Advertisement

Nanotechnology and Their Applications in Insect’s Pest Control

  • Al-kazafy Hassan Sabry
  • Mohamed Ragaei
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Nanotechnology is defined as a study and application of extremely small things. It can be used in all of the other science fields, such as agriculture, chemistry, biology, physics, materials science, and engineering. Another definition of nanotechnology is an art and science of manipulating matter at nanoscales. Agriculture is the main source of many industries, so nanotechnology became an imperative approach in this field. The main approach of nanotechnology in agriculture is syntheses of nanofertilizers and nanoinsecticides. This study is concerned in nanoinsecticides. The benefits of nanoinsecticides intended for reduction of the insecticides quantity per hectare, costs, and the toxicity in soil and groundwater and increase in the quality of treatments, and enhancement of properties such as efficacy, specificity, and increase of the yield. There are four types of nanoinsecticides: nanoemulsion, nanosuspension, nanocapsules, and nanoparticles. The main objective of these formulations is the delivery and slow release of insecticides to be more potent compared with conventional formulations. So, it can be said that nanotechnology would provide safety and efficient alternatives for the management of insect pests in agriculture.

Keywords

Nanotechnology Application Nanocapsules Nanoemulsion Nanosuspension and Nanoparticles 

References

  1. Anton N, Benoit JP, Saulnier P (2008) Design and production of nanoparticles formulated from nano-emulsion templates—a review. J Control Release 128:185–199CrossRefPubMedGoogle Scholar
  2. Araj SA, Salem NM, Ghabeish IH, Awwad AM (2015) Toxicity of nanoparticles against Drosophila melanogaster (Diptera: Drosophilidae). J Nanomater 5:1–9CrossRefGoogle Scholar
  3. Babu MY, Devi VJ, Ramakritinan CM, Umarani R, Taredahalli N, Kumaraguru AK (2014) Application of biosynthesized silver nanoparticles in agricultural and marine pest control. Curr Nanosci 10(3):374–381CrossRefGoogle Scholar
  4. Bae DR, Han WS, Lim JM (2010) Lysine-functionalized silver nanoparticles for visual detection and separation of histidine and histidine-tagged proteins. Langmuir 26(3):2181–2185CrossRefPubMedGoogle Scholar
  5. Barik TK, Sahu B, Swain V (2008) Nano-silica—from medicine to pest control. Parasitol Res 103:253–258CrossRefGoogle Scholar
  6. Batish DR, Singh HP, Kohli RK, Kaur S (2008) Eucalyptus essential oil as a natural pesticide. For Ecol Manage 256:2166–2174CrossRefGoogle Scholar
  7. Bhan S, Mohan L, Srivastava CN (2015a) Photosensitization of nanoencapsulated temephos and Cuscuta reflexa combination on mosquito larvae. Int J Pharm Res Biosci 4(1):94–110Google Scholar
  8. Bhan S, Mohan L, Srivastava CN (2015b) Combinatorial studies on thermosensitization of nanoencapsulated temephos and Cuscuta reflexa. Int J Pharm Res Biosci 4(1):20–35Google Scholar
  9. Bhattacharyya P, Samal AC, Majumdar J, Santra SC (2010) Accumulation of arsenic and its distribution in rice plant (Oryza sativa L.) in Gangetic West Bengal, India. Paddy Water Environ 8(1):63–70CrossRefGoogle Scholar
  10. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: Emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham, pp 307–319CrossRefGoogle Scholar
  11. Brooker M, Kleinig D (1990) Field guide to the Eucalyptus, vol 1, Revised edn. Inkata Press, Melbourne and SydneyGoogle Scholar
  12. Chaudhuri RG, Paria S (2010) Synthesis of sulfur nanoparticles in aqueous surfactant solutions. J Colloid Interface Sci 343:439–446CrossRefPubMedGoogle Scholar
  13. Chu BS, Ichikawa S, Kanafusa S, Nakajima M (2007) Preparation of protein-stabilized β-carotene nanodispersions by emulsification–evaporation method. J Am Oil Chem Soc 84(11):1053–1062CrossRefGoogle Scholar
  14. Couvreur P, Barratt G, Fattal E, Vauthier C (2002) Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst 19:99–134CrossRefPubMedGoogle Scholar
  15. Debnath N, Das S, Patra P, Mitra S, Goswami A (2012) Toxicological evaluation of entomotoxic silica nanoparticle. Toxicol Environ Chem 94(5):944–951CrossRefGoogle Scholar
  16. Dubey R (2006) Pure drug nanosuspensions – impact of nanosuspension technology on drug discovery and development. Drug Del Tech 6:65–71Google Scholar
  17. El-Aasser MS, Lack CD, Vanderhoff JW, Fowkes FM (1986) Miniemulsification process-different form of spontaneous emulsification. Colloids Surf 29:103–118CrossRefGoogle Scholar
  18. Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C (2012) Nanoencapsulation techniques for food bioactive components: a review. Food Bioproc Tech 6(3):628–647CrossRefGoogle Scholar
  19. Fernandes CP, de Almeida FB, Silveira AN, Gonzalez MS, Mello CB, Feder D, Apolinário R, Santos MG, Carvalho JCT, Tietbohl LAC, Rocha L, Falcão DQ (2014) Development of an insecticidal nanoemulsion with Manilkara subsericea (Sapotaceae) extract. J Nanobiotechnology 12(1):22–31CrossRefPubMedPubMedCentralGoogle Scholar
  20. Flörke OW, Graetsch HA, Brunk F, Benda L, Paschen S, Bergna HE, Roberts WO, Welsh WA, Libanati C, Ettlinger M, Kerner D, Maier M, Meon W, Schmoll R, Gies H, Schiffmann D (2008) Silica in Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, WeinheimGoogle Scholar
  21. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus mediated synthesis of silver nanoparticles and its activity against pathogenic fungi in combination of fluconazole. Nanomedicine 5(4):282–286Google Scholar
  22. Gao Y, Ding X, Zheng Z, Cheng X, Peng Y (2007) Template-free method to prepare polymer nanocapsules embedded with noble metal nanoparticles. Chem Commun:3720–3722Google Scholar
  23. Giongo AMM, Vendramim JD, Forim MR (2016) Evaluation of neem-based nanoformulations as alternative to control fall armyworm. Ciência Agrotec 40(1):26–36CrossRefGoogle Scholar
  24. Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257CrossRefGoogle Scholar
  25. Grau MJ, Kayser O, Muller RH (2000) Nanosuspensions of poorly soluble drugs – reproducibility of small scale production. Int J Pharm 196:155–157CrossRefPubMedGoogle Scholar
  26. Gribbin J, Gribbin M (1997) Richard Feynman: a life in science. Dutton, London, p 170 ISBN 0-452-27631-4 Google Scholar
  27. Guan H, Chi D, Yu J, Li X (2008) A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-Imidacloprid. Pestic Biochem Physiol 92:83–91CrossRefGoogle Scholar
  28. Hernandez-Leon SG, Sarabia-Sainz JA, Montfort GRC, Guzman-Partida AM, Robles-Burgueño MR, Vazquez-Moreno L (2017) Novel synthesis of core-shell silica nanoparticles for the capture of low molecular weight proteins and peptides. Molecules 22(10):1–12CrossRefGoogle Scholar
  29. Horn D, Rieger J (2001) Organic nanoparticles in the aqueous phase–theory, experiment, and use. Angew Chem Int Ed Engl 40(23):4330–4361CrossRefPubMedGoogle Scholar
  30. Hunt JW, Dean AP, Webster RE, Johnson GN, Ennos AR (2008) A novel mechanism by which silica defends grasses against herbivory. Ann Bot 102:653–656CrossRefPubMedPubMedCentralGoogle Scholar
  31. Izquierdo P, Esquena J, Tadros TF, Dederen JC, Feng J, Garcia-Celma MJ, Azemar N, Solans C (2004) Phase behavior and nanoemulsion formation by the phase inversion temperature method. Langmuir 20(16):6594–6598CrossRefPubMedGoogle Scholar
  32. Jafari SM, He YH, Bhandari B (2006) Nano-emulsion production by sonication and microfluidization—a comparison. Int J Food Prop 9(3):475–485CrossRefGoogle Scholar
  33. Jafari M, He Y, Bhandari B (2007) Optimization of nano-emulsions production by microfluidization. Eur Food Res Technol 225(5–6):733–741CrossRefGoogle Scholar
  34. Jaiswal M, Dudhe R, Sharma PK (2015) Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 5(2):123–127CrossRefPubMedGoogle Scholar
  35. Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43(16):1823–1867CrossRefGoogle Scholar
  36. Kalvakuntla S, Deshpande M, Attari Z, Kunnatur K (2016) Preparation and characterization of nanosuspension of aprepitant by H96 process. Adv Pharm Bull 6(1):83–90CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kim CK, Cho YJ, Gao ZG (2001) Preparation and evaluation of biphenyl dimethyl dicarboxylate microemulsions for oral delivery. J Control Release 70:149–155CrossRefPubMedGoogle Scholar
  38. Kobayashi T, Imade Y, Shishihara D, Homma K, Nagao M, Watanabe R, Yokoi T, Yamada A, Kanno R, Tatsumi TJ (2008) All solid-state battery with sulfur electrode and thio-LISICON electrolyte. Power Sources 182:621CrossRefGoogle Scholar
  39. Laing MD, Gatarayiha MC, Adandonon A (2006) Silicon use for pest control in agriculture: a review. Proc S Afr Sug Technol Ass 80:278–286Google Scholar
  40. Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65:259–269CrossRefPubMedGoogle Scholar
  41. Liversidge GG, Cundy KC (1995) Particle size reduction for improvement of oral bioavailability of hydrophobic drugs. Part 1: absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm 125:91–97CrossRefGoogle Scholar
  42. Lovingood DD, Owens JR, Seeber M, Kornev KG, Luzinov I (2012) Controlled microwave-assisted growth of silica nanoparticles under acid catalysis. ACS Appl Mater Interfaces 4:6875–6883CrossRefPubMedGoogle Scholar
  43. McClements DJ (2004) Food emulsions: principles, practice and techniques, 2nd edn. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  44. McClements DJ (2005) Food emulsions: principles, practice, and techniques. CRC Press, Boca Raton, FLGoogle Scholar
  45. McClements DJ (2011) Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 7:2297–2316CrossRefGoogle Scholar
  46. McClements DJ, Rao J (2011) Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 51(4):285–330CrossRefPubMedGoogle Scholar
  47. Memarizadeh N, Ghadamyari M, Adeli M, Talebi K (2014) Preparation, characterization and efficiency of nanoencapsulated imidacloprid under laboratory conditions. Ecotoxicol Environ Saf 107:77–83CrossRefPubMedGoogle Scholar
  48. Miller BS, Robinson RJ, Johnson JA, Jones ET, Ponnaiya BWX (1960) Studies on the relation between silica in wheat plants and resistance to Hessian fly attack. J Econ Ent 53:995–999CrossRefGoogle Scholar
  49. Mordue AJ, Blackwell A (1993) Azadirachtin: an update. J Insect Physiol 39(11):903–924CrossRefGoogle Scholar
  50. Mordue AJ, Nisbet AJ (2000) Azadirachtin from the neem tree Azadirachta indica: its action against insects. Anais Soc Entomol Bras 29(4):615–632CrossRefGoogle Scholar
  51. Mun S, Decker EA, McClements DJ (2005) Influence of droplet characteristics on the formation of oil in-water emulsions stabilized by surfactant chitosan layers. Langmuir 21:6228–6234CrossRefPubMedGoogle Scholar
  52. Naeini AT, Adeli M, Vossoughi M (2010) Poly(citric acid)-block-poly(ethylene glycol) copolymers-new biocompatible hybrid materials for nanomedicine. Nanomedicine 6:556–562CrossRefPubMedGoogle Scholar
  53. Ober JA (2003) Materials flow of sulfur: US Geological Survey Open File Report 02-298Google Scholar
  54. Owolade OF, Ogunleti DO, Adenekan MO (2008) Titanium dioxide affects disease development and yield of edible cowpea. Electron J Environ Agri Food Chem 7(50):2942–2947Google Scholar
  55. Pan Z, Cui B, Zeng Z, Feng L, Liu G, Cui H, Pan H (2015) Lambda-cyhalothrin nanosuspension prepared by the melt emulsification-high pressure homogenization method. J Nanomater:296–302Google Scholar
  56. Panagiotou T, Fisher R (2012) Improving product quality with entrapped stable emulsions: from theory to industrial application. Challenges 3:84–113CrossRefGoogle Scholar
  57. Park SK, Kim KD, Kim HT (2002) Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles. Colloids Surf A 197(1–3):7–17CrossRefGoogle Scholar
  58. Pouton CW (1997) Formulation of self emulsifying drug delivery systems. Adv Drug Deliv Rev 25:47–58CrossRefGoogle Scholar
  59. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  60. Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Prasad R, Gupta N, Kumar M, Kumar V, Wang S, Abd-Elsalam KA (2017b) Nanomaterials act as plant defense mechanism. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology. Springer, Singapore, pp 253–269CrossRefGoogle Scholar
  62. Praveen KG, Divya A (2015) Nanoemulsion based targeting in cancer therapeutics. Med Chem 5:272–284Google Scholar
  63. Qian L, Li T (2005) Review of reproductive toxicity of environmental chemical pollutants. J Environ Occup Med 22:167–171Google Scholar
  64. Ragaei M, Sabry KH (2014) Nanotechnology for insect pest control. Int J Sci Environ Technol 3(2):528–545Google Scholar
  65. Ragaei M, Sabry KH, El-Rafei Amira M (2013) Towards using of new and safety material against tomato leafminer, Tuta absoluta (Meyrick). Arch Phytopathol Plant Prot 46(20):2450–2458CrossRefGoogle Scholar
  66. Rao KJ, Paria S (2013) Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopath. RSC Adv 3:10471–10478CrossRefGoogle Scholar
  67. Rosen H, Abribat T (2005) The rise and rise of drug delivery. Nat Rev Drug Discov 4:381–385CrossRefPubMedGoogle Scholar
  68. Rouhani M, Samih MA, Kalantari S (2012a) Insecticidal effect of silica and silver nanoparticles on the cowpea seed beetle, Callosobruchus maculatus F. (Col.: Bruchidae). J Entomol Res 4(4):297–305Google Scholar
  69. Rouhani M, Samih MA, Kalantari S (2012b) Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer De Fonscolombe (Hemiptera: Aphididae). Chil J Agri Res 72(4):590–594CrossRefGoogle Scholar
  70. Sadowski Z, Maliszewska IH, Grochowalska B, Polowczyk I, Koźlecki T (2008) Synthesis of silver nanoparticles using microorganisms. Mater Sci Poland 26(2):219–224Google Scholar
  71. Saini P, Gopal M, Kumar R, Srivastava C (2014) Development of pyridalyl nanocapsule suspension for efficient management of tomato fruit and shoot borer (Helicoverpa armigera). J Environ Sci Health B 49:344–351CrossRefGoogle Scholar
  72. Salazar J, Ghanem A, Muller RH, Moschwitzer JP (2012) Nanocrystals: comparison of the size reduction effectiveness of a novel combinative method with conventional top-down approaches. Eur J Pharm Biopharm 81(1):82–90CrossRefPubMedGoogle Scholar
  73. Salem NM, Albanna LS, Abdeen AO, Ibrahim QI, Awwad AM (2016) Sulfur nanoparticles improves root and shoot growth of tomato. J Agric Sci 8(4):179–185Google Scholar
  74. Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 73–97CrossRefGoogle Scholar
  75. Shinoda K, Saito H (1968) The effect of temperature on the phase equilibria and the type of dispersion of the ternary system composed of water, cyclohexane and nonionic surfactant. J Colloid Interface Sci 26:70–74CrossRefGoogle Scholar
  76. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20CrossRefPubMedGoogle Scholar
  77. Subramanyam BH, Roesli R (2000) Inert dusts. In: Alternatives to pesticides in stored product IPM. Kluwer Academic Publishers, Dordrecht, pp 321–380CrossRefGoogle Scholar
  78. Sugimoto T (2000) Fine particles-synthesis, characterization, and mechanism of growth, Surf Sci Ser 92. Marcel Dekker, New YorkCrossRefGoogle Scholar
  79. Sugumar S, Clarke SK, Nirmala MJ, Tyagi BK, Mukherjee A, Chnadrasekaran N (2014) Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bull Entomol Res 104:393–402CrossRefPubMedGoogle Scholar
  80. Sun C, Shu K, Wang W, Ye Z, Liu T, Gao Y, Zheng H, He G, Yin Y (2014) Encapsulation and controlled release of hydrophilic pesticide in shell cross-linked nanocapsules containing aqueous core. Int J Pharm 463:108–114CrossRefPubMedGoogle Scholar
  81. Talekar M, Ganta S, Amiji M, Jamieson S, Kendall J, Denny WA, Gar S (2013) Development of PIK-75 nanosuspension formulation with enhanced delivery efficiency and cytotoxicity for targeted anti-cancer therapy. Int J Pharm 450(1–2):278–289CrossRefPubMedGoogle Scholar
  82. Troncoso E, Aguilera JM, McClements DJ (2012) Fabrication, characterization and lipase digestibility of food-grade nanoemulsions. Food Hydrocoll 27:355–363CrossRefGoogle Scholar
  83. Vani C, Brindhaa U (2013) Silica nanoparticles as nanocides against Corcyra cephalonica (s.), the stored grain pest. Int J Pharm Bio Sci 4(3):1108–1118Google Scholar
  84. Veerakumar K, Govindarajan M, Hoti SL (2014) Evaluation of plant-mediated synthesized silver nanoparticles against vector mosquitoes. Parasitol Res 113:4567–4577CrossRefPubMedGoogle Scholar
  85. Wagner JG, Gerard ES, Kaiser DG (1966) The effect of the dosage form on serum levels of indoxole. Clin Pharmacol Ther 7:610–619CrossRefPubMedGoogle Scholar
  86. Walstra P (1996) Emulsion stability. In: Becher P (ed) Encyclopedia of emulsion technology. Marcel Dekker, New York, pp 1–62Google Scholar
  87. Wilton P (2010) Nanocapsule delivers radiotherapy. University of Oxford, OxfordGoogle Scholar
  88. Wooster TJ, Golding M, Sanguansri P (2008) Impact of oil type on nanoemulsion formulation and ostwald ripening stability. Langmuir 24:12758–12765CrossRefPubMedGoogle Scholar
  89. Xiaomiao C, Jin Y, Yifeng Z, Wangyan N (2009) Application of mixed emulsifiers for preparation of cypermethrin nanocapsules. Spec Petrochem 2009-05Google Scholar
  90. Yasur J, Rani PU (2015) Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 124:92–102CrossRefPubMedGoogle Scholar
  91. Zhou Q, Ding Y, Xiao J (2006) Sensitive determination of thiamethoxam, imidacloprid and acetamiprid in environmental water samples with solid phase extraction packed with multiwalled carbon nanotubes prior to high performance liquid chromatography. Anal Bioanal Chem 385:1520–1525CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Al-kazafy Hassan Sabry
    • 1
  • Mohamed Ragaei
    • 1
  1. 1.Pests and Plant Protection DepartmentNational Research CentreCairoEgypt

Personalised recommendations