Advertisement

Positive Impacts of Nanoparticles in Plant Resistance against Different Stimuli

  • Tahsin Shoala
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Application of nanotechnology changed the overviews for using many materials and altered the features for specific elements to make them useful for human being. Nanoparticles could have direct effect on the plant surfaces or may induce different metabolic pathways which lead to either resistance or susceptibility against different stimuli. Nanoparticles may have either positive or negative effects on plants which lead to either resistance or susceptibility of plants against different stimuli. Nanomaterials could be applied directly to suppress pathogen infection which led indirectly to an increase in the plant growth and crop production. Remarkably, several of the nanoparticles could be effective against different microorganisms, and also they are required as micronutrients for plants. Effective role of nanomaterials is determined according to applied dose, composition, surface area, size and reactivity. Metallic nanoparticles might be effective against several microorganisms but at the same time could be accumulated in the plant cell which is the main food for both human and animals. Nanotoxicity studies should be applied in all nanoparticles to verify their safety for human, animals and environment. Natural products in the nanosize might be good solution to avoid the danger of metallic nanoparticles towards human and might be safe to the environment.

Keywords

Nanotoxicity Nanofertilizers Nanopesticides Nanoparticles Plant growth Titanium dioxide nanoparticles Carbon nanotubes 

References

  1. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081 CrossRefPubMedGoogle Scholar
  2. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanopart Article ID 689419., https://doi.org/10.1155/2014/689419:1
  4. Bao-shan L, Shao-qi D, Chun-hui L, Li-jun F, Shu-chun Q, Min Y (2004) Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J Forest Res 15:138–140CrossRefGoogle Scholar
  5. Cagri A, Ustunol Z, Ryser ET (2004) Antimicrobial edible films and coatings. J Food Prot 67:83–848CrossRefGoogle Scholar
  6. Chandra S et al (2015) Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Sci Rep 5:15195CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cui H, Zhang P, Gu W, Jiang J (2009) Application of anatasa TiO2 sol derived from peroxotitannic acid in crop diseases control and growth regulation. NSTI-Nanotech 2:286–289Google Scholar
  8. de la Rosa G, Lopez-Moreno ML, de Haro D, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl Chem 85(12):2161–2174CrossRefGoogle Scholar
  9. Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) Cuo and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1–15CrossRefGoogle Scholar
  10. Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2013a) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals 26(6):913–924CrossRefPubMedGoogle Scholar
  11. Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013b) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1090CrossRefPubMedGoogle Scholar
  12. Demir E, Kaya N, Kaya B (2014) Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay. Turk J Biol 38: 31–39Google Scholar
  13. Elechiguerra J, Burt J, Morones J, Camacho-Bragado A, Gao X, Lara H, Yacaman M (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology 3:1–10CrossRefGoogle Scholar
  14. El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49CrossRefPubMedGoogle Scholar
  15. Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81:1253–1262CrossRefPubMedGoogle Scholar
  16. Ghosh M, Bhadra S, Adegoke A, Bandyopadhyay M, Mukherjee A (2015) MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation. Mutat Res Fundam Mol Mech Mutagen 774:49–58CrossRefGoogle Scholar
  17. Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3(44):21743–21752CrossRefGoogle Scholar
  18. Haghighi M, Afifipour Z, Mozafarian M (2012) The effect of N-Si on tomato seed germination under salinity levels. J Biol Environ Sci 6:87–90Google Scholar
  19. Helaly MN, El-Metwally MA, El-Hoseiny H, Omar SA, El-Sheery NI (2014) Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Aust J Crop Sci 8:612–624Google Scholar
  20. Hong J, Wang L, Sun Y, Zhao L, Niu G, Tan W, Rico CM, Peralta-Videa JR, Gardea-Torresdey JL (2016) Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Sci Total Environ 563–564:904–911CrossRefPubMedGoogle Scholar
  21. Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323CrossRefPubMedPubMedCentralGoogle Scholar
  22. Huang L, Li DQ, Lin YJ, Wei M, Evans DG, Duan X (2005) Controllable preparation of nano-MgO and investigation of its bactericidal properties. J Inorg Biochem 99(5):986–993CrossRefPubMedGoogle Scholar
  23. He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215Google Scholar
  24. Hossain Z, Mustafa G, Sakata K, Komatsu S (2016) Insights into the proteomic response of soybean towards Al2O3, ZnO, and Ag nanoparticles stress. J Hazard Mater 304:291–305Google Scholar
  25. Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Sci (Washington) 240:1302–1309CrossRefGoogle Scholar
  26. Jaberzadeh A, Moaveni P, Moghadam HRT, Zahedi H (2013) Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not Bot Horti Agrobo 41:201–207CrossRefGoogle Scholar
  27. Jayaseelan C et al (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A 90:78–84CrossRefGoogle Scholar
  28. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93(10):1037–1043CrossRefGoogle Scholar
  29. Kanhed P et al (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17CrossRefGoogle Scholar
  30. Karlsson HL, Cronholm P, Gustafsson J, Möller L (2008) Copper oxide nanoparticles are highly toxic:a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732CrossRefPubMedPubMedCentralGoogle Scholar
  31. Katiyar D, Hemantaranjan A, Singh B (2015) Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian J Plant Physiol 20:1–9CrossRefGoogle Scholar
  32. Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135CrossRefPubMedGoogle Scholar
  33. Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123CrossRefPubMedGoogle Scholar
  34. Kim KJ, Sung W, Suh B, Moon SK, Choi JS, Kim J, Lee D (2009) Antifungal activity and mode of action of silver Nano-particles on Candida Albicans. Biometals 22:235–242CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC, Cui FZ (1998) Antimicrobial effects of metal ions (ag+, Cu2+, Zn2+) in hydroxyapatite. J Mater Sci Mater Med 9:129–134CrossRefPubMedGoogle Scholar
  36. Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39(3):194–199CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675CrossRefPubMedGoogle Scholar
  38. Le Van N, Rui Y, Gui X, Li X, Liu S, Han Y (2014) Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnol 12:50CrossRefGoogle Scholar
  39. Liman R (2013) Genotoxic effects of bismuth (III) oxide nanoparticles by allium and comet assay. Chemosphere 93:269–273CrossRefPubMedGoogle Scholar
  40. López-Moreno ML, de la Rosa G, Hernández-Viezcas JÁ, Castillo- Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornamental Hortic Plants 3:25–32Google Scholar
  42. Majumdar S, Peralta-Videa JR, Bandyopadhyay S, Castillo-Michel H, Hernandez-Viezcas JA, Sahi S, Gardea-Torresdey JL (2014) Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms. J Hazard Mater 278:279–287CrossRefPubMedGoogle Scholar
  43. Mallick S, Sharma S, Banerjee M, Ghosh SS, Chattopadhyay A, Paul A (2012) Iodine-stabilized cu nanoparticle chitosan composite for antibacterial applications. ACS Appl Mater Interfaces 4:1313–1323CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mirzajani F, Askari H, Hamzelou S, Schober Y, Römpp A, Ghassempour A, Spengler B (2014) Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotoxicol Environ Safe 108:335–339CrossRefGoogle Scholar
  45. Mishra V, Mishra RK, Dikshit A, Pandey AC (2014) Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance: biological techniques, vol 1, pp 159–180CrossRefGoogle Scholar
  46. Neal A (2008) What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17:362–371CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7(10):8972–8980CrossRefPubMedPubMedCentralGoogle Scholar
  48. Paret M, Palmateer A, Knox G (2013a) Evaluation of a light activated nanoparticle formulation of TiO2/Zn for managementof bacterial leaf spot on Rosa ‘Noare. Hortscience 48(2):189–192Google Scholar
  49. Paret ML, Vallad GE, Averett DR, Jones JB, Olson SM (2013b) Photocatalysis: effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology 103(3):228–236CrossRefPubMedPubMedCentralGoogle Scholar
  50. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  51. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363 CrossRefGoogle Scholar
  52. Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Prasad R, Gupta N, Kumar M, Kumar V, Wang S, Abd-Elsalam KA (2017b) Nanomaterials act as plant defense mechanism. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology. Springer, Singapore, pp 253–269CrossRefGoogle Scholar
  54. Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J Nanopart 2013:1–6. http://dx.doi.org/10.1155/2013/431218
  55. Ramesh M, Palanisamy K, Babu K, Sharma NK (2014) Effects of bulk & nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn. J Glob Biosci 3:415–422Google Scholar
  56. Raskar SV, Laware SL (2014) Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol App Sci 3:467–473Google Scholar
  57. Riahi-Madvar A, Rezaee F, Jalali V (2012) Effects of alumina nanoparticles on morphological properties and antioxidant system of Triticum aestivum. Iran J Plant Physiol 3:595–603Google Scholar
  58. Saharan V et al (2015) Synthesis and in vitro antifungal efficacy of cu–chitosan nanoparticles against pathogenic fungi of tomato. Int J Biol Macromol 75:346–353CrossRefPubMedGoogle Scholar
  59. Sathiyabama M, Bernstein N, Anusuya S (2016) Chitosan elicitation for increased curcumin production and stimulation of defence response in turmeric (Curcuma longa L.). Ind Crop Prod 89:87–94CrossRefGoogle Scholar
  60. Servin AD, Morales MI, Castillo-Michel H, Hernandez-Viezcas JA, Munoz B, Zhao L, Nunez JE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47:11592–11598CrossRefPubMedGoogle Scholar
  61. Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93:906–915CrossRefPubMedGoogle Scholar
  62. Shen CX, Zhang QF, Li J, Bi FC, Yao N (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97:1602–1609CrossRefPubMedGoogle Scholar
  63. Singhal U, Khanuja M, Prasad R, Varma A (2017) Impact of synergistic association of ZnO-nanorods and symbiotic fungus Piriformospora indica DSM 11827 on Brassica oleracea var. botrytis (broccoli). Front Microbiol 8:1909. https://doi.org/10.3389/fmicb.2017.01909 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds mill.). Saudi Biol Sci 21:13–17CrossRefGoogle Scholar
  65. Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33(11):2429–2437CrossRefPubMedGoogle Scholar
  66. Sondi I, Salopek-Sondi B (2004)Silver nanoparticles as antimicrobial agent: a case study on E. coli a model for gram-negative Bacteria. J Colloid Interface Sci 275:177–182CrossRefPubMedPubMedCentralGoogle Scholar
  67. Srinivasan C, Saraswathi R (2010) Nano-agriculture-carbon nanotubes enhance tomato seed germination and plant growth. Curr Sci 99:273–275Google Scholar
  68. Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2012) Silica nanoparticles for increased silica availability in maize (Zea mays L) seeds under hydroponic conditions. Curr Nanosci 8:902–908CrossRefGoogle Scholar
  69. Swamy VS, Prasad R (2012) Green synthesis of silver nanoparticles from the leaf extract of Santalum album and its antimicrobial activity. J Optoelectronic and Biomedical Materials 4(3):53–59Google Scholar
  70. Tiwari DK, Dasgupta-Schubert N, Villaseñor-Cendejas LM, Villegas J, Carreto-Montoya L, Borjas-García SE (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea Mays) and implications for nanoagriculture. Appl Nanosci 4:577–591CrossRefGoogle Scholar
  71. Tripathi S, Sarkar S (2014) Influence of water soluble carbon dots on the growth of wheat plant. Appl NanosciGoogle Scholar
  72. Vannini C, Domingo G, Onelli E, De Mattia F, Bruni I, Marsoni M, Bracale M (2014) Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant Physiol 171:1142–1148CrossRefPubMedGoogle Scholar
  73. Villagarcia H, Dervishi E, Silva K, Biris AS, Khodakovskaya MV (2012) Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 8:2328–2334CrossRefPubMedGoogle Scholar
  74. Wang X, Han H, Liu X, Gu X, Chen K, Lu D (2012) Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res 14(6):1–10CrossRefGoogle Scholar
  75. Wani AH, Shah MA (2012) A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J App Pharm Sci 2(3):40–44Google Scholar
  76. Xing K, Zhu X, Peng X, Qin S (2015) Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agronomy Sustain Develop 35:569–588CrossRefGoogle Scholar
  77. Yan S, Zhao L, Li H, Zhang Q, Tan J, Huang M, He S, Li L (2013) Single walled carbon nanotubes selectively influence maize root tissue. J Hazard Mater 246–247:110–118CrossRefPubMedGoogle Scholar
  78. Yasur J, Rani PU (2013) Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology. Environ Sci Pollut Res 20:8636–8648CrossRefGoogle Scholar
  79. Yoon KY, Hoon Byeon J, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus Subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575CrossRefPubMedPubMedCentralGoogle Scholar
  80. Zhao L, Peng B, Hernandez-Viezcas JA, Rico C, Sun Y, Peralta-Videa JR, Tang X, Niu G, Jin L, Varela-Ramirez A et al (2012) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 6:9615–9622CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li Q, Alvarez PJJ (2009) Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res 43:715–723CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of BiotechnologyMisr University for Science and TechnologyGizaEgypt

Personalised recommendations