Advertisement

Modulation of the Core Neural Network in Stress: The Role of Endocannabinoids and LTD

  • Maxwell Bennett
  • Jim Lagopoulos
Chapter

Abstract

Both clinical and animal studies point to the importance of endocannabiniods in extinction (Sect. 5.1.1). Single nucleotide polymorphisms in pathways controlling endocannabinoids have profound effects on the level of these in the amygdala in response to stress (Sect. 5.1.2). The core network controlling the responses to stress in the amygdala is of major interest in this review, particularly in the context of extinction, for which we now have considerable insights from animal studies (Sect. 5.1.3). These, together with clinical observations, indicate that endocannabinoids and BDNF may act together in a feedback pathway that sustains the level of the former and therefore the extent and duration of extinction (Sect. 5.1.4).

References

  1. Aerni A, Traber R, Hock C, Roozendaal B, Schelling G, Papassotiropoulos A et al (2004) Low-dose cortisol for symptoms of posttraumatic stress disorder. Am J Psychiatry 161(8):1488–1490.  https://doi.org/10.1176/appi.ajp.161.8.1488 PubMedCrossRefGoogle Scholar
  2. Alonso M, Medina JH, Pozzo-Miller L (2004) ERK1/2 activation is necessary for BDNF to increase dendritic spine density in hippocampal CA1 pyramidal neurons. Learn Mem 11(2):172–178.  https://doi.org/10.1101/lm.67804 PubMedPubMedCentralCrossRefGoogle Scholar
  3. An B, Hong I, Choi S (2012) Long-term neural correlates of reversible fear learning in the lateral amygdala. J Neurosci 32(47):16845–16856.  https://doi.org/10.1523/JNEUROSCI.3017-12.2012 PubMedCrossRefGoogle Scholar
  4. Anastasio TJ (2013) Computational search for hypotheses concerning the endocannabinoid contribution to the extinction of fear conditioning. Front Comput Neurosci 7:74.  https://doi.org/10.3389/fncom.2013.00074 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Andero R, Ressler KJ (2012) Fear extinction and BDNF: translating animal models of PTSD to the clinic. Genes Brain Behav 11(5):503–512.  https://doi.org/10.1111/j.1601-183X.2012.00801.x PubMedPubMedCentralCrossRefGoogle Scholar
  6. Atsak P, Hauer D, Campolongo P, Schelling G, Fornari RV, Roozendaal B (2015) Endocannabinoid signaling within the basolateral amygdala integrates multiple stress hormone effects on memory consolidation. Neuropsychopharmacology 40(6):1485–1494.  https://doi.org/10.1038/npp.2014.334 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Azad SC, Eder M, Marsicano G, Lutz B, Zieglgänsberger W, Rammes G (2003) Activation of the cannabinoid receptor type 1 decreases glutamatergic and GABAergic synaptic transmission in the lateral amygdala of the mouse. Learn Mem 10(2):116–128.  https://doi.org/10.1101/lm.53303 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Banke TG, Bowie D, Lee H, Huganir RL, Schousboe A, Traynelis SF (2000) Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J Neurosci 20(1):89–102PubMedCrossRefGoogle Scholar
  9. Barrett D, Gonzalez-Lima F (2004) Behavioral effects of metyrapone on Pavlovian extinction. Neurosci Lett 371(2–3):91–96.  https://doi.org/10.1016/j.neulet.2004.08.046 PubMedCrossRefGoogle Scholar
  10. Barria A, Derkach V, Soderling T (1997) Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptor. J Biol Chem 272(52):32727–32730PubMedCrossRefGoogle Scholar
  11. Baudier J, Deloulme JC, Van Dorsselaer A, Black D, Matthes HW (1991) Purification and characterization of a brain-specific protein kinase C substrate, neurogranin (p17). Identification of a consensus amino acid sequence between neurogranin and neuromodulin (GAP43) that corresponds to the protein kinase C phosphorylation site and the calmodulin-binding domain. J Biol Chem 266(1):229–237PubMedGoogle Scholar
  12. Bear MF, Cooper LN, Ebner FF (1987) A physiological basis for a theory of synapse modification. Science 237(4810):42–48PubMedCrossRefGoogle Scholar
  13. Beattie EC, Carroll RC, Yu X, Morishita W, Yasuda H, von Zastrow M, Malenka RC (2000) Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nat Neurosci 3(12):1291–1300.  https://doi.org/10.1038/81823 PubMedCrossRefGoogle Scholar
  14. Bellot A, Guivernau B, Tajes M, Bosch-Morato M, Valls-Comamala V, Munoz FJ (2014) The structure and function of actin cytoskeleton in mature glutamatergic dendritic spines. Brain Res 1573:1–16.  https://doi.org/10.1016/j.brainres.2014.05.024 PubMedCrossRefGoogle Scholar
  15. Bennett MR, Lagopoulos J (2014) Stress and trauma: BDNF control of dendritic-spine formation and regression. Prog Neurobiol 112:80–99.  https://doi.org/10.1016/j.pneurobio.2013.10.005 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bennett MR, Hatton SN, Lagopoulos J (2016) Stress, trauma and PTSD: translational insights into the core synaptic circuitry and its modulation. Brain Struct Funct 221(5):2401–2426.  https://doi.org/10.1007/s00429-015-1056-1 PubMedCrossRefGoogle Scholar
  17. Bennett MR, Arnold J, Hatton SN, Lagopoulos J (2017) Regulation of fear extinction by long-term depression: the roles of endocannabinoids and brain derived neurotrophic factor. Behav Brain Res 319:148–164.  https://doi.org/10.1016/j.bbr.2016.11.029 PubMedCrossRefGoogle Scholar
  18. Bitencourt RM, Pamplona FA, Takahashi RN (2014) Corticosteroid-endocannabinoid loop supports decrease of fear-conditioned response in rats. Eur Neuropsychopharmacol 24(7):1091–1102.  https://doi.org/10.1016/j.euroneuro.2014.01.010 PubMedCrossRefGoogle Scholar
  19. Blair HT, Schafe GE, Bauer EP, Rodrigues SM, LeDoux JE (2001) Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn Mem 8(5):229–242.  https://doi.org/10.1101/lm.30901 PubMedCrossRefGoogle Scholar
  20. Blundell J, Blaiss CA, Lagace DC, Eisch AJ, Powell CM (2011) Block of glucocorticoid synthesis during re-activation inhibits extinction of an established fear memory. Neurobiol Learn Mem 95(4):453–460.  https://doi.org/10.1016/j.nlm.2011.02.006 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bohme GA, Laville M, Ledent C, Parmentier M, Imperato A (2000) Enhanced long-term potentiation in mice lacking cannabinoid CB1 receptors. Neuroscience 95(1):5–7PubMedCrossRefGoogle Scholar
  22. Bourne JN, Harris KM (2008) Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci 31:47–67.  https://doi.org/10.1146/annurev.neuro.31.060407.125646 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bourne JN, Sorra KE, Hurlburt J, Harris KM (2007) Polyribosomes are increased in spines of CA1 dendrites 2 h after the induction of LTP in mature rat hippocampal slices. Hippocampus 17(1):1–4.  https://doi.org/10.1002/hipo.20238 PubMedCrossRefGoogle Scholar
  24. Bouton ME, King DA (1983) Contextual control of the extinction of conditioned fear: tests for the associative value of the context. J Exp Psychol Anim Behav Process 9(3):248–265PubMedCrossRefGoogle Scholar
  25. Bramham CR (2008) Local protein synthesis, actin dynamics, and LTP consolidation. Curr Opin Neurobiol 18(5):524–531.  https://doi.org/10.1016/j.conb.2008.09.013 PubMedCrossRefGoogle Scholar
  26. Bramham CR, Wells DG (2007) Dendritic mRNA: transport, translation and function. Nat Rev Neurosci 8(10):776–789.  https://doi.org/10.1038/nrn2150 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Bukalo O, Pinard CR, Holmes A (2014) Mechanisms to medicines: elucidating neural and molecular substrates of fear extinction to identify novel treatments for anxiety disorders. Br J Pharmacol 171(20):4690–4718.  https://doi.org/10.1111/bph.12779 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Bukalo O, Pinard CR, Silverstein S, Brehm C, Hartley ND, Whittle N et al (2015) Prefrontal inputs to the amygdala instruct fear extinction memory formation. Sci Adv 1(6):e1500251.  https://doi.org/10.1126/sciadv.1500251 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Burgos-Robles A, Vidal-Gonzalez I, Santini E, Quirk GJ (2007) Consolidation of fear extinction requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron 53(6):871–880.  https://doi.org/10.1016/j.neuron.2007.02.021 CrossRefGoogle Scholar
  30. Cameron C, Watson D, Robinson J (2014) Use of a synthetic cannabinoid in a correctional population for posttraumatic stress disorder-related insomnia and nightmares, chronic pain, harm reduction, and other indications: a retrospective evaluation. J Clin Psychopharmacol 34(5):559–564.  https://doi.org/10.1097/JCP.0000000000000180 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Campolongo P, Roozendaal B, Trezza V, Hauer D, Schelling G, McGaugh JL, Cuomo V (2009) Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory. Proc Natl Acad Sci USA 106(12):4888–4893.  https://doi.org/10.1073/pnas.0900835106 PubMedCrossRefGoogle Scholar
  32. Carr DW, Stofko-Hahn RE, Fraser ID, Cone RD, Scott JD (1992) Localization of the cAMP-dependent protein kinase to the postsynaptic densities by A-kinase anchoring proteins. Characterization of AKAP 79. J Biol Chem 267(24):16816–16823PubMedGoogle Scholar
  33. Chapleau CA, Pozzo-Miller L (2012) Divergent roles of p75NTR and Trk receptors in BDNF’s effects on dendritic spine density and morphology. Neural Plast 2012:578057.  https://doi.org/10.1155/2012/578057 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Chen L, Chetkovich DM, Petralia RS, Sweeney NT, Kawasaki Y, Wenthold RJ et al (2000) Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 408(6815):936–943.  https://doi.org/10.1038/35050030 PubMedCrossRefGoogle Scholar
  35. Chevaleyre V, Heifets BD, Kaeser PS, Sudhof TC, Castillo PE (2007) Endocannabinoid-mediated long-term plasticity requires cAMP/PKA signaling and RIM1alpha. Neuron 54(5):801–812.  https://doi.org/10.1016/j.neuron.2007.05.020 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Chhatwal JP, Davis M, Maguschak KA, Ressler KJ (2005) Enhancing cannabinoid neurotransmission augments the extinction of conditioned fear. Neuropsychopharmacology 30(3):516–524.  https://doi.org/10.1038/sj.npp.1300655 PubMedCrossRefGoogle Scholar
  37. Chhatwal JP, Stanek-Rattiner L, Davis M, Ressler KJ (2006) Amygdala BDNF signaling is required for consolidation but not encoding of extinction. Nat Neurosci 9(7):870–872.  https://doi.org/10.1038/nn1718 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Cho JH, Deisseroth K, Bolshakov VY (2013) Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron 80(6):1491–1507.  https://doi.org/10.1016/j.neuron.2013.09.025 PubMedCrossRefGoogle Scholar
  39. Chouker A, Kaufmann I, Kreth S, Hauer D, Feuerecker M, Thieme D et al (2010) Motion sickness, stress and the endocannabinoid system. PLoS One 5(5):e10752.  https://doi.org/10.1371/journal.pone.0010752 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Christensen R, Kristensen PK, Bartels EM, Bliddal H, Astrup A (2007) Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 370(9600):1706–1713.  https://doi.org/10.1016/s0140-6736(07)61721-8 PubMedCrossRefGoogle Scholar
  41. Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33(1):18–41.  https://doi.org/10.1038/sj.npp.1301559 PubMedCrossRefGoogle Scholar
  42. Clay R, Hebert M, Gill G, Stapleton LA, Pridham A, Coady M et al (2011) Glucocorticoids are required for extinction of predator stress-induced hyperarousal. Neurobiol Learn Mem 96(2):367–377.  https://doi.org/10.1016/j.nlm.2011.06.012 PubMedCrossRefGoogle Scholar
  43. Collins DR, Pare D (1999) Spontaneous and evoked activity of intercalated amygdala neurons. Eur J Neurosci 11(10):3441–3448PubMedCrossRefGoogle Scholar
  44. Collins DR, Pertwee RG, Davies SN (1995) Prevention by the cannabinoid antagonist, SR141716A, of cannabinoid-mediated blockade of long-term potentiation in the rat hippocampal slice. Br J Pharmacol 115(6):869–870PubMedPubMedCentralCrossRefGoogle Scholar
  45. Coultrap SJ, Bayer KU (2012) CaMKII regulation in information processing and storage. Trends Neurosci 35(10):607–618.  https://doi.org/10.1016/j.tins.2012.05.003 PubMedPubMedCentralCrossRefGoogle Scholar
  46. D’Souza DC, Pittman B, Perry E, Simen A (2009) Preliminary evidence of cannabinoid effects on brain-derived neurotrophic factor (BDNF) levels in humans. Psychopharmacology 202(4):569–578.  https://doi.org/10.1007/s00213-008-1333-2 PubMedCrossRefGoogle Scholar
  47. Davis M (1992) The role of the amygdala in fear and anxiety. Annu Rev Neurosci 15:353–375.  https://doi.org/10.1146/annurev.neuro.15.1.353 PubMedCrossRefGoogle Scholar
  48. Davis M, Whalen PJ (2001) The amygdala: vigilance and emotion. Mol Psychiatry 6(1):13–34PubMedCrossRefGoogle Scholar
  49. de Bitencourt RM, Pamplona FA, Takahashi RN (2013) A current overview of cannabinoids and glucocorticoids in facilitating extinction of aversive memories: potential extinction enhancers. Neuropharmacology 64:389–395.  https://doi.org/10.1016/j.neuropharm.2012.05.039 PubMedCrossRefGoogle Scholar
  50. De Oliveira Alvares L, Genro BP, Diehl F, Quillfeldt JA (2008) Differential role of the hippocampal endocannabinoid system in the memory consolidation and retrieval mechanisms. Neurobiol Learn Mem 90(1):1–9.  https://doi.org/10.1016/j.nlm.2008.01.009 PubMedCrossRefGoogle Scholar
  51. de Quervain DJ, Bentz D, Michael T, Bolt OC, Wiederhold BK, Margraf J, Wilhelm FH (2011) Glucocorticoids enhance extinction-based psychotherapy. Proc Natl Acad Sci USA 108(16):6621–6625.  https://doi.org/10.1073/pnas.1018214108 PubMedCrossRefGoogle Scholar
  52. Derkinderen P, Ledent C, Parmentier M, Girault JA (2001) Cannabinoids activate p38 mitogen-activated protein kinases through CB1 receptors in hippocampus. J Neurochem 77(3):957–960PubMedCrossRefGoogle Scholar
  53. Derkinderen P, Valjent E, Toutant M, Corvol J-C, Enslen H, Ledent C et al (2003) Regulation of extracellular signal-regulated kinase by cannabinoids in hippocampus. J Neurosci 23(6):2371PubMedCrossRefGoogle Scholar
  54. Di Marzo V, Melck D, Bisogno T, De Petrocellis L (1998) Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. Trends Neurosci 21(12):521–528PubMedCrossRefGoogle Scholar
  55. Di S, Malcher-Lopes R, Halmos KC, Tasker JG (2003) Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J Neurosci 23(12):4850–4857PubMedCrossRefGoogle Scholar
  56. Dincheva I, Drysdale AT, Hartley CA, Johnson DC, Jing D, King EC et al (2015) FAAH genetic variation enhances fronto-amygdala function in mouse and human. Nat Commun 6:6395.  https://doi.org/10.1038/ncomms7395 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Dixon RM, Mellor JR, Hanley JG (2009) PICK1-mediated glutamate receptor subunit 2 (GluR2) trafficking contributes to cell death in oxygen/glucose-deprived hippocampal neurons. J Biol Chem 284(21):14230–14235.  https://doi.org/10.1074/jbc.M901203200 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Dlugos A, Childs E, Stuhr KL, Hillard CJ, de Wit H (2012) Acute stress increases circulating anandamide and other N-acylethanolamines in healthy humans. Neuropsychopharmacology 37(11):2416–2427.  https://doi.org/10.1038/npp.2012.100 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Domenici MR, Azad SC, Marsicano G, Schierloh A, Wotjak CT, Dodt HU et al (2006) Cannabinoid receptor type 1 located on presynaptic terminals of principal neurons in the forebrain controls glutamatergic synaptic transmission. J Neurosci 26(21):5794–5799.  https://doi.org/10.1523/jneurosci.0372-06.2006 PubMedCrossRefGoogle Scholar
  60. Engert F, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399(6731):66–70.  https://doi.org/10.1038/19978 PubMedCrossRefGoogle Scholar
  61. Falls WA, Miserendino MJ, Davis M (1992) Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. J Neurosci 12(3):854–863PubMedCrossRefGoogle Scholar
  62. Finkbeiner S, Tavazoie SF, Maloratsky A, Jacobs KM, Harris KM, Greenberg ME (1997) CREB: a major mediator of neuronal neurotrophin responses. Neuron 19(5):1031–1047PubMedCrossRefGoogle Scholar
  63. Fischer M, Kaech S, Knutti D, Matus A (1998) Rapid actin-based plasticity in dendritic spines. Neuron 20(5):847–854PubMedCrossRefGoogle Scholar
  64. Fitzgerald PJ, Whittle N, Flynn SM, Graybeal C, Pinard CR, Gunduz-Cinar O et al (2014) Prefrontal single-unit firing associated with deficient extinction in mice. Neurobiol Learn Mem 113:69–81.  https://doi.org/10.1016/j.nlm.2013.11.002 PubMedCrossRefGoogle Scholar
  65. Fraser GA (2009) The use of a synthetic cannabinoid in the management of treatment-resistant nightmares in posttraumatic stress disorder (PTSD). CNS Neurosci Ther 15(1):84–88.  https://doi.org/10.1111/j.1755-5949.2008.00071.x PubMedCrossRefGoogle Scholar
  66. Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83(3):1017–1066.  https://doi.org/10.1152/physrev.00004.2003 PubMedCrossRefGoogle Scholar
  67. Fukazawa Y, Saitoh Y, Ozawa F, Ohta Y, Mizuno K, Inokuchi K (2003) Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38(3):447–460PubMedCrossRefGoogle Scholar
  68. Ganon-Elazar E, Akirav I (2013) Cannabinoids and traumatic stress modulation of contextual fear extinction and GR expression in the amygdala-hippocampal-prefrontal circuit. Psychoneuroendocrinology 38(9):1675–1687.  https://doi.org/10.1016/j.psyneuen.2013.01.014 PubMedCrossRefGoogle Scholar
  69. Gomez LL, Alam S, Smith KE, Horne E, Dell’Acqua ML (2002) Regulation of A-kinase anchoring protein 79/150-cAMP-dependent protein kinase postsynaptic targeting by NMDA receptor activation of calcineurin and remodeling of dendritic actin. J Neurosci 22(16):7027–7044.  https://doi.org/10.1523/JNEUROSCI.22-16-07027.2002 PubMedCrossRefGoogle Scholar
  70. Gong JP, Onaivi ES, Ishiguro H, Liu QR, Tagliaferro PA, Brusco A, Uhl GR (2006) Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res 1071(1):10–23.  https://doi.org/10.1016/j.brainres.2005.11.035 PubMedCrossRefGoogle Scholar
  71. Gorzalka BB, Hill MN, Hillard CJ (2008) Regulation of endocannabinoid signaling by stress: implications for stress-related affective disorders. Neurosci Biobehav Rev 32(6):1152–1160.  https://doi.org/10.1016/j.neubiorev.2008.03.004 PubMedCrossRefGoogle Scholar
  72. Gunduz-Cinar O, MacPherson KP, Cinar R, Gamble-George J, Sugden K, Williams B et al (2013) Convergent translational evidence of a role for anandamide in amygdala-mediated fear extinction, threat processing and stress-reactivity. Mol Psychiatry 18(7):813–823.  https://doi.org/10.1038/mp.2012.72 PubMedCrossRefGoogle Scholar
  73. Hall J, Thomas KL, Everitt BJ (2001) Fear memory retrieval induces CREB phosphorylation and Fos expression within the amygdala. Eur J Neurosci 13(7):1453–1458PubMedCrossRefGoogle Scholar
  74. Hampson RE, Deadwyler SA (1998) Role of cannabinoid receptors in memory storage. Neurobiol Dis 5(6 Pt B):474–482.  https://doi.org/10.1006/nbdi.1998.0223 PubMedCrossRefGoogle Scholar
  75. Han JH, Kushner SA, Yiu AP, Cole CJ, Matynia A, Brown RA et al (2007) Neuronal competition and selection during memory formation. Science 316(5823):457–460.  https://doi.org/10.1126/science.1139438 PubMedCrossRefGoogle Scholar
  76. Hariri AR, Gorka A, Hyde LW, Kimak M, Halder I, Ducci F et al (2009) Divergent effects of genetic variation in endocannabinoid signaling on human threat- and reward-related brain function. Biol Psychiatry 66(1):9–16.  https://doi.org/10.1016/j.biopsych.2008.10.047 PubMedCrossRefGoogle Scholar
  77. Haubensak W, Kunwar PS, Cai H, Ciocchi S, Wall NR, Ponnusamy R et al (2010) Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468(7321):270–276.  https://doi.org/10.1038/nature09553 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Hauer D, Weis F, Campolongo P, Schopp M, Beiras-Fernandez A, Strewe C et al (2012) Glucocorticoid-endocannabinoid interaction in cardiac surgical patients: relationship to early cognitive dysfunction and late depression. Rev Neurosci 23(5–6):681–690.  https://doi.org/10.1515/revneuro-2012-0058 PubMedCrossRefGoogle Scholar
  79. Hauer D, Schelling G, Gola H, Campolongo P, Morath J, Roozendaal B et al (2013) Plasma concentrations of endocannabinoids and related primary fatty acid amides in patients with post-traumatic stress disorder. PLoS One 8(5):e62741.  https://doi.org/10.1371/journal.pone.0062741 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Hausser M, Clark BA (1997) Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19(3):665–678PubMedCrossRefGoogle Scholar
  81. Havik B, Rokke H, Bardsen K, Davanger S, Bramham CR (2003) Bursts of high-frequency stimulation trigger rapid delivery of pre-existing alpha-CaMKII mRNA to synapses: a mechanism in dendritic protein synthesis during long-term potentiation in adult awake rats. Eur J Neurosci 17(12):2679–2689PubMedCrossRefGoogle Scholar
  82. Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287(5461):2262–2267PubMedCrossRefGoogle Scholar
  83. He Y, Kulasiri D, Samarasinghe S (2014) Systems biology of synaptic plasticity: a review on N-methyl-D-aspartate receptor mediated biochemical pathways and related mathematical models. Biosystems 122:7–18.  https://doi.org/10.1016/j.biosystems.2014.06.005 PubMedCrossRefGoogle Scholar
  84. Heldt SA, Stanek L, Chhatwal JP, Ressler KJ (2007) Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol Psychiatry 12(7):656–670.  https://doi.org/10.1038/sj.mp.4001957 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Helmstetter FJ, Bellgowan PS (1994) Effects of muscimol applied to the basolateral amygdala on acquisition and expression of contextual fear conditioning in rats. Behav Neurosci 108(5):1005–1009PubMedCrossRefGoogle Scholar
  86. Herry C, Trifilieff P, Micheau J, Luthi A, Mons N (2006) Extinction of auditory fear conditioning requires MAPK/ERK activation in the basolateral amygdala. Eur J Neurosci 24(1):261–269.  https://doi.org/10.1111/j.1460-9568.2006.04893.x PubMedCrossRefGoogle Scholar
  87. Herry C, Ciocchi S, Senn V, Demmou L, Muller C, Luthi A (2008) Switching on and off fear by distinct neuronal circuits. Nature 454(7204):600–606.  https://doi.org/10.1038/nature07166 PubMedCrossRefGoogle Scholar
  88. Heyman E, Gamelin FX, Goekint M, Piscitelli F, Roelands B, Leclair E et al (2012) Intense exercise increases circulating endocannabinoid and BDNF levels in humans—possible implications for reward and depression. Psychoneuroendocrinology 37(6):844–851.  https://doi.org/10.1016/j.psyneuen.2011.09.017 PubMedCrossRefGoogle Scholar
  89. Hill MN, Karatsoreos IN, Hillard CJ, McEwen BS (2010) Rapid elevations in limbic endocannabinoid content by glucocorticoid hormones in vivo. Psychoneuroendocrinology 35(9):1333–1338.  https://doi.org/10.1016/j.psyneuen.2010.03.005 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Hill MN, Hillard CJ, McEwen BS (2011) Alterations in corticolimbic dendritic morphology and emotional behavior in cannabinoid CB1 receptor-deficient mice parallel the effects of chronic stress. Cereb Cortex 21(9):2056–2064.  https://doi.org/10.1093/cercor/bhq280 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Hill MN, Bierer LM, Makotkine I, Golier JA, Galea S, McEwen BS et al (2013a) Reductions in circulating endocannabinoid levels in individuals with post-traumatic stress disorder following exposure to the World Trade Center attacks. Psychoneuroendocrinology 38(12):2952–2961.  https://doi.org/10.1016/j.psyneuen.2013.08.004 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Hill MN, Kumar SA, Filipski SB, Iverson M, Stuhr KL, Keith JM et al (2013b) Disruption of fatty acid amide hydrolase activity prevents the effects of chronic stress on anxiety and amygdalar microstructure. Mol Psychiatry 18(10):1125–1135.  https://doi.org/10.1038/mp.2012.90 PubMedCrossRefGoogle Scholar
  93. Hodges JL, Newell-Litwa K, Asmussen H, Vicente-Manzanares M, Horwitz AR (2011) Myosin IIb activity and phosphorylation status determines dendritic spine and post-synaptic density morphology. PLoS One 6(8):e24149.  https://doi.org/10.1371/journal.pone.0024149 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Holmes A, Fitzgerald PJ, MacPherson KP, DeBrouse L, Colacicco G, Flynn SM et al (2012) Chronic alcohol remodels prefrontal neurons and disrupts NMDAR-mediated fear extinction encoding. Nat Neurosci 15(10):1359–1361.  https://doi.org/10.1038/nn.3204 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Hong I, Song B, Lee S, Kim J, Kim J, Choi S (2009) Extinction of cued fear memory involves a distinct form of depotentiation at cortical input synapses onto the lateral amygdala. Eur J Neurosci 30(11):2089–2099.  https://doi.org/10.1111/j.1460-9568.2009.07004.x PubMedCrossRefGoogle Scholar
  96. Hong I, Kim J, Kim J, Lee S, Ko HG, Nader K et al (2013) AMPA receptor exchange underlies transient memory destabilization on retrieval. Proc Natl Acad Sci USA 110(20):8218–8223.  https://doi.org/10.1073/pnas.1305235110 PubMedCrossRefGoogle Scholar
  97. Hu X, Ballo L, Pietila L, Viesselmann C, Ballweg J, Lumbard D et al (2011) BDNF-induced increase of PSD-95 in dendritic spines requires dynamic microtubule invasions. J Neurosci 31(43):15597–15603.  https://doi.org/10.1523/JNEUROSCI.2445-11.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Hugues S, Chessel A, Lena I, Marsault R, Garcia R (2006) Prefrontal infusion of PD098059 immediately after fear extinction training blocks extinction-associated prefrontal synaptic plasticity and decreases prefrontal ERK2 phosphorylation. Synapse 60(4):280–287.  https://doi.org/10.1002/syn.20291 PubMedCrossRefGoogle Scholar
  99. Humeau Y, Herry C, Kemp N, Shaban H, Fourcaudot E, Bissiere S, Luthi A (2005) Dendritic spine heterogeneity determines afferent-specific Hebbian plasticity in the amygdala. Neuron 45(1):119–131.  https://doi.org/10.1016/j.neuron.2004.12.019 PubMedCrossRefGoogle Scholar
  100. Impey S, Obrietan K, Storm DR (1999) Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. Neuron 23(1):11–14PubMedCrossRefGoogle Scholar
  101. Jetly R, Heber A, Fraser G, Boisvert D (2015) The efficacy of nabilone, a synthetic cannabinoid, in the treatment of PTSD-associated nightmares: a preliminary randomized, double-blind, placebo-controlled cross-over design study. Psychoneuroendocrinology 51:585–588.  https://doi.org/10.1016/j.psyneuen.2014.11.002 PubMedCrossRefGoogle Scholar
  102. Kamprath K, Marsicano G, Tang J, Monory K, Bisogno T, Di Marzo V et al (2006) Cannabinoid CB1 receptor mediates fear extinction via habituation-like processes. J Neurosci 26(25):6677–6686.  https://doi.org/10.1523/JNEUROSCI.0153-06.2006 PubMedCrossRefGoogle Scholar
  103. Kang H, Schuman EM (1995) Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267(5204):1658–1662PubMedCrossRefGoogle Scholar
  104. Kano M (2014) Control of synaptic function by endocannabinoid-mediated retrograde signaling. Proc Jpn Acad Ser B Phys Biol Sci 90(7):235–250PubMedPubMedCentralCrossRefGoogle Scholar
  105. Karanian DA, Brown QB, Makriyannis A, Bahr BA (2005) Blocking cannabinoid activation of FAK and ERK1/2 compromises synaptic integrity in hippocampus. Eur J Pharmacol 508(1–3):47–56.  https://doi.org/10.1016/j.ejphar.2004.12.009 PubMedCrossRefGoogle Scholar
  106. Katona I, Rancz EA, Acsady L, Ledent C, Mackie K, Hajos N, Freund TF (2001) Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission. J Neurosci 21(23):9506–9518PubMedCrossRefGoogle Scholar
  107. Kelly A, Lynch MA (2000) Long-term potentiation in dentate gyrus of the rat is inhibited by the phosphoinositide 3-kinase inhibitor, wortmannin. Neuropharmacology 39(4):643–651PubMedCrossRefGoogle Scholar
  108. Kim WJ, Lee MJ, Park MA, Jung JS, Uhlinger DJ, Kwak JY (2000) Dexamethasone enhances phospholipase D activity in M-1 cells. Exp Mol Med 32(3):170–177.  https://doi.org/10.1038/emm.2000.28 PubMedCrossRefGoogle Scholar
  109. Kim J, Lee S, Park K, Hong I, Song B, Son G et al (2007) Amygdala depotentiation and fear extinction. Proc Natl Acad Sci USA 104(52):20955–20960.  https://doi.org/10.1073/pnas.0710548105 PubMedCrossRefGoogle Scholar
  110. Kim J, Kwon JT, Kim HS, Josselyn SA, Han JH (2014) Memory recall and modifications by activating neurons with elevated CREB. Nat Neurosci 17(1):65–72.  https://doi.org/10.1038/nn.3592 PubMedCrossRefGoogle Scholar
  111. Kim J, An B, Kim J, Park S, Park S, Hong I et al (2015) mGluR2/3 in the lateral amygdala is required for fear extinction: cortical input synapses onto the lateral amygdala as a target site of the mGluR2/3 action. Neuropsychopharmacology 40(13):2916–2928.  https://doi.org/10.1038/npp.2015.145 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Kneussel M, Wagner W (2013) Myosin motors at neuronal synapses: drivers of membrane transport and actin dynamics. Nat Rev Neurosci 14(4):233–247.  https://doi.org/10.1038/nrn3445 PubMedCrossRefGoogle Scholar
  113. Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T (1995) Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci USA 92(19):8856–8860PubMedCrossRefGoogle Scholar
  114. Koshimizu H, Kiyosue K, Hara T, Hazama S, Suzuki S, Uegaki K et al (2009) Multiple functions of precursor BDNF to CNS neurons: negative regulation of neurite growth, spine formation and cell survival. Mol Brain 2:27.  https://doi.org/10.1186/1756-6606-2-27 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Kristensen AS, Jenkins MA, Banke TG, Schousboe A, Makino Y, Johnson RC et al (2011) Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating. Nat Neurosci 14(6):727–735.  https://doi.org/10.1038/nn.2804 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Krucker T, Siggins GR, Halpain S (2000) Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc Natl Acad Sci USA 97(12):6856–6861.  https://doi.org/10.1073/pnas.100139797 PubMedCrossRefGoogle Scholar
  117. Kuhnert S, Meyer C, Koch M (2013) Involvement of cannabinoid receptors in the amygdala and prefrontal cortex of rats in fear learning, consolidation, retrieval and extinction. Behav Brain Res 250:274–284.  https://doi.org/10.1016/j.bbr.2013.05.002 PubMedCrossRefGoogle Scholar
  118. Kwapis JL, Helmstetter FJ (2014) Does PKM(zeta) maintain memory? Brain Res Bull 105:36–45.  https://doi.org/10.1016/j.brainresbull.2013.09.005 PubMedCrossRefGoogle Scholar
  119. Kwon JT, Choi JS (2009) Cornering the fear engram: long-term synaptic changes in the lateral nucleus of the amygdala after fear conditioning. J Neurosci 29(31):9700–9703.  https://doi.org/10.1523/jneurosci.5928-08.2009 PubMedCrossRefGoogle Scholar
  120. Kwon HB, Sabatini BL (2011) Glutamate induces de novo growth of functional spines in developing cortex. Nature 474(7349):100–104.  https://doi.org/10.1038/nature09986 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Lafenetre P, Chaouloff F, Marsicano G (2007) The endocannabinoid system in the processing of anxiety and fear and how CB1 receptors may modulate fear extinction. Pharmacol Res 56(5):367–381.  https://doi.org/10.1016/j.phrs.2007.09.006 PubMedCrossRefGoogle Scholar
  122. LaPorte DC, Wierman BM, Storm DR (1980) Calcium-induced exposure of a hydrophobic surface on calmodulin. Biochemistry 19(16):3814–3819PubMedCrossRefGoogle Scholar
  123. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184.  https://doi.org/10.1146/annurev.neuro.23.1.155 PubMedCrossRefGoogle Scholar
  124. Lee S, Kim S-J, Kwon O-B, Lee JH, Kim J-H (2013) Inhibitory networks of the amygdala for emotional memory. Front Neural Circuits 7:129.  https://doi.org/10.3389/fncir.2013.00129 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Lerner TN, Kreitzer AC (2012) RGS4 is required for dopaminergic control of striatal LTD and susceptibility to parkinsonian motor deficits. Neuron 73(2):347–359.  https://doi.org/10.1016/j.neuron.2011.11.015 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Likhtik E, Pelletier JG, Paz R, Pare D (2005) Prefrontal control of the amygdala. J Neurosci 25(32):7429–7437.  https://doi.org/10.1523/JNEUROSCI.2314-05.2005 PubMedCrossRefGoogle Scholar
  127. Lin HC, Mao SC, Chen PS, Gean PW (2008) Chronic cannabinoid administration in vivo compromises extinction of fear memory. Learn Mem 15(12):876–884.  https://doi.org/10.1101/lm.1081908 PubMedCrossRefGoogle Scholar
  128. Lin HC, Mao SC, Gean PW (2009) Block of gamma-aminobutyric acid-A receptor insertion in the amygdala impairs extinction of conditioned fear. Biol Psychiatry 66(7):665–673.  https://doi.org/10.1016/j.biopsych.2009.04.003 PubMedCrossRefGoogle Scholar
  129. Lisman J (1989) A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci USA 86(23):9574–9578PubMedCrossRefGoogle Scholar
  130. Lisman J, Raghavachari S (2006) A unified model of the presynaptic and postsynaptic changes during LTP at CA1 synapses. Sci STKE 2006(356):re11.  https://doi.org/10.1126/stke.3562006re11 PubMedCrossRefGoogle Scholar
  131. Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3(3):175–190.  https://doi.org/10.1038/nrn753 PubMedCrossRefGoogle Scholar
  132. Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35(4):605–623PubMedCrossRefGoogle Scholar
  133. Lutz B (2007) The endocannabinoid system and extinction learning. Mol Neurobiol 36(1):92–101.  https://doi.org/10.1007/s12035-007-8004-x PubMedCrossRefGoogle Scholar
  134. Maison P, Walker DJ, Walsh FS, Williams G, Doherty P (2009) BDNF regulates neuronal sensitivity to endocannabinoids. Neurosci Lett 467(2):90–94.  https://doi.org/10.1016/j.neulet.2009.10.011 PubMedCrossRefGoogle Scholar
  135. Maletic-Savatic M, Malinow R, Svoboda K (1999) Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283(5409):1923–1927PubMedCrossRefGoogle Scholar
  136. Man HY, Sekine-Aizawa Y, Huganir RL (2007) Regulation of {alpha}-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking through PKA phosphorylation of the Glu receptor 1 subunit. Proc Natl Acad Sci USA 104(9):3579–3584.  https://doi.org/10.1073/pnas.0611698104 PubMedCrossRefGoogle Scholar
  137. Maren S (1996) Synaptic transmission and plasticity in the amygdala. An emerging physiology of fear conditioning circuits. Mol Neurobiol 13(1):1–22.  https://doi.org/10.1007/BF02740749 PubMedCrossRefGoogle Scholar
  138. Maren S (1999) Long-term potentiation in the amygdala: a mechanism for emotional learning and memory. Trends Neurosci 22(12):561–567PubMedCrossRefGoogle Scholar
  139. Maren S (2005) Synaptic mechanisms of associative memory in the amygdala. Neuron 47(6):783–786.  https://doi.org/10.1016/j.neuron.2005.08.009 PubMedCrossRefGoogle Scholar
  140. Maren S, Holmes A (2016) Stress and fear extinction. Neuropsychopharmacology 41(1):58–79.  https://doi.org/10.1038/npp.2015.180 PubMedCrossRefGoogle Scholar
  141. Maren S, Quirk GJ (2004) Neuronal signalling of fear memory. Nat Rev Neurosci 5(11):844–852.  https://doi.org/10.1038/nrn1535 PubMedCrossRefGoogle Scholar
  142. Marie H, Morishita W, Yu X, Calakos N, Malenka RC (2005) Generation of silent synapses by acute in vivo expression of CaMKIV and CREB. Neuron 45(5):741–752.  https://doi.org/10.1016/j.neuron.2005.01.039 PubMedCrossRefGoogle Scholar
  143. Marini AM, Jiang H, Pan H, Wu X, Lipsky RH (2008) Hormesis: a promising strategy to sustain endogenous neuronal survival pathways against neurodegenerative disorders. Ageing Res Rev 7(1):21–33.  https://doi.org/10.1016/j.arr.2007.07.003 PubMedCrossRefGoogle Scholar
  144. Maroun M, Ioannides PJ, Bergman KL, Kavushansky A, Holmes A, Wellman CL (2013) Fear extinction deficits following acute stress associate with increased spine density and dendritic retraction in basolateral amygdala neurons. Eur J Neurosci 38(4):2611–2620.  https://doi.org/10.1111/ejn.12259 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG et al (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418(6897):530–534.  https://doi.org/10.1038/nature00839 PubMedCrossRefGoogle Scholar
  146. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346(6284):561–564.  https://doi.org/10.1038/346561a0 PubMedCrossRefGoogle Scholar
  147. McDonald AJ, Mascagni F (2001) Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala. Neuroscience 105(3):681–693PubMedCrossRefGoogle Scholar
  148. McDonald AJ, Pearson JC (1989) Coexistence of GABA and peptide immunoreactivity in non-pyramidal neurons of the basolateral amygdala. Neurosci Lett 100(1–3):53–58PubMedCrossRefGoogle Scholar
  149. McEwen BS, Bowles NP, Gray JD, Hill MN, Hunter RG, Karatsoreos IN, Nasca C (2015) Mechanisms of stress in the brain. Nat Neurosci 18(10):1353–1363.  https://doi.org/10.1038/nn.4086 PubMedPubMedCentralCrossRefGoogle Scholar
  150. McKernan MG, Shinnick-Gallagher P (1997) Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390(6660):607–611.  https://doi.org/10.1038/37605 PubMedCrossRefGoogle Scholar
  151. Medina JF, Repa JC, Mauk MD, LeDoux JE (2002) Parallels between cerebellum- and amygdala-dependent conditioning. Nat Rev Neurosci 3(2):122–131.  https://doi.org/10.1038/nrn728 PubMedCrossRefGoogle Scholar
  152. Meng Y, Zhang Y, Tregoubov V, Janus C, Cruz L, Jackson M et al (2002) Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 35(1):121–133PubMedCrossRefGoogle Scholar
  153. Milad MR, Vidal-Gonzalez I, Quirk GJ (2004) Electrical stimulation of medial prefrontal cortex reduces conditioned fear in a temporally specific manner. Behav Neurosci 118(2):389–394.  https://doi.org/10.1037/0735-7044.118.2.389 PubMedCrossRefGoogle Scholar
  154. Miserendino MJ, Sananes CB, Melia KR, Davis M (1990) Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature 345(6277):716–718.  https://doi.org/10.1038/345716a0 PubMedCrossRefGoogle Scholar
  155. Misner DL, Sullivan JM (1999) Mechanism of cannabinoid effects on long-term potentiation and depression in hippocampal CA1 neurons. J Neurosci 19(16):6795–6805PubMedCrossRefGoogle Scholar
  156. Monory K, Polack M, Remus A, Lutz B, Korte M (2015) Cannabinoid CB1 receptor calibrates excitatory synaptic balance in the mouse hippocampus. J Neurosci 35(9):3842–3850.  https://doi.org/10.1523/JNEUROSCI.3167-14.2015 PubMedCrossRefGoogle Scholar
  157. Morrison DJ, Rashid AJ, Yiu AP, Yan C, Frankland PW, Josselyn SA (2016) Parvalbumin interneurons constrain the size of the lateral amygdala engram. Neurobiol Learn Mem 135:91–99.  https://doi.org/10.1016/j.nlm.2016.07.007 PubMedCrossRefGoogle Scholar
  158. Mulkey RM, Herron CE, Malenka RC (1993) An essential role for protein phosphatases in hippocampal long-term depression. Science 261(5124):1051–1055PubMedCrossRefGoogle Scholar
  159. Mulkey RM, Endo S, Shenolikar S, Malenka RC (1994) Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369(6480):486–488.  https://doi.org/10.1038/369486a0 PubMedCrossRefGoogle Scholar
  160. Muller J, Corodimas KP, Fridel Z, LeDoux JE (1997) Functional inactivation of the lateral and basal nuclei of the amygdala by muscimol infusion prevents fear conditioning to an explicit conditioned stimulus and to contextual stimuli. Behav Neurosci 111(4):683–691PubMedCrossRefGoogle Scholar
  161. Muller T, Albrecht D, Gebhardt C (2009) Both NR2A and NR2B subunits of the NMDA receptor are critical for long-term potentiation and long-term depression in the lateral amygdala of horizontal slices of adult mice. Learn Mem 16(6):395–405.  https://doi.org/10.1101/lm.1398709 PubMedCrossRefGoogle Scholar
  162. Murakoshi H, Yasuda R (2012) Postsynaptic signaling during plasticity of dendritic spines. Trends Neurosci 35(2):135–143.  https://doi.org/10.1016/j.tins.2011.12.002 PubMedPubMedCentralCrossRefGoogle Scholar
  163. Myers KM, Davis M (2007) Mechanisms of fear extinction. Mol Psychiatry 12(2):120–150.  https://doi.org/10.1038/sj.mp.4001939 PubMedCrossRefGoogle Scholar
  164. Nabavi S, Fox R, Proulx CD, Lin JY, Tsien RY, Malinow R (2014) Engineering a memory with LTD and LTP. Nature 511(7509):348–352.  https://doi.org/10.1038/nature13294 PubMedPubMedCentralCrossRefGoogle Scholar
  165. Nagerl UV, Kostinger G, Anderson JC, Martin KA, Bonhoeffer T (2007) Protracted synaptogenesis after activity-dependent spinogenesis in hippocampal neurons. J Neurosci 27(30):8149–8156.  https://doi.org/10.1523/JNEUROSCI.0511-07.2007 PubMedCrossRefGoogle Scholar
  166. Nedelescu H, Kelso CM, Lazaro-Munoz G, Purpura M, Cain CK, Ledoux JE, Aoki C (2010) Endogenous GluR1-containing AMPA receptors translocate to asymmetric synapses in the lateral amygdala during the early phase of fear memory formation: an electron microscopic immunocytochemical study. J Comp Neurol 518(23):4723–4739.  https://doi.org/10.1002/cne.22472 PubMedPubMedCentralCrossRefGoogle Scholar
  167. Neumeister A, Normandin MD, Pietrzak RH, Piomelli D, Zheng MQ, Gujarro-Anton A et al (2013) Elevated brain cannabinoid CB1 receptor availability in post-traumatic stress disorder: a positron emission tomography study. Mol Psychiatry 18(9):1034–1040.  https://doi.org/10.1038/mp.2013.61 PubMedPubMedCentralCrossRefGoogle Scholar
  168. Neumeister A, Seidel J, Ragen BJ, Pietrzak RH (2015) Translational evidence for a role of endocannabinoids in the etiology and treatment of posttraumatic stress disorder. Psychoneuroendocrinology 51:577–584.  https://doi.org/10.1016/j.psyneuen.2014.10.012 PubMedCrossRefGoogle Scholar
  169. Ninomiya EM, Martynhak BJ, Zanoveli JM, Correia D, da Cunha C, Andreatini R (2010) Spironolactone and low-dose dexamethasone enhance extinction of contextual fear conditioning. Prog Neuro-Psychopharmacol Biol Psychiatry 34(7):1229–1235.  https://doi.org/10.1016/j.pnpbp.2010.06.025 CrossRefGoogle Scholar
  170. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307(5950):462–465PubMedCrossRefGoogle Scholar
  171. Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F et al (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29(10):3276–3287.  https://doi.org/10.1523/JNEUROSCI.4707-08.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  172. Ohno-Shosaku T, Tanimura A, Hashimotodani Y, Kano M (2012) Endocannabinoids and retrograde modulation of synaptic transmission. Neuroscientist 18(2):119–132.  https://doi.org/10.1177/1073858410397377 PubMedCrossRefGoogle Scholar
  173. Okamoto K, Nagai T, Miyawaki A, Hayashi Y (2004) Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci 7(10):1104–1112.  https://doi.org/10.1038/nn1311 PubMedCrossRefGoogle Scholar
  174. Ostroff LE, Fiala JC, Allwardt B, Harris KM (2002) Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron 35(3):535–545PubMedCrossRefGoogle Scholar
  175. Pamplona FA, Prediger RD, Pandolfo P, Takahashi RN (2006) The cannabinoid receptor agonist WIN 55,212-2 facilitates the extinction of contextual fear memory and spatial memory in rats. Psychopharmacology 188(4):641–649.  https://doi.org/10.1007/s00213-006-0514-0 PubMedCrossRefGoogle Scholar
  176. Pamplona FA, Bitencourt RM, Takahashi RN (2008) Short- and long-term effects of cannabinoids on the extinction of contextual fear memory in rats. Neurobiol Learn Mem 90(1):290–293.  https://doi.org/10.1016/j.nlm.2008.04.003 PubMedCrossRefGoogle Scholar
  177. Panja D, Bramham CR (2014) BDNF mechanisms in late LTP formation: a synthesis and breakdown. Neuropharmacology 76 Pt C:664–676.  https://doi.org/10.1016/j.neuropharm.2013.06.024 PubMedCrossRefGoogle Scholar
  178. Pape HC, Pare D (2010) Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 90(2):419–463.  https://doi.org/10.1152/physrev.00037.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  179. Pare D, Gaudreau H (1996) Projection cells and interneurons of the lateral and basolateral amygdala: distinct firing patterns and differential relation to theta and delta rhythms in conscious cats. J Neurosci 16(10):3334–3350PubMedCrossRefGoogle Scholar
  180. Pare D, Quirk GJ, Ledoux JE (2004) New vistas on amygdala networks in conditioned fear. J Neurophysiol 92(1):1–9.  https://doi.org/10.1152/jn.00153.2004 PubMedCrossRefGoogle Scholar
  181. Patel S, Roelke CT, Rademacher DJ, Cullinan WE, Hillard CJ (2004) Endocannabinoid signaling negatively modulates stress-induced activation of the hypothalamic-pituitary-adrenal axis. Endocrinology 145(12):5431–5438.  https://doi.org/10.1210/en.2004-0638 PubMedCrossRefGoogle Scholar
  182. Patterson SL, Pittenger C, Morozov A, Martin KC, Scanlin H, Drake C, Kandel ER (2001) Some forms of cAMP-mediated long-lasting potentiation are associated with release of BDNF and nuclear translocation of phospho-MAP kinase. Neuron 32(1):123–140PubMedCrossRefGoogle Scholar
  183. Pavlov IP (1927) Conditioned reflexes: an investigation of the physiological activity of the Cerebral Cortex. Oxford University Press, LondonGoogle Scholar
  184. Quirk GJ (2006) Extinction: new excitement for an old phenomenon. Biol Psychiatry 60(4):317–318.  https://doi.org/10.1016/j.biopsych.2006.05.023 PubMedCrossRefGoogle Scholar
  185. Quirk GJ, Armony JL, LeDoux JE (1997) Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala. Neuron 19(3):613–624PubMedCrossRefGoogle Scholar
  186. Quirk GJ, Russo GK, Barron JL, Lebron K (2000) The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J Neurosci 20(16):6225–6231PubMedCrossRefGoogle Scholar
  187. Radley JJ, Farb CR, He Y, Janssen WG, Rodrigues SM, Johnson LR et al (2007) Distribution of NMDA and AMPA receptor subunits at thalamo-amygdaloid dendritic spines. Brain Res 1134(1):87–94.  https://doi.org/10.1016/j.brainres.2006.11.045 PubMedPubMedCentralCrossRefGoogle Scholar
  188. Rainnie DG, Asprodini EK, Shinnick-Gallagher P (1991) Inhibitory transmission in the basolateral amygdala. J Neurophysiol 66(3):999–1009PubMedCrossRefGoogle Scholar
  189. Ramikie TS, Patel S (2012) Endocannabinoid signaling in the amygdala: anatomy, synaptic signaling, behavior, and adaptations to stress. Neuroscience 204:38–52.  https://doi.org/10.1016/j.neuroscience.2011.08.037 PubMedCrossRefGoogle Scholar
  190. Reibaud M, Obinu MC, Ledent C, Parmentier M, Bohme GA, Imperato A (1999) Enhancement of memory in cannabinoid CB1 receptor knock-out mice. Eur J Pharmacol 379(1):R1–R2PubMedCrossRefGoogle Scholar
  191. Reijmers LG, Perkins BL, Matsuo N, Mayford M (2007) Localization of a stable neural correlate of associative memory. Science 317(5842):1230–1233.  https://doi.org/10.1126/science.1143839 PubMedCrossRefGoogle Scholar
  192. Repa JC, Muller J, Apergis J, Desrochers TM, Zhou Y, LeDoux JE (2001) Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nat Neurosci 4(7):724–731.  https://doi.org/10.1038/89512 PubMedCrossRefGoogle Scholar
  193. Rex CS, Lin CY, Kramar EA, Chen LY, Gall CM, Lynch G (2007) Brain-derived neurotrophic factor promotes long-term potentiation-related cytoskeletal changes in adult hippocampus. J Neurosci 27(11):3017–3029.  https://doi.org/10.1523/JNEUROSCI.4037-06.2007 PubMedCrossRefGoogle Scholar
  194. Rex CS, Gavin CF, Rubio MD, Kramar EA, Chen LY, Jia Y et al (2010) Myosin IIb regulates actin dynamics during synaptic plasticity and memory formation. Neuron 67(4):603–617.  https://doi.org/10.1016/j.neuron.2010.07.016 PubMedPubMedCentralCrossRefGoogle Scholar
  195. Rogan MT, Staubli UV, LeDoux JE (1997) Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390(6660):604–607.  https://doi.org/10.1038/37601 PubMedCrossRefGoogle Scholar
  196. Roitman P, Mechoulam R, Cooper-Kazaz R, Shalev A (2014) Preliminary, open-label, pilot study of add-on oral Delta9-tetrahydrocannabinol in chronic post-traumatic stress disorder. Clin Drug Investig 34(8):587–591.  https://doi.org/10.1007/s40261-014-0212-3 PubMedCrossRefGoogle Scholar
  197. Rosenkranz JA, Moore H, Grace AA (2003) The prefrontal cortex regulates lateral amygdala neuronal plasticity and responses to previously conditioned stimuli. J Neurosci 23(35):11054–11064PubMedCrossRefGoogle Scholar
  198. Rucker D, Padwal R, Li SK, Curioni C, Lau DCW (2007) Long term pharmacotherapy for obesity and overweight: updated meta-analysis. BMJ 335(7631):1194–1199.  https://doi.org/10.1136/bmj.39385.413113.25 PubMedPubMedCentralCrossRefGoogle Scholar
  199. Ruehle S, Rey AA, Remmers F, Lutz B (2012) The endocannabinoid system in anxiety, fear memory and habituation. J Psychopharmacol 26(1):23–39.  https://doi.org/10.1177/0269881111408958 PubMedPubMedCentralCrossRefGoogle Scholar
  200. Ryu J, Liu L, Wong TP, Wu DC, Burette A, Weinberg R et al (2006) A critical role for myosin IIb in dendritic spine morphology and synaptic function. Neuron 49(2):175–182.  https://doi.org/10.1016/j.neuron.2005.12.017 PubMedCrossRefGoogle Scholar
  201. Sala C, Piech V, Wilson NR, Passafaro M, Liu G, Sheng M (2001) Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31(1):115–130PubMedPubMedCentralCrossRefGoogle Scholar
  202. Sanderson JL, Dell’Acqua ML (2011) AKAP signaling complexes in regulation of excitatory synaptic plasticity. Neuroscientist 17(3):321–336.  https://doi.org/10.1177/1073858410384740 PubMedPubMedCentralCrossRefGoogle Scholar
  203. Santini E, Ge H, Ren K, Pena de Ortiz S, Quirk GJ (2004) Consolidation of fear extinction requires protein synthesis in the medial prefrontal cortex. J Neurosci 24(25):5704–5710.  https://doi.org/10.1523/JNEUROSCI.0786-04.2004 PubMedCrossRefGoogle Scholar
  204. Schafe GE, Nader K, Blair HT, LeDoux JE (2001) Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends Neurosci 24(9):540–546PubMedCrossRefGoogle Scholar
  205. Sheinin A, Talani G, Davis MI, Lovinger DM (2008) Endocannabinoid- and mGluR5-dependent short-term synaptic depression in an isolated neuron/bouton preparation from the hippocampal CA1 region. J Neurophysiol 100(2):1041–1052.  https://doi.org/10.1152/jn.90226.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  206. Shin RM, Tully K, Li Y, Cho JH, Higuchi M, Suhara T, Bolshakov VY (2010) Hierarchical order of coexisting pre- and postsynaptic forms of long-term potentiation at synapses in amygdala. Proc Natl Acad Sci USA 107(44):19073–19078.  https://doi.org/10.1073/pnas.1009803107 PubMedCrossRefGoogle Scholar
  207. Shonesy BC, Jalan-Sakrikar N, Cavener VS, Colbran RJ (2014) CaMKII: a molecular substrate for synaptic plasticity and memory. Prog Mol Biol Transl Sci 122:61–87.  https://doi.org/10.1016/B978-0-12-420170-5.00003-9 PubMedCrossRefGoogle Scholar
  208. Sipe JC, Scott TM, Murray S, Harismendy O, Simon GM, Cravatt BF, Waalen J (2010) Biomarkers of endocannabinoid system activation in severe obesity. PLoS One 5(1):e8792.  https://doi.org/10.1371/journal.pone.0008792 PubMedPubMedCentralCrossRefGoogle Scholar
  209. Sotres-Bayon F, Cain CK, LeDoux JE (2006) Brain mechanisms of fear extinction: historical perspectives on the contribution of prefrontal cortex. Biol Psychiatry 60(4):329–336.  https://doi.org/10.1016/j.biopsych.2005.10.012 PubMedCrossRefGoogle Scholar
  210. Steiner MA, Wotjak CT (2008) Role of the endocannabinoid system in regulation of the hypothalamic-pituitary-adrenocortical axis. Prog Brain Res 170:397–432.  https://doi.org/10.1016/S0079-6123(08)00433-0 PubMedCrossRefGoogle Scholar
  211. Stockhorst U, Antov MI (2015) Modulation of fear extinction by stress, stress hormones and estradiol: a review. Front Behav Neurosci 9:359.  https://doi.org/10.3389/fnbeh.2015.00359 PubMedCrossRefGoogle Scholar
  212. Sumioka A, Yan D, Tomita S (2010) TARP phosphorylation regulates synaptic AMPA receptors through lipid bilayers. Neuron 66(5):755–767.  https://doi.org/10.1016/j.neuron.2010.04.035 PubMedPubMedCentralCrossRefGoogle Scholar
  213. Takagi H, Yamamoto K, Shiosaka S, Senba E, Takatsuki K, Inagaki S et al (1981) Morphological study of noradrenaline innervation in the caudal raphe nuclei with special reference to fine structure. J Comp Neurol 203(1):15–22.  https://doi.org/10.1002/cne.902030103 PubMedCrossRefGoogle Scholar
  214. Tanaka J, Horiike Y, Matsuzaki M, Miyazaki T, Ellis-Davies GC, Kasai H (2008) Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science 319(5870):1683–1687.  https://doi.org/10.1126/science.1152864 PubMedPubMedCentralCrossRefGoogle Scholar
  215. Terranova JP, Michaud JC, Le Fur G, Soubrie P (1995) Inhibition of long-term potentiation in rat hippocampal slices by anandamide and WIN55212-2: reversal by SR141716 A, a selective antagonist of CB1 cannabinoid receptors. Naunyn Schmiedeberg's Arch Pharmacol 352(5):576–579CrossRefGoogle Scholar
  216. Terranova JP, Storme JJ, Lafon N, Perio A, Rinaldi-Carmona M, Le Fur G, Soubrie P (1996) Improvement of memory in rodents by the selective CB1 cannabinoid receptor antagonist, SR 141716. Psychopharmacology 126(2):165–172PubMedCrossRefGoogle Scholar
  217. Tomita S, Chen L, Kawasaki Y, Petralia RS, Wenthold RJ, Nicoll RA, Bredt DS (2003) Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. J Cell Biol 161(4):805–816.  https://doi.org/10.1083/jcb.200212116 PubMedPubMedCentralCrossRefGoogle Scholar
  218. Tomita S, Adesnik H, Sekiguchi M, Zhang W, Wada K, Howe JR et al (2005) Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature 435(7045):1052–1058.  https://doi.org/10.1038/nature03624 PubMedCrossRefGoogle Scholar
  219. Tsvetkov E, Carlezon WA, Benes FM, Kandel ER, Bolshakov VY (2002) Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala. Neuron 34(2):289–300PubMedCrossRefGoogle Scholar
  220. Tyler WJ, Pozzo-Miller L (2003) Miniature synaptic transmission and BDNF modulate dendritic spine growth and form in rat CA1 neurones. J Physiol 553(Pt 2):497–509.  https://doi.org/10.1113/jphysiol.2003.052639 PubMedPubMedCentralCrossRefGoogle Scholar
  221. Varvel SA, Anum E, Niyuhire F, Wise LE, Lichtman AH (2005) Delta(9)-THC-induced cognitive deficits in mice are reversed by the GABA(A) antagonist bicuculline. Psychopharmacology 178(2–3):317–327.  https://doi.org/10.1007/s00213-004-1988-2 PubMedCrossRefGoogle Scholar
  222. Wilensky AE, Schafe GE, LeDoux JE (2000) The amygdala modulates memory consolidation of fear-motivated inhibitory avoidance learning but not classical fear conditioning. J Neurosci 20(18):7059–7066PubMedCrossRefGoogle Scholar
  223. Wilker S, Pfeiffer A, Kolassa S, Elbert T, Lingenfelder B, Ovuga E et al (2014) The role of FKBP5 genotype in moderating long-term effectiveness of exposure-based psychotherapy for posttraumatic stress disorder. Transl Psychiatry 4:e403.  https://doi.org/10.1038/tp.2014.49 PubMedPubMedCentralCrossRefGoogle Scholar
  224. Winder DG, Martin KC, Muzzio IA, Rohrer D, Chruscinski A, Kobilka B, Kandel ER (1999) ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by beta-adrenergic receptors. Neuron 24(3):715–726PubMedCrossRefGoogle Scholar
  225. Wong YH, Lee CM, Xie W, Cui B, Poo MM (2015) Activity-dependent BDNF release via endocytic pathways is regulated by synaptotagmin-6 and complexin. Proc Natl Acad Sci USA 112(32):E4475–E4484.  https://doi.org/10.1073/pnas.1511830112 PubMedCrossRefGoogle Scholar
  226. Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, Milner TA et al (2005) Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8(8):1069–1077.  https://doi.org/10.1038/nn1510 PubMedCrossRefGoogle Scholar
  227. Yang SN, Tang YG, Zucker RS (1999) Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. J Neurophysiol 81(2):781–787PubMedCrossRefGoogle Scholar
  228. Yang C, Liu N, Guo X, Qiao C (2006) Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil. FEMS Microbiol Lett 265(1):118–125.  https://doi.org/10.1111/j.1574-6968.2006.00478.x PubMedCrossRefGoogle Scholar
  229. Yang YL, Chao PK, Ro LS, Wo YY, Lu KT (2007) Glutamate NMDA receptors within the amygdala participate in the modulatory effect of glucocorticoids on extinction of conditioned fear in rats. Neuropsychopharmacology 32(5):1042–1051.  https://doi.org/10.1038/sj.npp.1301215 PubMedCrossRefGoogle Scholar
  230. Yang J, Harte-Hargrove LC, Siao CJ, Marinic T, Clarke R, Ma Q et al (2014) proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus. Cell Rep 7(3):796–806.  https://doi.org/10.1016/j.celrep.2014.03.040 PubMedPubMedCentralCrossRefGoogle Scholar
  231. Yi B, Nichiporuk I, Nicolas M, Schneider S, Feuerecker M, Vassilieva G et al (2016) Reductions in circulating endocannabinoid 2-arachidonoylglycerol levels in healthy human subjects exposed to chronic stressors. Prog Neuro-Psychopharmacol Biol Psychiatry 67:92–97.  https://doi.org/10.1016/j.pnpbp.2016.01.004 CrossRefGoogle Scholar
  232. Yin Y, Edelman GM, Vanderklish PW (2002) The brain-derived neurotrophic factor enhances synthesis of Arc in synaptoneurosomes. Proc Natl Acad Sci USA 99(4):2368–2373.  https://doi.org/10.1073/pnas.042693699 PubMedPubMedCentralCrossRefGoogle Scholar
  233. Ying SW, Futter M, Rosenblum K, Webber MJ, Hunt SP, Bliss TV, Bramham CR (2002) Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J Neurosci 22(5):1532–1540PubMedCrossRefGoogle Scholar
  234. Yoshimura A, Fujii R, Watanabe Y, Okabe S, Fukui K, Takumi T (2006) Myosin-Va facilitates the accumulation of mRNA/protein complex in dendritic spines. Curr Biol 16(23):2345–2351.  https://doi.org/10.1016/j.cub.2006.10.024 PubMedCrossRefGoogle Scholar
  235. Young KA, Thompson PM, Cruz DA, Williamson DE, Selemon LD (2015) BA11 FKBP5 expression levels correlate with dendritic spine density in postmortem PTSD and controls. Neurobiol Stress 2:67–72.  https://doi.org/10.1016/j.ynstr.2015.07.002 PubMedPubMedCentralCrossRefGoogle Scholar
  236. Yu SY, Wu DC, Zhan RZ (2010) GluN2B subunits of the NMDA receptor contribute to the AMPA receptor internalization during long-term depression in the lateral amygdala of juvenile rats. Neuroscience 171(4):1102–1108.  https://doi.org/10.1016/j.neuroscience.2010.09.038 PubMedCrossRefGoogle Scholar
  237. Zhao L, Yeh ML, Levine ES (2015) Role for endogenous BDNF in endocannabinoid-mediated long-term depression at neocortical inhibitory synapses. eNeuro 2(2).  https://doi.org/10.1523/ENEURO.0029-14.2015
  238. Zito K, Scheuss V, Knott G, Hill T, Svoboda K (2009) Rapid functional maturation of nascent dendritic spines. Neuron 61(2):247–258.  https://doi.org/10.1016/j.neuron.2008.10.054 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Maxwell Bennett
    • 1
  • Jim Lagopoulos
    • 2
  1. 1.The University of SydneyBrain and Mind CentreCamperdown NSWAustralia
  2. 2.Sunshine Coast Mind and Neuroscience Thompson InstituteUniversity of Sunshine CoastBirtinyaAustralia

Personalised recommendations