Design Considerations of Mission-Oriented Sensor Node Architectures

  • Felix Büsching
  • Keno Garlichs
  • Ulf Kulau
  • Stephan Rottmann
  • Lars WolfEmail author
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 163)


In research and education, a Wireless Sensor Network (WSN) may exist for its own sake and also the specific nodes used in such networks might be considered as study objects. However, in real applications the networks and the nodes are applied to solve real-world issues and, hence, have to be designed for their specific purpose. Since WSNs and according nodes have to cope with significant limitations and challenges, especially regarding energy budgets, it is typically considered as impractical to use a ‘one size fits all’ network configuration or a ‘one size fits all’, universal sensor node. Instead, it is necessary for every single component of a node, like processor, memory, radio transceiver, set of sensors, peripherals, and energy source to consider what is necessary and they have to be chosen according to the needs of the envisaged use case. Therefore, designing or at least selecting appropriate nodes is a crucial part for every deployment of WSNs. Based on that also the used networking technologies, the topology, the protocols, etc. have to be developed and chosen. In this chapter, first some general considerations and architectures for sensor nodes are presented. Also, some insights of’how to design’ the adequate node for specific use cases are given. The design of sensor nodes for two exemplary missions are discussed in detail. In particular the diverse missions Human Activity Monitoring and Smart Farming are used to reveal the specialty when designing mission-oriented sensor nodes.


  1. 1.
    Doolin, D.M., Sitar, N.: Wireless sensors for wildfire monitoring. Proceedings of SPIE 5765, 477–484 (2005)CrossRefGoogle Scholar
  2. 2.
    Li, Y., Wang, Z., Song, Y.: Wireless sensor network design for wildfire monitoring. In: The Sixth World Congress on Intelligent Control and Automation: WCICA 2006, vol. 1, pp. 109–113 IEEE (2006)Google Scholar
  3. 3.
    Korber, H.-J., Wattar, H., Scholl, G.: Modular wireless real-time sensor/actuator network for factory automation applications. IEEE Trans. Indust. Informat. 3(2), 111–119 (2007)CrossRefGoogle Scholar
  4. 4.
    Frotzscher, A., Wetzker, U., Bauer, M., Rentschler, M., Beyer, M., Elspass, S., Klessig, H.: Requirements and current solutions of wireless communication in industrial automation. In: 2014 IEEE International Conference on Communications Workshops (ICC), pp. 67–72, IEEE (2014)Google Scholar
  5. 5.
    IEEE, IEEE standard for a precision clock synchronization protocol for networked measurement and control systems. IEEE Std 1588–2008 (Revision of IEEE Std 1588–2002), pp. 1–300, July 2008Google Scholar
  6. 6.
    Scheiterer, R.L., Na, C., Obradovic, D., Steindl, G.: Synchronization performance of the precision time protocol in industrial automation networks. IEEE Trans. Instrum. Meas. 58(6), 1849–1857 (2009)CrossRefGoogle Scholar
  7. 7.
    von Zengen, G., Garlichs, K., Schröder, Y., Wolf, L.C.: A sub-microsecond clock synchronization protocol for wireless industrial monitoring and control networks. In: IEEE International Conference on Industrial Technology (ICIT), pp. 1266–1270 IEEE (2017)Google Scholar
  8. 8.
    Akhlaq, M., Sheltami, T.R.: RTSP: an accurate and energy-efficient protocol for clock synchronization in WSNs. IEEE Trans. Instrum. Meas. 62(3), 578–589 (2013)CrossRefGoogle Scholar
  9. 9.
    Dunkels, A., Grönvall, B., Voigt, T.: Contiki—a lightweight and flexible operating system for tiny networked sensors. In: Proceedings of the First IEEE Workshop on Embedded Networked Sensors (Emnets-I) Nov 2004, Tampa, Florida, USA (2004)Google Scholar
  10. 10.
    Baccelli, E., Hahm, O., Gunes, M., Wahlisch, M., Schmidt, T.C.: RIOT OS: towards an OS for the Internet of Things. In: 2013 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 79–80 IEEE (2013)Google Scholar
  11. 11.
    Real Time Engineers Ltd.: FreeRTOS—Market leading RTOS (Real Time Operating System) for Embedded Systems with Internet of Things Extensions.
  12. 12.
    Seller, O., Sornin, N.: Low Power Long Range Transmitter. EP Patent App. EP20, 130, 154, 071, 6 Aug 2014Google Scholar
  13. 13.
  14. 14.
    Texas Instruments, Incorporated: A USB-Enabled System-On-Chip Solution for 2.4-GHz IEEE 802.15.4 and ZigBee Applications. (2010)
  15. 15.
    Atmel Corporation: 8-bit AVR Microcontroller with Low Power 2.4GHz Transceiver for ZigBee and IEEE 802.15.4. (2014)
  16. 16.
    Moteiv Corporation: Tmote Sky : Datasheet. (2006)
  17. 17.
    Adjih, C., Baccelli, E., Fleury, E., Harter, G., Mitton, N., Noel, T., Pissard-Gibollet, R., Saint-Marcel, F., Schreiner, G., Vandaele, J., et al.: FIT IoT-LAB: a large scale open experimental IoT testbed. In: IEEE 2nd World Forum on Internet of Things (WF-IoT), vol. 2015, pp. 459–464, IEEE (2015)Google Scholar
  18. 18.
    Lim, R., Ferrari, R., Zimmerling, M., Walser, C., Sommer, P., Beutel, J.: Flocklab: a testbed for distributed, synchronized tracing and profiling of wireless embedded systems. In: Proceedings of the 12th International Conference on Information Processing in Sensor Networks (IPSN) ACM, pp. 153–166 (2013)Google Scholar
  19. 19.
    Doddavenkatappa, M., Chan, M.C., Ananda, A.L.: Indriya: a low-cost, 3d wireless sensor network testbed. In: International Conference on Testbeds and Research Infrastructures, pp. 302–316, Springer (2011)Google Scholar
  20. 20.
    Texas Instruments, Incorporated: MSP430F15x, MSP430F16x, MSP430F161x. Mixed Signal Microcontroller. (2011)
  21. 21.
    Texas Instruments, Incorporated: 2.4 GHz IEEE 802.15.4/ZigBee-ready RF Transceiver. (2013)
  22. 22.
    Texas Instruments: MSP430 Flash Device Bootloader (BSL), SLAU319M. (2017)
  23. 23.
    Alliance, T.: TinyOS 2.1 adding threads and memory protection to TinyOS. In: Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems, ser. SenSys ’08. New York, NY, USA: ACM, pp. 413–414. (2008)
  24. 24.
    O’Donovan, T., Brown, J., Büsching, F., Cardoso, A., Cecelio, Do O, J., Furtado, P., Gil, P., Jugel, A., Pöttner, W.-B., Roedig, U., Silva, J., Sreenan, C., Vassiliou, V.,  Voig, L.W.T., Zinonos, Z.: The GINSENG system for wireless monitoring and control: design and deployment experiences. ACM Trans. Sensor Netw. (TOSN), vol. 10, no. 3, accepted for publication, Aug 2014CrossRefGoogle Scholar
  25. 25.
    Durvy, M., Abeillé, J., Wetterwald, P., O’Flynn, C., Leverett, B., Gnoske, E., Vidales, M., Mulligan, G., Tsiftes, N., Finne, N., Dunkels, A.: Making Sensor Networks ipv6 Ready. In: Proceedings of the 6th ACM Conference on Embedded Network Sensor System ser. SenSys ’08. New York, NY, USA: ACM, pp. 421–422. (2008)
  26. 26.
    Eichelberg, M., Hein, A., Büsching, F., Wolf, L.: The GAL middleware platform for AAL. In: Proceedings of the 12th IEEE International Conference on e-Health Networking Applications and Services (Healthcom), pp. 1–6 (2010)Google Scholar
  27. 27.
    Chen, J., Kwong, K., Chang, D., Luk, J., Bajcsy, R.: Wearable sensors for reliable fall detection. In: proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society. IEEE-EMBS, vol. 2005 (01), pp. 3551–3554 (2005)Google Scholar
  28. 28.
    Marschollek, M., Wolf, K.H., Gietzelt, M., Nemitz, G., Meyer zu Schwabedissen, Haux, R.: Assessing elderly persons’ fall risk using spectral analysis on accelerometric data—a clinical evaluation study,” in the 30th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2008, 2008, pp. 3682–3685Google Scholar
  29. 29.
    Greene, B., McGrath, D., O’Donovan, K., O’Neill, R., Burns, A., Caulfield, B.: Adaptive estimation of temporal gait parameters using body-worn gyroscopes. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), vol. 4, pp. 1296–1299 31, Sept 2010Google Scholar
  30. 30.
    Bianchi, F., Redmond, S., Narayanan, M., Cerutti, S., Celler, B., Lovell, N.: Falls event detection using triaxial accelerometry and barometric pressure measurement. In: Proceedings of the 31th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBC 2009, pp. 6111–6114 Sept 2009Google Scholar
  31. 31.
    Polastre, J., Szewczyk, R., Culler, D.: Telos: enabling ultra-low power wireless research. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, IPSN 2005. Piscataway, NJ, USA: IEEE Press, 2005, p. 48Google Scholar
  32. 32.
    Lorincz, K., Chen, B.-R., Challen, G.W., Chowdhury, A.R., Patel, S., Bonato, P., Welsh, M.: Mercury: a wearable sensor network platform for high-fidelity motion analysis. In: Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, ser. SenSys ’09. New York, NY, USA: ACM, pp. 183–196. (2009)
  33. 33.
    Welk, G.J., McClain, J.J., Eisenmann, J.C., Wickel, E.E.: Field validation of the MTI actigraph and bodyMedia Armband monitor using the IDEEA monitor. Obesity 15(4), 918–928. (2007)CrossRefGoogle Scholar
  34. 34.
    Büsching, F., Kulau, U., Wolf, L.: Architecture and evaluation of INGA an inexpensive node for general applications. In: 2012 IEEE Sensors, Oct 2012, pp. 1–4Google Scholar
  35. 35.
    Atmel Corporation: AVR2016: RZRAVEN Hardware User’s Guide, 2011, Rev. 8117D-AVR-04/08.
  36. 36.
    Büsching, F., Figur, A., Schürmann, D., Wolf, L.: Poster: utilizing hardware AES encryption for WSNs. In: Proceedings of the 10th European Conference on Wireless Sensor Networks, ser. EWSN 2013, Ghent, Belgium, Feb 2013, pp. 33–36.
  37. 37.
    von Zengen, G., Schröder, Y., Rottmann, S., Büsching, F., Wolf, L.C.: No-cost distance estimation using standard WSN radios. In: Proceedings of the 35th Annual IEEE International Conference on Computer Communications (INFOCOM 2016), San Francisco, USA, Apr 2016Google Scholar
  38. 38.
    Atmel Corporation: AVR2006: Design and characterization of the Radio Controller Board’s 2.4GHz PCB Antenna, Rev. 8095A-AVR-08/07. (2017)
  39. 39.
    Büsching, F., Kulau, U., Gietzelt, M., Wolf, L.: Comparison and validation of capacitive accelerometers for health care applications. Comput. Methods Prog. Biomed. 10Google Scholar
  40. 40.
    Future Technology Devices International Ltd.: TBit Bang Modes For The FT232R and FT245R, Application Note AN 232R-01 (2012)Google Scholar
  41. 41.
    Dunkels, A.: Rime—a lightweight layered communication stack for sensor networks. In: Proceedings of the European Conference on Wireless Sensor Networks (EWSN), Poster/Demo session, Delft, The Netherlands. Citeseer (2007)Google Scholar
  42. 42.
    Kulau, U., Büsching, F., Wolf, L.: A node’s life: increasing WSN lifetime by dynamic voltage scaling. In: Proceedings of the 9th IEEE International Conference on Distributed Computing in Sensor Systems 2013 (IEEE DCoSS 2013), Cambridge, USA, May 2013Google Scholar
  43. 43.
    Österlind, F., Dunkels, A., Eriksson, J., Finne, N., Voigt, T.: Cross-level sensor network simulation with COOJA. In: Proceedings of the First IEEE International Workshop on Practical Issues in Building Sensor Network Applications (SenseApp 2006), Tampa, Florida, USA, Nov 2006.
  44. 44.
    Titzer, B.L., Lee, D.K., Palsberg, J.: Avrora: scalable sensor network simulation with precise timing. In: Proccedings of the 4th International Symposium on Information Processing in Sensor Networks, IPSN. IEEE, vol. 2005, pp. 477–482 (2005)Google Scholar
  45. 45.
    Kulau, U., Rottmann, S., Schildt, S., van Balen, J., Wolf, L.C.: Undervolting in real world WSN applications: a long-term study. In: Proceedings of the International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 9–16, IEEE (2016)Google Scholar
  46. 46.
    Langendoen, K., Baggio, A., Visser, O.: Murphy loves potatoes: experiences from a pilot sensor network deployment in precision agriculture. In: Proceedings of the 20th IEEE International Parallel and Distributed Processing Symposium, ser. IPDPS vol. 2006, 8 (2006)Google Scholar
  47. 47.
    Kaewmard, N., Saiyod, S.: Sensor data collection and irrigation control on vegetable crop using smart phone and wireless sensor networks for smart farm. In: IEEE Conference on Wireless Sensors (ICWiSE), pp. 106–112, IEEE (2014)Google Scholar
  48. 48.
    Ojha, T., Misra, S., Raghuwanshi, N.S.: Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Comput. Electron. Agr. 118, 66–84 (2015)CrossRefGoogle Scholar
  49. 49.
    Priya, S., Inman, D.J.: Energy Harvesting Technologies, vol. 21. Springer (2009)Google Scholar
  50. 50.
    Beutel, J., Buchli, B., Ferrari, F., Keller, M., Zimmerling, M., Thiele, L.: X-Sense: sensing in extreme environments. In: Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE 2011, pp. 1–6 (2011)Google Scholar
  51. 51.
    Navarro, M., Davis, T.W., Liang, Y., Liang, X.: A study of long-term WSN deployment for environmental monitoring. In: Proceedings of the 24th IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Sept 2013Google Scholar
  52. 52.
    Wennerstrom, H., Hermans, F., Rensfelt, O., Rohner, C., Norden, L.-A.: A long-term study of correlations between meteorological conditions and 802.15. 4 link performance. In: 2013 10th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), pp. 221–229. IEEE (2013)Google Scholar
  53. 53.
    Boano, C.A., Wennerström, H.M., Zúñiga, A., Brown, J., Keppitiyagama, C., Oppermann, F.J., Roedig, U., Nordén, L.-Å., Voigt, T., Römer, K.: Hot packets: a systematic evaluation of the effect of temperature on low power wireless transceivers. In: Proceedings of the 5th Extreme Conference on Communication (ExtremeCom), pp. 7–12. ACM, Aug 2013Google Scholar
  54. 54.
    Boano, C.A., Zuniga, M.A., Brown, J., Roedig, U., Keppitiyagama, C., Roemer, K.: TempLab: a testbed infrastructure to study the impact of temperature on wireless sensor networks. In: Proceedings of the 13th International Conference on Information Processing in Sensor Networks (IPSN ’14), pp. 95–106. ACM, Apr 2014Google Scholar
  55. 55.
    Schmidt, F., Ceriotti, M., Hauser, N., Wehrle, K.: If you can’t take the heat: temperature effects on low-power wireless networks and how to mitigate them. In: 12th European Conference on Wireless Sensor Networks (EWSN 2015). Feb 2015Google Scholar
  56. 56.
    Jackson, R.D., Idso, S., Reginato, R., Pinter, P.: Canopy temperature as a crop water stress indicator. Water Resour. Res. 17(4), 1133–1138 (1981)CrossRefGoogle Scholar
  57. 57.
    Rottmann, S., Hartung, R., Käberich, J., Wolf, L.C.: Amphisbaena: a two-platform DTN node. In: The 13th International Conference on Mobile Ad-hoc and Sensor Systems (MASS 2016), Brasilia, Brazil, Oct 2016Google Scholar
  58. 58.
    Gernert, B., Rottmann, S., Wolf, L.C.: Poster: PotatoMesh–A Solar Powered WSN Testbed. Paderborn, Germany (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Felix Büsching
    • 1
  • Keno Garlichs
    • 1
  • Ulf Kulau
    • 1
  • Stephan Rottmann
    • 1
  • Lars Wolf
    • 1
    Email author
  1. 1.Institute of Operating Systems and Computer Networks, TU BraunschweigBraunschweigGermany

Personalised recommendations