scholar
  106. Wu H, Liu R, Kang X, Liang C, Lv L, Guo Z (2018) Fluorometric aptamer assay for ochratoxin a based on the use of single walled carbon nanohorns and exonuclease III-aided amplification. Microchim Acta 185(1)Google Scholar
  107. Yazar S, Omurtag GZ (2008) Fumonisins, trichothecenes and zearalenone in cereals. Int J Mol Sci 9(11):2062–2090CrossRefPubMedPubMedCentralGoogle Scholar
  108. Yin J, Liu Y, Wang S, Deng J, Lin X, Gao J (2018) Engineering a universal and label-free evaluation method for mycotoxins detection based on strand displacement amplification and G-quadruplex signal amplification. Sens Actuator B-Chem 256:573–579CrossRefGoogle Scholar
  109. Zain ME (2011) Impact of mycotoxins on humans and animals. J Saudi Chem Soc 15(2):129–144CrossRefGoogle Scholar
  110. Zhang Z, Tang X, Wang D, Zhang Q, Li P, Ding X (2015) Rapid on-site sensing aflatoxin B1 in food and feed via a chromatographic time-resolved fluoroimmunoassay. PLoS One 10(4):1–14Google Scholar
  111. Zhao Y, Yang Y, Luo Y, Yang X, Li M, Song Q (2015) Double detection of mycotoxins based on SERS labels embedded Ag@Au core-shell nanoparticles. ACS Appl Mater Interfaces 7(39):21780–21786CrossRefPubMedGoogle Scholar
  112. Zhao Y, Liu R, Sun W, Lv L, Guo Z (2018) Ochratoxin a detection platform based on signal amplification by exonuclease III and fluorescence quenching by gold nanoparticles. Sens Actuator B-Chem 255:1640–1645CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Velaphi C. Thipe
    • 1
    • 2
  • Marshall Keyster
    • 3
  • Kattesh V. Katti
    • 2
    • 4
  1. 1.Department of ChemistryUniversity of MissouriColumbiaUSA
  2. 2.Institute of Green NanotechnologyUniversity of MissouriColumbiaUSA
  3. 3.Department of BiotechnologyUniversity of the Western CapeBellvilleSouth Africa
  4. 4.Department of Physics and AstronomyUniversity of MissouriColumbiaUSA

Personalised recommendations