Advertisement

Grey Matter Changes in the Brain Following Stress and Trauma

  • Maxwell Bennett
  • Jim Lagopoulos
Chapter

Abstract

The pathophysiology of post-traumatic stress disorder (PTSD) is characterized by a heightened sensitivity to certain stimuli perceived to be threatening, followed by inability to extinguish the resulting fear (Garfinkel and Liberzon 2009). Elucidating the neurobiology and neurocircuitry of PTSD constitutes an essential step in informing the detection and treatment of the disorder. To this end, significant efforts have focussed on determining why only a proportion of trauma-affected individuals go on to develop PTSD symptoms. Early studies have hypothesized an association between PTSD and atrophy in the hippocampus, amygdala and the prefrontal cortex (Karl et al. 2006). The link between PTSD and stress responses (Davis 1992; McEwen 1995; LeDoux 2000) has underscored the role of the amygdala and hippocampus in particular, although all three of these brain regions are critical for normal fear extinction and the regulation of emotions (Chen et al. 2012a, b, c).

References

  1. Aas M, Navari S, Gibbs A, Mondelli V, Fisher HL, Morgan C et al (2012) Is there a link between childhood trauma, cognition, and amygdala and hippocampus volume in first-episode psychosis? Schizophr Res 137(1–3):73–79.  https://doi.org/10.1016/j.schres.2012.01.035 PubMedGoogle Scholar
  2. Aas M, Haukvik UK, Djurovic S, Tesli M, Athanasiu L, Bjella T et al (2014) Interplay between childhood trauma and BDNF val66met variants on blood BDNF mRNA levels and on hippocampus subfields volumes in schizophrenia spectrum and bipolar disorders. J Psychiatr Res 59:14–21.  https://doi.org/10.1016/j.jpsychires.2014.08.011 PubMedGoogle Scholar
  3. Abrous DN, Koehl M, Le Moal M (2005) Adult neurogenesis: from precursors to network and physiology. Physiol Rev 85(2):523–569.  https://doi.org/10.1152/physrev.00055.2003 PubMedGoogle Scholar
  4. Adamec R, Hebert M, Blundell J, Mervis RF (2012) Dendritic morphology of amygdala and hippocampal neurons in more and less predator stress responsive rats and more and less spontaneously anxious handled controls. Behav Brain Res 226(1):133–146.  https://doi.org/10.1016/j.bbr.2011.09.009 PubMedGoogle Scholar
  5. Almeida RD, Manadas BJ, Melo CV, Gomes JR, Mendes CS, Graos MM et al (2005) Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ 12(10):1329–1343.  https://doi.org/10.1038/sj.cdd.4401662 PubMedGoogle Scholar
  6. Apfel BA, Ross J, Hlavin J, Meyerhoff DJ, Metzler TJ, Marmar CR et al (2011) Hippocampal volume differences in Gulf War veterans with current versus lifetime posttraumatic stress disorder symptoms. Biol Psychiatry 69(6):541–548.  https://doi.org/10.1016/j.biopsych.2010.09.044 PubMedGoogle Scholar
  7. Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB (1999) The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 160(1):1–12PubMedGoogle Scholar
  8. Baker LM, Williams LM, Korgaonkar MS, Cohen RA, Heaps JM, Paul RH (2013) Impact of early vs. late childhood early life stress on brain morphometrics. Brain Imaging Behav 7(2):196–203.  https://doi.org/10.1007/s11682-012-9215-y PubMedGoogle Scholar
  9. Baldacara L, Zugman A, Araujo C, Cogo-Moreira H, Lacerda AL, Schoedl A et al (2014) Reduction of anterior cingulate in adults with urban violence-related PTSD. J Affect Disord 168:13–20.  https://doi.org/10.1016/j.jad.2014.06.036 PubMedGoogle Scholar
  10. Benedetti F, Poletti S, Radaelli D, Pozzi E, Giacosa C, Ruffini C et al (2012) Caudate gray matter volume in obsessive-compulsive disorder is influenced by adverse childhood experiences and ongoing drug treatment. J Clin Psychopharmacol 32(4):544–547.  https://doi.org/10.1097/JCP.0b013e31825cce05 PubMedGoogle Scholar
  11. Bennett MR, Lagopoulos J (2014) Stress and trauma: BDNF control of dendritic-spine formation and regression. Prog Neurobiol 112:80–99.  https://doi.org/10.1016/j.pneurobio.2013.10.005 PubMedPubMedCentralGoogle Scholar
  12. Boen E, Westlye LT, Elvsashagen T, Hummelen B, Hol PK, Boye B et al (2014) Smaller stress-sensitive hippocampal subfields in women with borderline personality disorder without posttraumatic stress disorder. J Psychiatry Neurosci 39(2):127–134PubMedPubMedCentralGoogle Scholar
  13. Bonne O, Brandes D, Gilboa A, Gomori JM, Shenton ME, Pitman RK, Shalev AY (2001) Longitudinal MRI study of hippocampal volume in trauma survivors with PTSD. Am J Psychiatry 158(8):1248–1251.  https://doi.org/10.1176/appi.ajp.158.8.1248 PubMedPubMedCentralGoogle Scholar
  14. Bonne O, Vythilingam M, Inagaki M, Wood S, Neumeister A, Nugent AC et al (2008) Reduced posterior hippocampal volume in posttraumatic stress disorder. J Clin Psychiatry 69(7):1087–1091PubMedPubMedCentralGoogle Scholar
  15. Bossini L, Tavanti M, Calossi S, Lombardelli A, Polizzotto NR, Galli R et al (2008) Magnetic resonance imaging volumes of the hippocampus in drug-naive patients with post-traumatic stress disorder without comorbidity conditions. J Psychiatr Res 42(9):752–762.  https://doi.org/10.1016/j.jpsychires.2007.08.004 PubMedGoogle Scholar
  16. Brambilla P, Soloff PH, Sala M, Nicoletti MA, Keshavan MS, Soares JC (2004) Anatomical MRI study of borderline personality disorder patients. Psychiatry Res 131(2):125–133.  https://doi.org/10.1016/j.pscychresns.2004.04.003 PubMedGoogle Scholar
  17. Bremner JD (1999) Does stress damage the brain? Biol Psychiatry 45(7):797–805.  https://doi.org/10.1016/S0006-3223(99)00009-8 PubMedGoogle Scholar
  18. Bremner JD (2003) Functional neuroanatomical correlates of traumatic stress revisited 7 years later, this time with data. Psychopharmacol Bull 37(2):6–25PubMedGoogle Scholar
  19. Bremner JD, Randall P, Scott TM, Bronen RA, Seibyl JP, Southwick SM et al (1995) MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am J Psychiatry 152(7):973–981.  https://doi.org/10.1176/ajp.152.7.973 PubMedPubMedCentralGoogle Scholar
  20. Bremner JD, Randall P, Vermetten E, Staib L, Bronen RA, Mazure C et al (1997) Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse—a preliminary report. Biol Psychiatry 41(1):23–32PubMedPubMedCentralGoogle Scholar
  21. Bremner JD, Narayan M, Staib LH, Southwick SM, McGlashan T, Charney DS (1999) Neural correlates of memories of childhood sexual abuse in women with and without posttraumatic stress disorder. Am J Psychiatry 156(11):1787–1795.  https://doi.org/10.1176/ajp.156.11.1787 PubMedPubMedCentralGoogle Scholar
  22. Bremner JD, Vythilingam M, Vermetten E, Southwick SM, McGlashan T, Nazeer A et al (2003) MRI and PET study of deficits in hippocampal structure and function in women with childhood sexual abuse and posttraumatic stress disorder. Am J Psychiatry 160(5):924–932.  https://doi.org/10.1176/appi.ajp.160.5.924 Google Scholar
  23. Bremner JD, Vermetten E, Vythilingam M, Afzal N, Schmahl C, Elzinga B, Charney DS (2004) Neural correlates of the classic color and emotional stroop in women with abuse-related posttraumatic stress disorder. Biol Psychiatry 55(6):612–620.  https://doi.org/10.1016/j.biopsych.2003.10.001 PubMedGoogle Scholar
  24. Brewin CR (2001) A cognitive neuroscience account of posttraumatic stress disorder and its treatment. Behav Res Ther 39(4):373–393PubMedGoogle Scholar
  25. Brewin CR, Dalgleish T, Joseph S (1996) A dual representation theory of posttraumatic stress disorder. Psychol Rev 103(4):670–686PubMedGoogle Scholar
  26. Brewin CR, Kleiner JS, Vasterling JJ, Field AP (2007) Memory for emotionally neutral information in posttraumatic stress disorder: a meta-analytic investigation. J Abnorm Psychol 116(3):448–463.  https://doi.org/10.1037/0021-843X.116.3.448 PubMedGoogle Scholar
  27. Brewin CR, Lanius RA, Novac A, Schnyder U, Galea S (2009) Reformulating PTSD for DSM-V: life after Criterion A. J Trauma Stress 22(5):366–373.  https://doi.org/10.1002/jts.20443 PubMedGoogle Scholar
  28. Brewin CR, Gregory JD, Lipton M, Burgess N (2010) Intrusive images in psychological disorders: characteristics, neural mechanisms, and treatment implications. Psychol Rev 117(1):210–232.  https://doi.org/10.1037/a0018113 PubMedPubMedCentralGoogle Scholar
  29. Buchanan TW, Kern S, Allen JS, Tranel D, Kirschbaum C (2004) Circadian regulation of cortisol after hippocampal damage in humans. Biol Psychiatry 56(9):651–656.  https://doi.org/10.1016/j.biopsych.2004.08.014 PubMedGoogle Scholar
  30. Bush G, Whalen PJ, Rosen BR, Jenike MA, McInerney SC, Rauch SL (1998) The counting Stroop: an interference task specialized for functional neuroimaging—validation study with functional MRI. Hum Brain Mapp 6(4):270–282PubMedGoogle Scholar
  31. Campbell S, Marriott M, Nahmias C, MacQueen GM (2004) Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry 161(4):598–607.  https://doi.org/10.1176/appi.ajp.161.4.598 PubMedGoogle Scholar
  32. Carballedo A, Lisiecka D, Fagan A, Saleh K, Ferguson Y, Connolly G et al (2012) Early life adversity is associated with brain changes in subjects at family risk for depression. World J Biol Psychiatry 13(8):569–578.  https://doi.org/10.3109/15622975.2012.661079 PubMedGoogle Scholar
  33. Cerqueira JJ, Catania C, Sotiropoulos I, Schubert M, Kalisch R, Almeida OF et al (2005a) Corticosteroid status influences the volume of the rat cingulate cortex—a magnetic resonance imaging study. J Psychiatr Res 39(5):451–460.  https://doi.org/10.1016/j.jpsychires.2005.01.003 PubMedGoogle Scholar
  34. Cerqueira JJ, Pego JM, Taipa R, Bessa JM, Almeida OF, Sousa N (2005b) Morphological correlates of corticosteroid-induced changes in prefrontal cortex-dependent behaviors. J Neurosci 25(34):7792–7800.  https://doi.org/10.1523/JNEUROSCI.1598-05.2005 PubMedGoogle Scholar
  35. Chaney A, Carballedo A, Amico F, Fagan A, Skokauskas N, Meaney J, Frodl T (2014) Effect of childhood maltreatment on brain structure in adult patients with major depressive disorder and healthy participants. J Psychiatry Neurosci 39(1):50–59.  https://doi.org/10.1503/jpn.120208 PubMedPubMedCentralGoogle Scholar
  36. Chapman DP, Whitfield CL, Felitti VJ, Dube SR, Edwards VJ, Anda RF (2004) Adverse childhood experiences and the risk of depressive disorders in adulthood. J Affect Disord 82(2):217–225.  https://doi.org/10.1016/j.jad.2003.12.013 PubMedGoogle Scholar
  37. Chen S, Xia W, Li L, Liu J, He Z, Zhang Z et al (2006a) Gray matter density reduction in the insula in fire survivors with posttraumatic stress disorder: a voxel-based morphometric study. Psychiatry Res 146(1):65–72.  https://doi.org/10.1016/j.pscychresns.2005.09.006 PubMedGoogle Scholar
  38. Chen TJ, Gehler S, Shaw AE, Bamburg JR, Letourneau PC (2006b) Cdc42 participates in the regulation of ADF/cofilin and retinal growth cone filopodia by brain derived neurotrophic factor. J Neurobiol 66(2):103–114.  https://doi.org/10.1002/neu.20204 PubMedPubMedCentralGoogle Scholar
  39. Chen DY, Bambah-Mukku D, Pollonini G, Alberini CM (2012a) Glucocorticoid receptors recruit the CaMKIIalpha-BDNF-CREB pathways to mediate memory consolidation. Nat Neurosci 15(12):1707–1714.  https://doi.org/10.1038/nn.3266 PubMedPubMedCentralGoogle Scholar
  40. Chen X, Li Y, Li S, Kirouac GJ (2012b) Early fear as a predictor of avoidance in a rat model of post-traumatic stress disorder. Behav Brain Res 226(1):112–117.  https://doi.org/10.1016/j.bbr.2011.09.004 PubMedPubMedCentralGoogle Scholar
  41. Chen Y, Andres AL, Frotscher M, Baram TZ (2012c) Tuning synaptic transmission in the hippocampus by stress: the CRH system. Front Cell Neurosci 6:13.  https://doi.org/10.3389/fncel.2012.00013 PubMedPubMedCentralGoogle Scholar
  42. Christoffersen MN, Armour C, Lasgaard M, Andersen TE, Elklit A (2013) The prevalence of four types of childhood maltreatment in denmark. Clin Pract Epidemiol Ment Health 9:149–156.  https://doi.org/10.2174/1745017901309010149 PubMedPubMedCentralGoogle Scholar
  43. Cicchetti D, Rogosch FA (2001) Diverse patterns of neuroendocrine activity in maltreated children. Dev Psychopathol 13(3):677–693PubMedGoogle Scholar
  44. Cohen JD, Servanschreiber D (1992) A neural network model of disturbances in the processing of context in schizophrenia. Psychiatr Ann 22(3):131–136Google Scholar
  45. Cohen RA, Grieve S, Hoth KF, Paul RH, Sweet L, Tate D et al (2006) Early life stress and morphometry of the adult anterior cingulate cortex and caudate nuclei. Biol Psychiatry 59(10):975–982.  https://doi.org/10.1016/j.biopsych.2005.12.016 PubMedGoogle Scholar
  46. Crozier JC, Wang L, Huettel SA, De Bellis MD (2014) Neural correlates of cognitive and affective processing in maltreated youth with posttraumatic stress symptoms: does gender matter? Dev Psychopathol 26(2):491–513.  https://doi.org/10.1017/S095457941400008X PubMedPubMedCentralGoogle Scholar
  47. Damsa C, Maris S, Pull CB (2005) New fields of research in posttraumatic stress disorder: brain imaging. Curr Opin Psychiatry 18(1):55–64PubMedGoogle Scholar
  48. Dannlowski U, Stuhrmann A, Beutelmann V, Zwanzger P, Lenzen T, Grotegerd D et al (2012) Limbic scars: long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biol Psychiatry 71(4):286–293.  https://doi.org/10.1016/j.biopsych.2011.10.021 PubMedGoogle Scholar
  49. Davis M (1992) The role of the amygdala in fear and anxiety. Annu Rev Neurosci 15:353–375.  https://doi.org/10.1146/annurev.neuro.15.1.353 PubMedGoogle Scholar
  50. De Bellis MD, Keshavan MS (2003) Sex differences in brain maturation in maltreatment-related pediatric posttraumatic stress disorder. Neurosci Biobehav Rev 27(1–2):103–117PubMedGoogle Scholar
  51. De Bellis MD, Keshavan MS, Clark DB, Casey BJ, Giedd JN, Boring AM et al (1999) Developmental traumatology part II: brain development. Biol Psychiatry 45(10):1271–1284.  https://doi.org/10.1016/S0006-3223(99)00045-1 PubMedGoogle Scholar
  52. De Bellis MD, Keshavan MS, Spencer S, Hall J (2000) N-acetylaspartate concentration in the anterior cingulate of maltreated children and adolescents with PTSD. Am J Psychiatr 157(7):1175–1177.  https://doi.org/10.1176/appi.ajp.157.7.1175 PubMedGoogle Scholar
  53. De Bellis MD, Hall J, Boring AM, Frustaci K, Moritz G (2001a) A pilot longitudinal study of hippocampal volumes in pediatric maltreatment-related posttraumatic stress disorder. Biol Psychiatry 50(4):305–309PubMedGoogle Scholar
  54. De Bellis MD, Keshavan MS, Harenski KA (2001b) Anterior cingulate N-acetylaspartate/creatine ratios during clonidine treatment in a maltreated child with posttraumatic stress disorder. J Child Adolesc Psychopharmacol 11(3):311–316.  https://doi.org/10.1089/10445460152595649 PubMedGoogle Scholar
  55. De Bellis MD, Keshavan MS, Shifflett H, Iyengar S, Beers SR, Hall J, Moritz G (2002) Brain structures in pediatric maltreatment-related posttraumatic stress disorder: a sociodemographically matched study. Biol Psychiatry 52(11):1066–1078PubMedGoogle Scholar
  56. de-Almeida CP, Wenzel A, de-Carvalho CS, Powell VB, Araujo-Neto C, Quarantini LC, de-Oliveira IR (2012) Amygdalar volume in borderline personality disorder with and without comorbid post-traumatic stress disorder: a meta-analysis. CNS Spectr 17(2):70–75.  https://doi.org/10.1017/S1092852912000466 PubMedGoogle Scholar
  57. Dolan RJ (2007) The human amygdala and orbital prefrontal cortex in behavioural regulation. Philos Trans R Soc Lond Ser B Biol Sci 362(1481):787–799.  https://doi.org/10.1098/rstb.2007.2088 Google Scholar
  58. Driessen M, Herrmann J, Stahl K, Zwaan M, Meier S, Hill A et al (2000) Magnetic resonance imaging volumes of the hippocampus and the amygdala in women with borderline personality disorder and early traumatization. Arch Gen Psychiatry 57(12):1115–1122PubMedGoogle Scholar
  59. Dunsmoor JE, Prince SE, Murty VP, Kragel PA, LaBar KS (2011) Neurobehavioral mechanisms of human fear generalization. NeuroImage 55(4):1878–1888.  https://doi.org/10.1016/j.neuroimage.2011.01.041 PubMedPubMedCentralGoogle Scholar
  60. Eckert KA, Wilkinson D, Taylor AW, Stewart S, Tucker GR (2006) A population view of mental illness in South Australia: broader issues than location. Rural Remote Health 6(2):541PubMedGoogle Scholar
  61. Eichenbaum H (2000) A cortical-hippocampal system for declarative memory. Nat Rev Neurosci 1(1):41–50.  https://doi.org/10.1038/35036213 PubMedGoogle Scholar
  62. Emdad R, Bonekamp D, Sondergaard HP, Bjorklund TB, Agartz I, Ingvar M, Theorell TR (2006) Morphometric and psychometric comparisons between non-substance- abusing patients with posttraumatic stress disorder and normal controls. Psychother Psychosom 75(2):122–132.  https://doi.org/10.1159/000090897 PubMedGoogle Scholar
  63. Etkin A, Wager TD (2007) Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatr 164(10):1476–1488.  https://doi.org/10.1176/appi.ajp.2007.07030504 PubMedGoogle Scholar
  64. Felmingham K, Williams LM, Whitford TJ, Falconer E, Kemp AH, Peduto A, Bryant RA (2009) Duration of posttraumatic stress disorder predicts hippocampal grey matter loss. Neuroreport 20(16):1402–1406.  https://doi.org/10.1097/WNR.0b013e3283300fbc PubMedGoogle Scholar
  65. Fonzo GA, Flagan TM, Sullivan S, Allard CB, Grimes EM, Simmons AN et al (2013) Neural functional and structural correlates of childhood maltreatment in women with intimate-partner violence-related posttraumatic stress disorder. Psychiatry Res 211(2):93–103.  https://doi.org/10.1016/j.pscychresns.2012.08.006 PubMedGoogle Scholar
  66. Frodl T, O’Keane V (2013) How does the brain deal with cumulative stress? A review with focus on developmental stress, HPA axis function and hippocampal structure in humans. Neurobiol Dis 52:24–37.  https://doi.org/10.1016/j.nbd.2012.03.012 PubMedGoogle Scholar
  67. Frodl T, Reinhold E, Koutsouleris N, Reiser M, Meisenzahl EM (2010) Interaction of childhood stress with hippocampus and prefrontal cortex volume reduction in major depression. J Psychiatr Res 44(13):799–807.  https://doi.org/10.1016/j.jpsychires.2010.01.006 PubMedGoogle Scholar
  68. Funahashi S, Andreau JM (2013) Prefrontal cortex and neural mechanisms of executive function. J Physiol Paris 107(6):471–482.  https://doi.org/10.1016/j.jphysparis.2013.05.001 PubMedGoogle Scholar
  69. Ganzel BL, Kim P, Glover GH, Temple E (2008) Resilience after 9/11: multimodal neuroimaging evidence for stress-related change in the healthy adult brain. NeuroImage 40(2):788–795.  https://doi.org/10.1016/j.neuroimage.2007.12.010 PubMedPubMedCentralGoogle Scholar
  70. Garfinkel SN, Liberzon I (2009) Neurobiology of PTSD: a review of neuroimaging findings. Psychiatr Ann 39(6):370–372, 376–381.  https://doi.org/10.3928/00485713-20090527-01 Google Scholar
  71. Gatt JM, Nemeroff CB, Dobson-Stone C, Paul RH, Bryant RA, Schofield PR et al (2009) Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Mol Psychiatry 14(7):681–695.  https://doi.org/10.1038/mp.2008.143 PubMedGoogle Scholar
  72. Gerritsen L, Tendolkar I, Franke B, Vasquez AA, Kooijman S, Buitelaar J et al (2012) BDNF Val66Met genotype modulates the effect of childhood adversity on subgenual anterior cingulate cortex volume in healthy subjects. Mol Psychiatry 17(6):597–603.  https://doi.org/10.1038/mp.2011.51 PubMedGoogle Scholar
  73. Gerritsen L, Kalpouzos G, Westman E, Simmons A, Wahlund LO, Backman L et al (2015) The influence of negative life events on hippocampal and amygdala volumes in old age: a life-course perspective. Psychol Med 45(6):1219–1228.  https://doi.org/10.1017/S0033291714002293 PubMedGoogle Scholar
  74. Gilbertson MW, Shenton ME, Ciszewski A, Kasai K, Lasko NB, Orr SP, Pitman RK (2002) Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat Neurosci 5(11):1242–1247.  https://doi.org/10.1038/nn958 PubMedPubMedCentralGoogle Scholar
  75. Godinet MT, Li F, Berg T (2014) Early childhood maltreatment and trajectories of behavioral problems: exploring gender and racial differences. Child Abuse Negl 38(3):544–556.  https://doi.org/10.1016/j.chiabu.2013.07.018 PubMedGoogle Scholar
  76. Gorka AX, Hanson JL, Radtke SR, Hariri AR (2014) Reduced hippocampal and medial prefrontal gray matter mediate the association between reported childhood maltreatment and trait anxiety in adulthood and predict sensitivity to future life stress. Biol Mood Anxiety Disord 4:12.  https://doi.org/10.1186/2045-5380-4-12 PubMedPubMedCentralGoogle Scholar
  77. Gould E, Tanapat P, McEwen BS, Flugge G, Fuchs E (1998) Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci USA 95(6):3168–3171.  https://doi.org/10.1073/pnas.95.6.3168 PubMedGoogle Scholar
  78. Grassi-Oliveira R, Ashy M, Stein LM (2008) Psychobiology of childhood maltreatment: effects of allostatic load? Rev Bras Psiquiatr 30(1):60–68PubMedGoogle Scholar
  79. Gurvits TV, Shenton ME, Hokama H, Ohta H, Lasko NB, Gilbertson MW et al (1996) Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol Psychiatry 40(11):1091–1099.  https://doi.org/10.1016/S0006-3223(96)00229-6 PubMedPubMedCentralGoogle Scholar
  80. Hart H, Rubia K (2012) Neuroimaging of child abuse: a critical review. Front Hum Neurosci 6:52.  https://doi.org/10.3389/fnhum.2012.00052 PubMedPubMedCentralGoogle Scholar
  81. Hartley CA, Fischl B, Phelps EA (2011) Brain structure correlates of individual differences in the acquisition and inhibition of conditioned fear. Cereb Cortex 21(9):1954–1962.  https://doi.org/10.1093/cercor/bhq253 PubMedPubMedCentralGoogle Scholar
  82. Hedges DW, Woon FL (2010) Alcohol use and hippocampal volume deficits in adults with posttraumatic stress disorder: a meta-analysis. Biol Psychol 84(2):163–168.  https://doi.org/10.1016/j.biopsycho.2010.03.002 PubMedGoogle Scholar
  83. Hedges DW, Allen S, Tate DF, Thatcher GW, Miller MJ, Rice SA et al (2003) Reduced hippocampal volume in alcohol and substance naive Vietnam combat veterans with posttraumatic stress disorder. Cogn Behav Neurol 16(4):219–224PubMedGoogle Scholar
  84. Hedges DW, Thatcher GW, Bennett PJ, Sood S, Paulson D, Creem-Regehr S et al (2007) Brain integrity and cerebral atrophy in Vietnam combat veterans with and without posttraumatic stress disorder. Neurocase 13(5):402–410.  https://doi.org/10.1080/13554790701851551 PubMedGoogle Scholar
  85. Heim CM, Mayberg HS, Mletzko T, Nemeroff CB, Pruessner JC (2013) Decreased cortical representation of genital somatosensory field after childhood sexual abuse. Am J Psychiatry 170(6):616–623.  https://doi.org/10.1176/appi.ajp.2013.12070950 PubMedGoogle Scholar
  86. Hendler T, Rotshtein P, Yeshurun Y, Weizmann T, Kahn I, Ben-Bashat D et al (2003) Sensing the invisible: differential sensitivity of visual cortex and amygdala to traumatic context. NeuroImage 19(3):587–600PubMedGoogle Scholar
  87. Herry C, Garcia R (2002) Prefrontal cortex long-term potentiation, but not long-term depression, is associated with the maintenance of extinction of learned fear in mice. J Neurosci 22(2):577–583PubMedGoogle Scholar
  88. Hoffman RE, Mcglashan TH (1993) Parallel distributed-processing and the emergence of schizophrenic symptoms. Schizophr Bull 19(1):119–140PubMedGoogle Scholar
  89. Hoy K, Barrett S, Shannon C, Campbell C, Watson D, Rushe T et al (2012) Childhood trauma and hippocampal and amygdalar volumes in first-episode psychosis. Schizophr Bull 38(6):1162–1169.  https://doi.org/10.1093/schbul/sbr085 PubMedGoogle Scholar
  90. Janak PH, Tye KM (2015) From circuits to behaviour in the amygdala. Nature 517(7534):284–292.  https://doi.org/10.1038/nature14188 PubMedPubMedCentralGoogle Scholar
  91. Karl A, Schaefer M, Malta LS, Dorfel D, Rohleder N, Werner A (2006) A meta-analysis of structural brain abnormalities in PTSD. Neurosci Biobehav Rev 30(7):1004–1031.  https://doi.org/10.1016/j.neubiorev.2006.03.004 PubMedGoogle Scholar
  92. Kasai K, Yamasue H, Gilbertson MW, Shenton ME, Rauch SL, Pitman RK (2008) Evidence for acquired pregenual anterior cingulate gray matter loss from a twin study of combat-related posttraumatic stress disorder. Biol Psychiatry 63(6):550–556.  https://doi.org/10.1016/j.biopsych.2007.06.022 PubMedGoogle Scholar
  93. Kassem MS, Lagopoulos J, Stait-Gardner T, Price WS, Chohan TW, Arnold JC et al (2013) Stress-induced grey matter loss determined by MRI Is primarily due to loss of dendrites and their synapses. Mol Neurobiol 47(2):645–661.  https://doi.org/10.1007/s12035-012-8365-7 PubMedGoogle Scholar
  94. Kensinger EA, Corkin S (2004) Two routes to emotional memory: distinct neural processes for valence and arousal. Proc Natl Acad Sci USA 101(9):3310–3315.  https://doi.org/10.1073/pnas.0306408101 PubMedGoogle Scholar
  95. Kerns JG, Cohen JD, MacDonald AW, Cho RY, Stenger VA, Carter CS (2004) Anterior Cingulate conflict monitoring and adjustments in control. Science 303(5660):1023–1026.  https://doi.org/10.1126/science.1089910 PubMedGoogle Scholar
  96. Khan A, McCormack HC, Bolger EA, McGreenery CE, Vitaliano G, Polcari A, Teicher MH (2015) Childhood maltreatment, depression, and suicidal ideation: critical importance of parental and peer emotional abuse during developmental sensitive periods in males and females. Front Psychiatry 6:42.  https://doi.org/10.3389/fpsyt.2015.00042 PubMedPubMedCentralGoogle Scholar
  97. Kitayama N, Vaccarino V, Kutner M, Weiss P, Bremner JD (2005) Magnetic resonance imaging (MRI) measurement of hippocampal volume in posttraumatic stress disorder: a meta-analysis. J Affect Disord 88(1):79–86.  https://doi.org/10.1016/j.jad.2005.05.014 PubMedGoogle Scholar
  98. Kitayama N, Quinn S, Bremner JD (2006) Smaller volume of anterior cingulate cortex in abuse-related posttraumatic stress disorder. J Affect Disord 90(2–3):171–174PubMedPubMedCentralGoogle Scholar
  99. Kuhlmann A, Bertsch K, Schmidinger I, Thomann PA, Herpertz SC (2013) Morphometric differences in central stress-regulating structures between women with and without borderline personality disorder. J Psychiatry Neurosci 38(2):129–137.  https://doi.org/10.1503/jpn.120039 PubMedPubMedCentralGoogle Scholar
  100. Kumari V, Gudjonsson GH, Raghuvanshi S, Barkataki I, Taylor P, Sumich A et al (2013) Reduced thalamic volume in men with antisocial personality disorder or schizophrenia and a history of serious violence and childhood abuse. Eur Psychiatry 28(4):225–234.  https://doi.org/10.1016/j.eurpsy.2012.03.002 PubMedGoogle Scholar
  101. Kuo JR, Kaloupek DG, Woodward SH (2012) Amygdala volume in combat-exposed veterans with and without posttraumatic stress disorder a cross-sectional study. Arch Gen Psychiatry 69(10):1080–1086PubMedGoogle Scholar
  102. LaBar KS, Gatenby JC, Gore JC, LeDoux JE, Phelps EA (1998) Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron 20(5):937–945.  https://doi.org/10.1016/S0896-6273(00)80475-4 PubMedGoogle Scholar
  103. Labudda K, Kreisel S, Beblo T, Mertens M, Kurlandchikov O, Bien CG et al (2013) Mesiotemporal volume loss associated with disorder severity: a VBM study in borderline personality disorder. PLoS One 8(12):e83677.  https://doi.org/10.1371/journal.pone.0083677 PubMedPubMedCentralGoogle Scholar
  104. Landre L, Destrieux C, Baudry M, Barantin L, Cottier JP, Martineau J et al (2010) Preserved subcortical volumes and cortical thickness in women with sexual abuse-related PTSD. Psychiatry Res 183(3):181–186.  https://doi.org/10.1016/j.pscychresns.2010.01.015 PubMedGoogle Scholar
  105. Lanius RA, Williamson PC, Hopper J, Densmore M, Boksman K, Gupta MA et al (2003) Recall of emotional states in posttraumatic stress disorder: an fMRI investigation. Biol Psychiatry 53(3):204–210PubMedGoogle Scholar
  106. Lanius RA, Bluhm R, Lanius U, Pain C (2006) A review of neuroimaging studies in PTSD: heterogeneity of response to symptom provocation. J Psychiatr Res 40(8):709–729.  https://doi.org/10.1016/j.jpyschires.2005.07.007 PubMedGoogle Scholar
  107. Lanius RA, Bluhm RL, Frewen PA (2011) How understanding the neurobiology of complex post-traumatic stress disorder can inform clinical practice: a social cognitive and affective neuroscience approach. Acta Psychiatr Scand 124(5):331–348.  https://doi.org/10.1111/j.1600-0447.2011.01755.x PubMedGoogle Scholar
  108. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184.  https://doi.org/10.1146/annurev.neuro.23.1.155 PubMedGoogle Scholar
  109. Li L, Chen S, Liu J, Zhang J, He Z, Lin X (2006) Magnetic resonance imaging and magnetic resonance spectroscopy study of deficits in hippocampal structure in fire victims with recent-onset posttraumatic stress disorder. Can J Psychiatr 51(7):431–437.  https://doi.org/10.1177/070674370605100704 Google Scholar
  110. Liao M, Yang F, Zhang Y, He Z, Song M, Jiang T et al (2013) Childhood maltreatment is associated with larger left thalamic gray matter volume in adolescents with generalized anxiety disorder. PLoS One 8(8):e71898.  https://doi.org/10.1371/journal.pone.0071898 PubMedPubMedCentralGoogle Scholar
  111. Liberzon I, Taylor SF, Amdur R, Jung TD, Chamberlain KR, Minoshima S et al (1999) Brain activation in PTSD in response to trauma-related stimuli. Biol Psychiatry 45(7):817–826PubMedGoogle Scholar
  112. Lim L, Radua J, Rubia K (2014) Gray matter abnormalities in childhood maltreatment: a voxel-wise meta-analysis. Am J Psychiatry 171(8):854–863.  https://doi.org/10.1176/appi.ajp.2014.13101427 PubMedGoogle Scholar
  113. Lindauer RJ, Vlieger EJ, Jalink M, Olff M, Carlier IV, Majoie CB et al (2004) Smaller hippocampal volume in Dutch police officers with posttraumatic stress disorder. Biol Psychiatry 56(5):356–363.  https://doi.org/10.1016/j.biopsych.2004.05.021 PubMedGoogle Scholar
  114. Lu B, Nagappan G, Guan X, Nathan PJ, Wren P (2013a) BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci 14(6):401–416.  https://doi.org/10.1038/nrn3505 PubMedGoogle Scholar
  115. Lu S, Gao W, Wei Z, Wu W, Liao M, Ding Y et al (2013b) Reduced cingulate gyrus volume associated with enhanced cortisol awakening response in young healthy adults reporting childhood trauma. PLoS One 8(7):e69350.  https://doi.org/10.1371/journal.pone.0069350 PubMedPubMedCentralGoogle Scholar
  116. Lupien SJ, Parent S, Evans AC, Tremblay RE, Zelazo PD, Corbo V et al (2011) Larger amygdala but no change in hippocampal volume in 10-year-old children exposed to maternal depressive symptomatology since birth. Proc Natl Acad Sci USA 108(34):14324–14329.  https://doi.org/10.1073/pnas.1105371108 PubMedGoogle Scholar
  117. Magarinos AM, McEwen BS (1995) Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 69(1):89–98PubMedGoogle Scholar
  118. Magarinos AM, McEwen BS, Flugge G, Fuchs E (1996) Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J Neurosci 16(10):3534–3540PubMedGoogle Scholar
  119. Mathew SJ, Shungu DC, Mao X, Smith EL, Perera GM, Kegeles LS et al (2003) A magnetic resonance spectroscopic imaging study of adult nonhuman primates exposed to early-life stressors. Biol Psychiatry 54(7):727–735PubMedGoogle Scholar
  120. McCrory E, De Brito SA, Viding E (2011) The impact of childhood maltreatment: a review of neurobiological and genetic factors. Front Psychiatry 2:48.  https://doi.org/10.3389/fpsyt.2011.00048 PubMedPubMedCentralGoogle Scholar
  121. McEwen BS (1995) Adrenal steroid actions on brain: dissecting the fine line between protection and damage. In: Neurobiological and clinical consequences of stress: from normal adaptation to post-traumatic stress disorder. Lippincott Williams & Wilkins Publishers, Philadelphia, PA, pp 135–147Google Scholar
  122. McEwen BS (2000a) Effects of adverse experiences for brain structure and function. Biol Psychiatry 48(8):721–731PubMedGoogle Scholar
  123. McEwen BS (2000b) The neurobiology of stress: from serendipity to clinical relevance. Brain Res 886(1–2):172–189PubMedGoogle Scholar
  124. McEwen BS (2010) Stress, sex, and neural adaptation to a changing environment: mechanisms of neuronal remodeling. Ann N Y Acad Sci 1204(Suppl):E38–E59.  https://doi.org/10.1111/j.1749-6632.2010.05568.x PubMedPubMedCentralGoogle Scholar
  125. McEwen BS, Angulo J, Cameron H, Chao HM, Daniels D, Gannon MN et al (1992) Paradoxical effects of adrenal steroids on the brain: protection versus degeneration. Biol Psychiatry 31(2):177–199PubMedGoogle Scholar
  126. McFarlane AC, Yehuda R, Clark CR (2002) Biologic models of traumatic memories and post-traumatic stress disorder. The role of neural networks. Psychiatr Clin North Am 25(2):253–270PubMedGoogle Scholar
  127. McLeod GF, Fergusson DM, Horwood LJ (2014) Childhood physical punishment or maltreatment and partnership outcomes at age 30. Am J Orthopsychiatry 84(3):307–315.  https://doi.org/10.1037/h0099807 PubMedGoogle Scholar
  128. Mehta MA, Golembo NI, Nosarti C, Colvert E, Mota A, Williams SC et al (2009) Amygdala, hippocampal and corpus callosum size following severe early institutional deprivation: the English and Romanian Adoptees study pilot. J Child Psychol Psychiatry 50(8):943–951.  https://doi.org/10.1111/j.1469-7610.2009.02084.x PubMedGoogle Scholar
  129. Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214(5–6):655–667.  https://doi.org/10.1007/s00429-010-0262-0 PubMedPubMedCentralGoogle Scholar
  130. Menon V, Adleman NE, White CD, Glover GH, Reiss AL (2001) Error-related brain activation during a Go/NoGo response inhibition task. Hum Brain Mapp 12(3):131–143PubMedGoogle Scholar
  131. Milham MP, Nugent AC, Drevets WC, Dickstein DP, Leibenluft E, Ernst M et al (2005) Selective reduction in amygdala volume in pediatric anxiety disorders: a voxel-based morphometry investigation. Biol Psychiatry 57(9):961–966.  https://doi.org/10.1016/j.biopsych.2005.01.038 PubMedGoogle Scholar
  132. Moghaddam B (2002) Stress activation of glutamate neurotransmission in the prefrontal cortex: implications for dopamine-associated psychiatric disorders. Biol Psychiatry 51(10):775–787PubMedGoogle Scholar
  133. Molendijk ML, van Tol MJ, Penninx BW, van der Wee NJ, Aleman A, Veltman DJ et al (2012) BDNF val66met affects hippocampal volume and emotion-related hippocampal memory activity. Transl Psychiatry 2:e74.  https://doi.org/10.1038/tp.2011.72 PubMedPubMedCentralGoogle Scholar
  134. Morey RA, Dolcos F, Petty CM, Cooper DA, Hayes JP, LaBar KS, McCarthy G (2009) The role of trauma-related distractors on neural systems for working memory and emotion processing in posttraumatic stress disorder. J Psychiatr Res 43(8):809–817.  https://doi.org/10.1016/j.jpsychires.2008.10.014 PubMedGoogle Scholar
  135. Murphy FC, Nimmo-Smith I, Lawrence AD (2003) Functional neuroanatomy of emotions: a meta-analysis. Cogn Affect Behav Neurosci 3(3):207–233PubMedGoogle Scholar
  136. Myers KM, Davis M (2007) Mechanisms of fear extinction. Mol Psychiatry 12(2):120–150.  https://doi.org/10.1038/sj.mp.4001939 PubMedGoogle Scholar
  137. Navarro-Mateu F, Tormo MJ, Salmeron D, Vilagut G, Navarro C, Ruiz-Merino G et al (2015) Prevalence of mental disorders in the South-East of Spain, one of the European regions most affected by the economic crisis: the cross-sectional PEGASUS-murcia project. PLoS One 10(9):e0137293.  https://doi.org/10.1371/journal.pone.0137293 PubMedPubMedCentralGoogle Scholar
  138. Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15(11):7539–7547PubMedGoogle Scholar
  139. Nibuya M, Nestler EJ, Duman RS (1996) Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci 16(7):2365–2372PubMedGoogle Scholar
  140. O’Doherty DC, Chitty KM, Saddiqui S, Bennett MR, Lagopoulos J (2015) A systematic review and meta-analysis of magnetic resonance imaging measurement of structural volumes in posttraumatic stress disorder. Psychiatry Res 232(1):1–33.  https://doi.org/10.1016/j.pscychresns.2015.01.002 PubMedGoogle Scholar
  141. Ochsner KN, Bunge SA, Gross JJ, Gabrieli JD (2002) Rethinking feelings: an FMRI study of the cognitive regulation of emotion. J Cogn Neurosci 14(8):1215–1229.  https://doi.org/10.1162/089892902760807212 PubMedGoogle Scholar
  142. Opel N, Redlich R, Zwanzger P, Grotegerd D, Arolt V, Heindel W et al (2014) Hippocampal atrophy in major depression: a function of childhood maltreatment rather than diagnosis? Neuropsychopharmacology 39(12):2723–2731.  https://doi.org/10.1038/npp.2014.145 PubMedPubMedCentralGoogle Scholar
  143. Pape HC, Pare D (2010) Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 90(2):419–463.  https://doi.org/10.1152/physrev.00037.2009 PubMedPubMedCentralGoogle Scholar
  144. Patel R, Spreng RN, Shin LM, Girard TA (2012) Neurocircuitry models of posttraumatic stress disorder and beyond: a meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev 36(9):2130–2142.  https://doi.org/10.1016/j.neubiorev.2012.06.003 PubMedGoogle Scholar
  145. Paulus MP, Stein MB (2006) An insular view of anxiety. Biol Psychiatry 60(4):383–387.  https://doi.org/10.1016/j.biopsych.2006.03.042 PubMedGoogle Scholar
  146. Pavlisa G, Papa J, Pavic L, Pavlisa G (2006) Bilateral MR volumetry of the amygdala in chronic PTSD patients. Coll Antropol 30(3):565–568PubMedGoogle Scholar
  147. Pederson CL, Maurer SH, Kaminski PL, Zander KA, Peters CM, Stokes-Crowe LA, Osborn RE (2004) Hippocampal volume and memory performance in a community-based sample of women with posttraumatic stress disorder secondary to child abuse. J Trauma Stress 17(1):37–40.  https://doi.org/10.1023/B:JOTS.0000014674.84517.46 PubMedGoogle Scholar
  148. Pitman RK, Rasmusson AM, Koenen KC, Shin LM, Orr SP, Gilbertson MW et al (2012) Biological studies of post-traumatic stress disorder. Nat Rev Neurosci 13(11):769–787.  https://doi.org/10.1038/nrn3339 PubMedPubMedCentralGoogle Scholar
  149. Radford L, Corral S, Bradley C, Fisher HL (2013) The prevalence and impact of child maltreatment and other types of victimization in the UK: findings from a population survey of caregivers, children and young people and young adults. Child Abuse Negl 37(10):801–813.  https://doi.org/10.1016/j.chiabu.2013.02.004 PubMedGoogle Scholar
  150. Radley JJ, Sisti HM, Hao J, Rocher AB, McCall T, Hof PR et al (2004) Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 125(1):1–6.  https://doi.org/10.1016/j.neuroscience.2004.01.006 PubMedGoogle Scholar
  151. Radley JJ, Rocher AB, Miller M, Janssen WG, Liston C, Hof PR et al (2006) Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex 16(3):313–320.  https://doi.org/10.1093/cercor/bhi104 PubMedGoogle Scholar
  152. Rao U, Chen LA, Bidesi AS, Shad MU, Thomas MA, Hammen CL (2010) Hippocampal changes associated with early-life adversity and vulnerability to depression. Biol Psychiatry 67(4):357–364.  https://doi.org/10.1016/j.biopsych.2009.10.017 PubMedGoogle Scholar
  153. Rapoza KA, Wilson DT, Widmann WA, Riley MA, Robertson TW, Maiello E et al (2014) The relationship between adult health and childhood maltreatment, as moderated by anger and ethnic background. Child Abuse Negl 38(3):445–456.  https://doi.org/10.1016/j.chiabu.2014.01.009 PubMedGoogle Scholar
  154. Rauch SL, Whalen PJ, Shin LM, McInerney SC, Macklin ML, Lasko NB et al (2000) Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: a functional MRI study. Biol Psychiatry 47(9):769–776PubMedGoogle Scholar
  155. Rauch SL, Shin LM, Segal E, Pitman RK, Carson MA, McMullin K et al (2003) Selectively reduced regional cortical volumes in post-traumatic stress disorder. Neuroreport 14(7):913–916.  https://doi.org/10.1097/01.wnr.0000071767.24455.10 PubMedGoogle Scholar
  156. Rauch SL, Shin LM, Phelps EA (2006) Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research—past, present, and future. Biol Psychiatry 60(4):376–382.  https://doi.org/10.1016/j.biopsych.2006.06.004 PubMedGoogle Scholar
  157. Reul JM, Nutt DJ (2008) Glutamate and cortisol—a critical confluence in PTSD? J Psychopharmacol 22(5):469–472.  https://doi.org/10.1177/0269881108094617 PubMedGoogle Scholar
  158. Riem MM, Alink LR, Out D, Van Ijzendoorn MH, Bakermans-Kranenburg MJ (2015) Beating the brain about abuse: empirical and meta-analytic studies of the association between maltreatment and hippocampal volume across childhood and adolescence. Dev Psychopathol 27(2):507–520.  https://doi.org/10.1017/S0954579415000127 PubMedGoogle Scholar
  159. Rodrigues E, Wenzel A, Ribeiro MP, Quarantini LC, Miranda-Scippa A, de Sena EP, de Oliveira IR (2011) Hippocampal volume in borderline personality disorder with and without comorbid posttraumatic stress disorder: a meta-analysis. Eur Psychiatry 26(7):452–456.  https://doi.org/10.1016/j.eurpsy.2010.07.005 PubMedGoogle Scholar
  160. Rogers MA, Yamasue H, Abe O, Yamada H, Ohtani T, Iwanami A et al (2009) Smaller amygdala volume and reduced anterior cingulate gray matter density associated with history of post-traumatic stress disorder. Psychiatry Res 174(3):210–216.  https://doi.org/10.1016/j.pscychresns.2009.06.001 PubMedGoogle Scholar
  161. Rolls ET (1996) A theory of hippocampal function in memory. Hippocampus 6(6):601–620.  https://doi.org/10.1002/(SICI)1098-1063(1996)6:6<601::AID-HIPO5>3.0.CO;2-J PubMedGoogle Scholar
  162. Romano E, Babchishin L, Marquis R, Frechette S (2015) Childhood maltreatment and educational outcomes. Trauma Violence Abuse 16(4):418–437.  https://doi.org/10.1177/1524838014537908 PubMedGoogle Scholar
  163. Roozendaal B, McEwen BS, Chattarji S (2009) Stress, memory and the amygdala. Nat Rev Neurosci 10(6):423–433.  https://doi.org/10.1038/nrn2651 PubMedGoogle Scholar
  164. Rudy JW, O’Reilly RC (1999) Contextual fear conditioning, conjunctive representations, pattern completion, and the hippocampus. Behav Neurosci 113(5):867–880PubMedGoogle Scholar
  165. Rudy JW, Barrientos RM, O’Reilly RC (2002) Hippocampal formation supports conditioning to memory of a context. Behav Neurosci 116(4):530–538PubMedGoogle Scholar
  166. Rudy JW, Huff NC, Matus-Amat P (2004) Understanding contextual fear conditioning: insights from a two-process model. Neurosci Biobehav Rev 28(7):675–685.  https://doi.org/10.1016/j.neubiorev.2004.09.004 PubMedGoogle Scholar
  167. Sala M, Perez J, Soloff P, Ucelli di Nemi S, Caverzasi E, Soares JC, Brambilla P (2004) Stress and hippocampal abnormalities in psychiatric disorders. Eur Neuropsychopharmacol 14(5):393–405.  https://doi.org/10.1016/j.euroneuro.2003.12.005 PubMedGoogle Scholar
  168. Sapolsky RM (1996) Why stress is bad for your brain. Science 273(5276):749–750PubMedGoogle Scholar
  169. Sapolsky RM (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57(10):925–935PubMedGoogle Scholar
  170. Sapolsky RM, Uno H, Rebert CS, Finch CE (1990) Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci 10(9):2897–2902PubMedGoogle Scholar
  171. Schmaal L, Veltman DJ, van Erp TG, Samann PG, Frodl T, Jahanshad N et al (2016) Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Mol Psychiatry 21(6):806–812.  https://doi.org/10.1038/mp.2015.69 PubMedGoogle Scholar
  172. Schmahl CG, McGlashan TH, Bremner JD (2002) Neurobiological correlates of borderline personality disorder. Psychopharmacol Bull 36(2):69–87PubMedGoogle Scholar
  173. Schmahl CG, Vermetten E, Elzinga BM, Douglas Bremner J (2003) Magnetic resonance imaging of hippocampal and amygdala volume in women with childhood abuse and borderline personality disorder. Psychiatry Res 122(3):193–198PubMedGoogle Scholar
  174. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356.  https://doi.org/10.1523/JNEUROSCI.5587-06.2007 PubMedPubMedCentralGoogle Scholar
  175. Sheffield JM, Williams LE, Woodward ND, Heckers S (2013) Reduced gray matter volume in psychotic disorder patients with a history of childhood sexual abuse. Schizophr Res 143:185–191PubMedGoogle Scholar
  176. Sheline YI (2000) 3D MRI studies of neuroanatomic changes in unipolar major depression: the role of stress and medical comorbidity. Biol Psychiatry 48(8):791–800PubMedGoogle Scholar
  177. Shin LM, Liberzon I (2009) The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology 35:169–191PubMedCentralGoogle Scholar
  178. Shin LM, Whalen PJ, Pitman RK, Bush G, Macklin ML, Lasko NB et al (2001) An fMRI study of anterior cingulate function in posttraumatic stress disorder. Biol Psychiatry 50(12):932–942PubMedGoogle Scholar
  179. Shin LM, Orr SP, Carson MA, Rauch SL, Macklin ML, Lasko NB et al (2004a) Regional cerebral blood flow in the amygdala and medial prefrontal cortex during traumatic imagery in male and female Vietnam veterans with PTSD. Arch Gen Psychiatry 61(2):168–176.  https://doi.org/10.1001/archpsyc.61.2.168 PubMedGoogle Scholar
  180. Shin LM, Shin PS, Heckers S, Krangel TS, Macklin ML, Orr SP et al (2004b) Hippocampal function in posttraumatic stress disorder. Hippocampus 14(3):292–300.  https://doi.org/10.1002/hipo.10183 PubMedGoogle Scholar
  181. Shin LM, Wright CI, Cannistraro PA, Wedig MM, McMullin K, Martis B et al (2005) A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder. Arch Gen Psychiatry 62(3):273–281.  https://doi.org/10.1001/archpsyc.62.3.273 PubMedGoogle Scholar
  182. Shin LM, Rauch SL, Pitman RK (2006) Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann N Y Acad Sci 1071:67–79.  https://doi.org/10.1196/annals.1364.007 PubMedGoogle Scholar
  183. Siegle GJ, Konecky RO, Thase ME, Carter CS (2003) Relationships between amygdala volume and activity during emotional information processing tasks in depressed and never-depressed individuals: an fMRI investigation. Ann N Y Acad Sci 985:481–484PubMedGoogle Scholar
  184. Sisk CL, Foster DL (2004) The neural basis of puberty and adolescence. Nat Neurosci 7(10):1040–1047.  https://doi.org/10.1038/nn1326 PubMedGoogle Scholar
  185. Smith ME (2005) Bilateral hippocampal volume reduction in adults with post-traumatic stress disorder: a meta-analysis of structural MRI studies. Hippocampus 15(6):798–807.  https://doi.org/10.1002/hipo.20102 PubMedGoogle Scholar
  186. Smith MA, Makino S, Kvetnansky R, Post RM (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15(3 Pt 1):1768–1777PubMedPubMedCentralGoogle Scholar
  187. Squire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99(2):195–231PubMedGoogle Scholar
  188. Squire LR, Stark CE, Clark RE (2004) The medial temporal lobe. Annu Rev Neurosci 27:279–306.  https://doi.org/10.1146/annurev.neuro.27.070203.144130 PubMedGoogle Scholar
  189. Stewart MG, Davies HA, Sandi C, Kraev IV, Rogachevsky VV, Peddie CJ et al (2005) Stress suppresses and learning induces plasticity in CA3 of rat hippocampus: a three-dimensional ultrastructural study of thorny excrescences and their postsynaptic densities. Neuroscience 131(1):43–54.  https://doi.org/10.1016/j.neuroscience.2004.10.031 PubMedGoogle Scholar
  190. Sunanda, Rao MS, Raju TR (1995) Effect of chronic restraint stress on dendritic spines and excrescences of hippocampal CA3 pyramidal neurons—a quantitative study. Brain Res 694(1–2):312–317PubMedGoogle Scholar
  191. Tata DA, Anderson BJ (2010) The effects of chronic glucocorticoid exposure on dendritic length, synapse numbers and glial volume in animal models: implications for hippocampal volume reductions in depression. Physiol Behav 99(2):186–193.  https://doi.org/10.1016/j.physbeh.2009.09.008 PubMedGoogle Scholar
  192. Teicher MH, Samson JA (2013) Childhood maltreatment and psychopathology: a case for ecophenotypic variants as clinically and neurobiologically distinct subtypes. Am J Psychiatry 170(10):1114–1133.  https://doi.org/10.1176/appi.ajp.2013.12070957 PubMedPubMedCentralGoogle Scholar
  193. Teicher MH, Andersen SL, Polcari A, Anderson CM, Navalta CP, Kim DM (2003) The neurobiological consequences of early stress and childhood maltreatment. Neurosci Biobehav Rev 27(1–2):33–44PubMedGoogle Scholar
  194. Thomaes K, Dorrepaal E, Draijer N, de Ruiter MB, van Balkom AJ, Smit JH, Veltman DJ (2010) Reduced anterior cingulate and orbitofrontal volumes in child abuse-related complex PTSD. J Clin Psychiatry 71(12):1636–1644.  https://doi.org/10.4088/JCP.08m04754blu PubMedGoogle Scholar
  195. Tomoda A, Navalta CP, Polcari A, Sadato N, Teicher MH (2009a) Childhood sexual abuse is associated with reduced gray matter volume in visual cortex of young women. Biol Psychiatry 66(7):642–648.  https://doi.org/10.1016/j.biopsych.2009.04.021 PubMedPubMedCentralGoogle Scholar
  196. Tomoda A, Suzuki H, Rabi K, Sheu YS, Polcari A, Teicher MH (2009b) Reduced prefrontal cortical gray matter volume in young adults exposed to harsh corporal punishment. NeuroImage 47(Suppl 2):T66–T71.  https://doi.org/10.1016/j.neuroimage.2009.03.005 PubMedPubMedCentralGoogle Scholar
  197. Tomoda A, Sheu YS, Rabi K, Suzuki H, Navalta CP, Polcari A, Teicher MH (2011) Exposure to parental verbal abuse is associated with increased gray matter volume in superior temporal gyrus. NeuroImage 54(Suppl 1):S280–S286.  https://doi.org/10.1016/j.neuroimage.2010.05.027 PubMedGoogle Scholar
  198. Tomoda A, Polcari A, Anderson CM, Teicher MH (2012) Reduced visual cortex gray matter volume and thickness in young adults who witnessed domestic violence during childhood. PLoS One 7(12):e52528.  https://doi.org/10.1371/journal.pone.0052528 PubMedPubMedCentralGoogle Scholar
  199. Tottenham N, Hare TA, Quinn BT, McCarry TW, Nurse M, Gilhooly T et al (2010) Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Dev Sci 13(1):46–61.  https://doi.org/10.1111/j.1467-7687.2009.00852.x PubMedPubMedCentralGoogle Scholar
  200. Treadway MT, Grant MM, Ding Z, Hollon SD, Gore JC, Shelton RC (2009) Early adverse events, HPA activity and rostral anterior cingulate volume in MDD. PLoS One 4(3):e4887.  https://doi.org/10.1371/journal.pone.0004887 PubMedPubMedCentralGoogle Scholar
  201. Uno H, Tarara R, Else JG, Suleman MA, Sapolsky RM (1989) Hippocampal damage associated with prolonged and fatal stress in primates. J Neurosci 9(5):1705–1711PubMedGoogle Scholar
  202. Vaidya VA, Terwilliger RM, Duman RS (1999) Role of 5-HT2A receptors in the stress-induced down-regulation of brain-derived neurotrophic factor expression in rat hippocampus. Neurosci Lett 262(1):1–4PubMedGoogle Scholar
  203. van Erp TG, Hibar DP, Rasmussen JM, Glahn DC, Pearlson GD, Andreassen OA, Agartz I, Westlye LT, Haukvik UK, Dale AM, Melle I, Hartberg CB, Gruber O, Kraemer B, Zilles D, Donohoe G, Kelly S, McDonald C, Morris DW, Cannon DM, Corvin A, Machielsen MW, Koenders L, de Haan L, Veltman DJ, Satterthwaite TD, Wolf DH, Gur RC, Gur RE, Potkin SG, Mathalon DH, Mueller BA, Preda A, Macciardi F, Ehrlich S, Walton E, Hass J, Calhoun VD, Bockholt HJ, Sponheim SR, Shoemaker JM, van Haren NE, Hulshoff Pol HE, Ophoff RA, Kahn RS, Roiz-Santiañez R, Crespo-Facorro B, Wang L, Alpert KI, Jönsson EG, Dimitrova R, Bois C, Whalley HC, McIntosh AM, Lawrie SM, Hashimoto R, Thompson PM, Turner JA (2016) Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry 21(4):547–553PubMedGoogle Scholar
  204. Van Dam NT, Rando K, Potenza MN, Tuit K, Sinha R (2014) Childhood maltreatment, altered limbic neurobiology, and substance use relapse severity via trauma-specific reductions in limbic gray matter volume. JAMA Psychiatry 71(8):917–925.  https://doi.org/10.1001/jamapsychiatry.2014.680 PubMedPubMedCentralGoogle Scholar
  205. van der Put CE, Lanctot N, de Ruiter C, van Vugt E (2015) Child maltreatment among boy and girl probationers: does type of maltreatment make a difference in offending behavior and psychosocial problems? Child Abuse Negl 46:142–151.  https://doi.org/10.1016/j.chiabu.2015.05.012 PubMedGoogle Scholar
  206. van Harmelen AL, van Tol MJ, van der Wee NJ, Veltman DJ, Aleman A, Spinhoven P et al (2010) Reduced medial prefrontal cortex volume in adults reporting childhood emotional maltreatment. Biol Psychiatry 68(9):832–838.  https://doi.org/10.1016/j.biopsych.2010.06.011 PubMedGoogle Scholar
  207. Varese F, Smeets F, Drukker M, Lieverse R, Lataster T, Viechtbauer W et al (2012) Childhood adversities increase the risk of psychosis: a meta-analysis of patient-control, prospective- and cross-sectional cohort studies. Schizophr Bull 38(4):661–671.  https://doi.org/10.1093/schbul/sbs050 PubMedPubMedCentralGoogle Scholar
  208. Villarreal G, Hamilton DA, Petropoulos H, Driscoll I, Rowland LM, Griego JA et al (2002) Reduced hippocampal volume and total white matter volume in posttraumatic stress disorder. Biol Psychiatry 52(2):119–125PubMedGoogle Scholar
  209. Vogt BA, Finch DM, Olson CR (1992) Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb Cortex 2(6):435–443PubMedGoogle Scholar
  210. Vogt BA, Berger GR, Derbyshire SW (2003) Structural and functional dichotomy of human midcingulate cortex. Eur J Neurosci 18(11):3134–3144PubMedPubMedCentralGoogle Scholar
  211. Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S (2002) Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 22(15):6810–6818.  https://doi.org/10.1523/JNEUROSCI.22-15-06810.2002 PubMedPubMedCentralGoogle Scholar
  212. Vyas A, Bernal S, Chattarji S (2003) Effects of chronic stress on dendritic arborization in the central and extended amygdala. Brain Res 965(1–2):290–294PubMedPubMedCentralGoogle Scholar
  213. Vyas A, Pillai AG, Chattarji S (2004) Recovery after chronic stress fails to reverse amygdaloid neuronal hypertrophy and enhanced anxiety-like behavior. Neuroscience 128(4):667–673.  https://doi.org/10.1016/j.neuroscience.2004.07.013 PubMedGoogle Scholar
  214. Vythilingam M, Heim C, Newport J, Miller AH, Anderson E, Bronen R et al (2002) Childhood trauma associated with smaller hippocampal volume in women with major depression. Am J Psychiatry 159(12):2072–2080.  https://doi.org/10.1176/appi.ajp.159.12.2072 PubMedPubMedCentralGoogle Scholar
  215. Vythilingam M, Luckenbaugh DA, Lam T, Morgan CA 3rd, Lipschitz D, Charney DS et al (2005) Smaller head of the hippocampus in Gulf War-related posttraumatic stress disorder. Psychiatry Res 139(2):89–99.  https://doi.org/10.1016/j.pscychresns.2005.04.003 PubMedGoogle Scholar
  216. Walsh ND, Dalgleish T, Lombardo MV, Dunn VJ, Van Harmelen AL, Ban M, Goodyer IM (2014) General and specific effects of early-life psychosocial adversities on adolescent grey matter volume. Neuroimage Clin 4:308–318.  https://doi.org/10.1016/j.nicl.2014.01.001 PubMedPubMedCentralGoogle Scholar
  217. Wellman CL (2001) Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. J Neurobiol 49(3):245–253PubMedGoogle Scholar
  218. Weniger G, Lange C, Sachsse U, Irle E (2009) Reduced amygdala and hippocampus size in trauma-exposed women with borderline personality disorder and without posttraumatic stress disorder. J Psychiatry Neurosci 34(5):383–388PubMedPubMedCentralGoogle Scholar
  219. Whalen PJ, Bush G, McNally RJ, Wilhelm S, McInerney SC, Jenike MA, Rauch SL (1998) The emotional counting Stroop paradigm: a functional magnetic resonance imaging probe of the anterior cingulate affective division. Biol Psychiatry 44(12):1219–1228PubMedGoogle Scholar
  220. Whitford TJ, Rennie CJ, Grieve SM, Clark CR, Gordon E, Williams LM (2007) Brain maturation in adolescence: concurrent changes in neuroanatomy and neurophysiology. Hum Brain Mapp 28(3):228–237.  https://doi.org/10.1002/hbm.20273 PubMedGoogle Scholar
  221. Whittle S, Simmons JG, Dennison M, Vijayakumar N, Schwartz O, Yap MB et al (2014) Positive parenting predicts the development of adolescent brain structure: a longitudinal study. Dev Cogn Neurosci 8:7–17.  https://doi.org/10.1016/j.dcn.2013.10.006 PubMedGoogle Scholar
  222. Wierenga L, Langen M, Ambrosino S, van Dijk S, Oranje B, Durston S (2014) Typical development of basal ganglia, hippocampus, amygdala and cerebellum from age 7 to 24. NeuroImage 96:67–72.  https://doi.org/10.1016/j.neuroimage.2014.03.072 PubMedGoogle Scholar
  223. Wignall EL, Dickson JM, Vaughan P, Farrow TF, Wilkinson ID, Hunter MD, Woodruff PW (2004) Smaller hippocampal volume in patients with recent-onset posttraumatic stress disorder. Biol Psychiatry 56(11):832–836.  https://doi.org/10.1016/j.biopsych.2004.09.015 PubMedGoogle Scholar
  224. Williams LM, Kemp AH, Felmingham K, Barton M, Olivieri G, Peduto A et al (2006) Trauma modulates amygdala and medial prefrontal responses to consciously attended fear. NeuroImage 29(2):347–357.  https://doi.org/10.1016/j.neuroimage.2005.03.047 PubMedGoogle Scholar
  225. Winter H, Irle E (2004) Hippocampal volume in adult burn patients with and without posttraumatic stress disorder. Am J Psychiatry 161(12):2194–2200.  https://doi.org/10.1176/appi.ajp.161.12.2194 PubMedGoogle Scholar
  226. Woodward SH, Kaloupek DG, Streeter CC, Kimble MO, Reiss AL, Eliez S et al (2006) Hippocampal volume, PTSD, and alcoholism in combat veterans. Am J Psychiatry 163(4):674–681.  https://doi.org/10.1176/appi.ajp.163.4.674 PubMedGoogle Scholar
  227. Woon FL, Hedges DW (2008) Hippocampal and amygdala volumes in children and adults with childhood maltreatment-related posttraumatic stress disorder: a meta-analysis. Hippocampus 18(8):729–736.  https://doi.org/10.1002/hipo.20437 PubMedGoogle Scholar
  228. Woon FL, Hedges DW (2009) Amygdala volume in adults with posttraumatic stress disorder: a meta-analysis. J Neuropsychiatry Clin Neurosci 21(1):5–12.  https://doi.org/10.1176/appi.neuropsych.21.1.5,  https://doi.org/10.1176/jnp.2009.21.1.5
  229. Woon F, Hedges DW (2011) Gender does not moderate hippocampal volume deficits in adults with posttraumatic stress disorder: a meta-analysis. Hippocampus 21(3):243–252.  https://doi.org/10.1002/hipo.20746 PubMedGoogle Scholar
  230. Woon FL, Sood S, Hedges DW (2010) Hippocampal volume deficits associated with exposure to psychological trauma and posttraumatic stress disorder in adults: a meta-analysis. Prog Neuro-Psychopharmacol Biol Psychiatry 34(7):1181–1188.  https://doi.org/10.1016/j.pnpbp.2010.06.016 Google Scholar
  231. Yamasue H, Kasai K, Iwanami A, Ohtani T, Yamada H, Abe O et al (2003) Voxel-based analysis of MRI reveals anterior cingulate gray-matter volume reduction in posttraumatic stress disorder due to terrorism. Proc Natl Acad Sci USA 100(15):9039–9043.  https://doi.org/10.1073/pnas.1530467100 PubMedGoogle Scholar
  232. Yang P, Wu MT, Hsu CC, Ker JH (2004) Evidence of early neurobiological alternations in adolescents with posttraumatic stress disorder: a functional MRI study. Neurosci Lett 370(1):13–18.  https://doi.org/10.1016/j.neulet.2004.07.033 PubMedGoogle Scholar
  233. Yang RJ, Mozhui K, Karlsson RM, Cameron HA, Williams RW, Holmes A (2008) Variation in mouse basolateral amygdala volume is associated with differences in stress reactivity and fear learning. Neuropsychopharmacology 33(11):2595–2604.  https://doi.org/10.1038/sj.npp.1301665 PubMedGoogle Scholar
  234. Zhang J, Tan Q, Yin H, Zhang X, Huan Y, Tang L et al (2011a) Decreased gray matter volume in the left hippocampus and bilateral calcarine cortex in coal mine flood disaster survivors with recent onset PTSD. Psychiatry Res 192(2):84–90.  https://doi.org/10.1016/j.pscychresns.2010.09.001 PubMedGoogle Scholar
  235. Zhang L, Zhang Y, Li L, Li Z, Li W, Ma N et al (2011b) Different white matter abnormalities between the first-episode, treatment-naive patients with posttraumatic stress disorder and generalized anxiety disorder without comorbid conditions. J Affect Disord 133(1–2):294–299.  https://doi.org/10.1016/j.jad.2011.03.040 PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Maxwell Bennett
    • 1
  • Jim Lagopoulos
    • 2
  1. 1.The University of SydneyBrain and Mind CentreCamperdown NSWAustralia
  2. 2.Sunshine Coast Mind and Neuroscience Thompson InstituteUniversity of Sunshine CoastBirtinyaAustralia

Personalised recommendations