Advertisement

Understanding Animal Behavior Using Their Trajectories

A Case Study of Gender Specific Trajectory Trends
  • Ilya Ardakani
  • Koichi HashimotoEmail author
  • Ken Yoda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10922)

Abstract

Generally, behavior and movement could be closely attributed with each other. In other words, in most cases, behavior expressed as a set of specific movement patterns in time. These movement traces or trajectories representing behavior could provide a window into the underlying state of the subjects. In this study, analogies drawn between text and trajectories which allowed us to employ sentiment analysis and topic model methods to analyze trajectories. It is assumed that trajectories consist of key points which are commonly and frequently traversed. It is proposed that analogously in trajectory analysis, key points frequency would encapsulate information about the subject or the key points in trajectory generated by latent distribution which attributed to certain behavior or specific group of subjects with similar behavioral features. To test this hypothesis, an experiment was conducted which examines the influence of gender in composition of key points in birds’ trajectories logged from a seabird species called Streaked Shearwater Calonectris leucomelas. It was shown that genders have specific distribution over the key points. Therefore, key points membership in trajectory could be attributed to a specific gender and even a simple classifier would provide information about the gender of the subject simply by observing the trajectory’s key points. It was concluded that like text, trajectories composed of smaller elements which could be associated to a specific latent state. Learning or exploiting these associations revealed essential information about identity and behavior of the subject of observation.

Keywords

Animal movement Animal behavior Trajectory mining 

Notes

Acknowledgements

This work is supported by JSPS KAKENHI Grant number 16H06536.

References

  1. 1.
    Ye, Y., Zheng, Y., Chen, Y., Feng, J., Xie, X.: Mining individual life pattern based on location history. In: Tenth International Conference on Mobile Data Management: Systems, Services and Middleware, MDM 2009, 18 May 2009, pp. 1–10. IEEE (2009)Google Scholar
  2. 2.
    Miller, J.A.: Using spatially explicit simulated data to analyze animal interactions: a case study with brown hyenas in Northern Botswana. Trans. GIS 16(3), 271–291 (2012)CrossRefGoogle Scholar
  3. 3.
    Nathan, R., Getz, W.M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D., Smouse, P.E.: A movement ecology paradigm for unifying organismal movement research. Proc. Nat. Acad. Sci. 105(49), 19052–19059 (2008)CrossRefGoogle Scholar
  4. 4.
    Cagnacci, F., Boitani, L., Powell, R.A., Boyce, M.S.: Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 2157–2162 (2010)CrossRefGoogle Scholar
  5. 5.
    Demšar, U., Buchin, K., Cagnacci, F., Safi, K., Speckmann, B., Van de Weghe, N., Weiskopf, D., Weibel, R.: Analysis and visualisation of movement: an interdisciplinary review. Mov. Ecol. 3(1), 5 (2015)CrossRefGoogle Scholar
  6. 6.
    Adrienko, N., Adrienko, G.: Spatial generalization and aggregation of massive movement data. IEEE Trans. Visual Comput. Graphics 17(2), 205–219 (2011)CrossRefGoogle Scholar
  7. 7.
    Ryan, T.J., Conner, C.A., Douthitt, B.A., Sterrett, S.C., Salsbury, C.M.: Movement and habitat use of two aquatic turtles (Graptemys geographica and Trachemys scripta) in an urban landscape. Urban Ecosyst. 11(2), 213–225 (2008)CrossRefGoogle Scholar
  8. 8.
    Jaeger, C.P., Cobb, V.A.: Comparative spatial ecologies of female painted turtles (Chrysemys picta) and red-eared sliders (Trachemys scripta) at Reelfoot Lake, Tennessee. Chelonian Conserv. Biol. 11(1), 59–67 (2012)CrossRefGoogle Scholar
  9. 9.
    Matsumoto, K., Oka, N., Ochi, D., Muto, F., Satoh, T.P., Watanuki, Y.: Foraging behavior and diet of Streaked Shearwaters Calonectris leucomelas rearing chicks on Mikura Island. Ornithological Sci. 11(1), 9–19 (2012)CrossRefGoogle Scholar
  10. 10.
    Tiunov, I., Katin, I., Lee, H., Lee, S., Im, E.: Foraging areas of streaked shearwater Calonectris leucomelas nesting on the Karamzin Island (Peter the Great Bay, East Sea). J. Asia-Pacific Biodivers. 11(1), 25–31 (2017)CrossRefGoogle Scholar
  11. 11.
    Goto, Y., Yoda, K., Sato, K.: Asymmetry hidden in birds’ tracks reveals wind, heading, and orientation ability over the ocean. Sci. Adv. 3(9), e1700097 (2017)CrossRefGoogle Scholar
  12. 12.
    Wikelski, M., Kays, R.W., Kasdin, N.J., Thorup, K., Smith, J.A., Swenson, G.W.: Going wild: what a global small-animal tracking system could do for experimental biologists. J. Exp. Biol. 210(2), 181–186 (2007)CrossRefGoogle Scholar
  13. 13.
    Getz, W.M., Saltz, D.: A framework for generating and analyzing movement paths on ecological landscapes. Proc. Nat. Acad. Sci. 105(49), 19066–19071 (2008)CrossRefGoogle Scholar
  14. 14.
    Fryxell, J.M., Hazell, M., Börger, L., Dalziel, B.D., Haydon, D.T., Morales, J.M., McIntosh, T., Rosatte, R.C.: Multiple movement modes by large herbivores at multiple spatiotemporal scales. Proc. Nat. Acad. Sci. 105(49), 19114–19119 (2008)CrossRefGoogle Scholar
  15. 15.
    Gao, P., Kupfer, J.A., Zhu, X., Guo, D.: Quantifying animal trajectories using spatial aggregation and sequence analysis: a case study of differentiating trajectories of multiple species. Geogr. Anal. 48(3), 275–291 (2016)CrossRefGoogle Scholar
  16. 16.
    Studer, M., Ritschard, G., Gabadinho, A., Müller, N.S.: Discrepancy analysis of state sequences. Sociol. Meth. Res. 40(3), 471–510 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gabadinho, A., Ritschard, G., Mueller, N.S., Studer, M.: Analyzing and visualizing state sequences in R with TraMineR. J. Stat. Softw. 40(4), 1–37 (2011)CrossRefGoogle Scholar
  18. 18.
    Brillinger, D.R., Preisler, H.K., Ager, A.A., Kie, J.G.: An exploratory data analysis (EDA) of the paths of moving animals. J. Stat. Planning Infer. 122(1), 43–63 (2004)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Bowyer, R.T.: Sexual segregation in Southern Mule deer. J. Mammal. 65(3), 410–417 (1984)CrossRefGoogle Scholar
  20. 20.
    Stewart, K.M., Fulbright, T.E., Drawe, D.L., Bowyer, R.T.: Sexual segregation in white-tailed deer: responses to habitat manipulations. Wildlife Soc. Bull. 1, 1210–1217 (2003)Google Scholar
  21. 21.
    Beier, P.: Sex differences in quality of white-tailed deer diets. J. Mammal. 68(2), 323–329 (1987)CrossRefGoogle Scholar
  22. 22.
    Yoda, K., Shiomi, K., Sato, K.: Foraging spots of streaked shearwaters in relation to ocean surface currents as identified using their drift movements. Prog. Oceanogr. 31(122), 54–64 (2014)CrossRefGoogle Scholar
  23. 23.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD 1996, vol. 96(34), pp. 226–231, 2 August 1996Google Scholar
  24. 24.
    Wu, H.C., Luk, R.W., Wong, K.F., Kwok, K.L.: Interpreting tf-idf term weights as making relevance decisions. ACM Trans. Inf. Syst. (TOIS) 26(3), 13 (2008)CrossRefGoogle Scholar
  25. 25.
    Blei, D., Carin, L., Dunson, D.: Probabilistic topic models. IEEE Sig. Process. Mag. 27(6), 55–65 (2010)Google Scholar
  26. 26.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  27. 27.
    Da Silva, N.F., Hruschka, E.R., Hruschka, E.R.: Tweet sentiment analysis with classifier ensembles. Decis. Support Syst. 31(66), 170–179 (2014)CrossRefGoogle Scholar
  28. 28.
    Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: LREC 2010, vol. 10, May 19 2010Google Scholar
  29. 29.
    Aldous, D.J.: Exchangeability and related topics. In: Hennequin, P.L. (ed.) École d’Été de Probabilités de Saint-Flour XIII — 1983. LNM, vol. 1117, pp. 1–198. Springer, Heidelberg (1985).  https://doi.org/10.1007/BFb0099421CrossRefGoogle Scholar
  30. 30.
    Go, A., Huang, L., Bhayani, R.: Twitter sentiment analysis. Entropy 6(17), 252 (2009)Google Scholar
  31. 31.
    Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Mining interesting locations and travel sequences from GPS trajectories. In: Proceedings of the 18th International Conference on World Wide Web 2009, pp. 791–800. ACM, 20 April 2009Google Scholar
  32. 32.
    Scikit-learn manual. Section 4.2: Feature extraction. http://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction. Accessed 24 Jan 2018
  33. 33.
    Zhang, H.: The optimality of naive Bayes. AA 1(2), 3 (2004)Google Scholar
  34. 34.
    Zadrozny, B., Elkan, C.: Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers. In: ICML 2001, vol. 1, pp. 609–616, 28 June 2001Google Scholar
  35. 35.
    Zadrozny, B., Elkan, C.: Transforming classifier scores into accurate multiclass probability estimates. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 694–699. ACM, 23 July 2002Google Scholar
  36. 36.
    Platt, J.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classifiers 10(3), 61–74 (1999)Google Scholar
  37. 37.
    Niculescu-Mizil, A., Caruana, R.: Predicting good probabilities with supervised learning. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 625–632. ACM, 7 August 2005Google Scholar
  38. 38.
    Matthews, B.W.: Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Struct. 405(2), 442–451 (1975)CrossRefGoogle Scholar
  39. 39.
    Boughorbel, S., Jarray, F., El-Anbari, M.: Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric. PLoS One 12(6), e0177678 (2017)CrossRefGoogle Scholar
  40. 40.
    Hoffman, M., Bach, F.R., Blei, D.M.: Online learning for latent Dirichlet allocation. In: Advances in Neural Information Processing Systems, pp. 856–864 (2010)Google Scholar
  41. 41.
    YODA Lab Homepage. Ethology and Ecology, Nagoya University. http://yoda-ken.sakura.ne.jp/yoda_lab/Home.html. Accessed 24 Jan 2018
  42. 42.
    Arima, H., Sugawa, H.: Correlation between the pitch of calls and external measurements of Streaked Shearwaters Calonectris leucomelas breeding on Kanmuri Island. Jpn. J. Ornithol. 53(1), 40–44 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of System Information Sciences, Graduate School of Information SciencesTohoku UniversitySendaiJapan
  2. 2.Department of Behavior and Evolution, Graduate School of Environmental StudiesNagoya UniversityNagoyaJapan

Personalised recommendations