Advertisement

T1 Mapping in Aortic Stenosis

  • Russell J. Everett
  • David E. Newby
  • Marc R. Dweck
Chapter

Abstract

Aortic stenosis is the most clinically important valve disease in the Western world and is set to increase with an aging population. It is defined not only by inflammation and calcification of the valve tissue itself, but progressive hypertrophy and myocardial fibrosis of the left ventricle. Cardiac magnetic resonance (CMR) is ideally positioned to provide accurate assessment of the myocardium, allowing gold-standard quantification of the left ventricular mass. Although focal replacement fibrosis is common in patients with aortic stenosis and can be detected with the late gadolinium enhancement technique, it appears to be irreversible, making assessment of the earlier reversible stages of diffuse myocardial fibrosis desirable.

T1 mapping methods such as native T1 and extracellular volume (ECV) fraction are able to detect diffuse fibrosis in patients with aortic stenosis. Both parameters correlate well with histology and are able to differentiate patients with aortic stenosis from healthy controls. Native T1 is associated with impaired global longitudinal strain and diastolic dysfunction. Extracellular volume assesses relative fibrosis of the heart and is associated with impaired diastolic function and patient functional status. In other cardiac conditions, ECV has been found to be a predictor of adverse prognosis but this has yet to be demonstrated in patients with aortic stenosis.

Both native T1 mapping and ECV techniques are limited by the lack of widely applicable normal reference ranges as well as significant overlap between values in healthy controls and patients with aortic stenosis. Further research is required to fully establish the role of T1 mapping in aortic stenosis and to evaluate other potential T1 mapping parameters.

Keywords

Aortic stenosis Left ventricular hypertrophy Calcification Inflammation Fibrosis Collagen Late-gadolinium enhancement Valve replacement 

References

  1. 1.
    Iung B, Baron G, Butchart EG, Delahaye F, Gohlke-Bärwolf C, Levang OW, et al. A prospective survey of patients with valvular heart disease in Europe: the Euro Heart Survey on Valvular Heart Disease. Eur Heart J. 2003;24(13):1231–43.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368(9540):1005–11.CrossRefGoogle Scholar
  3. 3.
    Ross J, Braunwald E. Aortic stenosis. Circulation. 1968;38(1 Suppl):61–7.PubMedGoogle Scholar
  4. 4.
    Connolly HM, Oh JK, Orszulak TA, Osborn SL, Roger VL, Hodge DO, et al. Aortic valve replacement for aortic stenosis with severe left ventricular dysfunction. Prognostic indicators. Circulation. 1997;95(10):2395–400.CrossRefPubMedGoogle Scholar
  5. 5.
    Tribouilloy C, Levy F, Rusinaru D, Guéret P, Petit-Eisenmann H, Baleynaud S, et al. Outcome after aortic valve replacement for low-flow/low-gradient aortic stenosis without contractile reserve on dobutamine stress echocardiography. J Am Coll Cardiol. 2009;53(20):1865–73.CrossRefPubMedGoogle Scholar
  6. 6.
    Dweck MR, Boon NA, Newby DE. Calcific aortic stenosis: a disease of the valve and the myocardium. J Am Coll Cardiol. 2012;60(19):1854–63.CrossRefPubMedGoogle Scholar
  7. 7.
    Dweck MR, Jones C, Joshi NV, Fletcher AM, Richardson H, White A, et al. Assessment of valvular calcification and inflammation by positron emission tomography in patients with aortic stenosis. Circulation. 2012;125(1):76–86.CrossRefPubMedGoogle Scholar
  8. 8.
    Rossebø AB, Pedersen TR, Boman K, Brudi P, Chambers JB, Egstrup K, et al. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N Engl J Med. 2008;359(13):1343–56.CrossRefPubMedGoogle Scholar
  9. 9.
    Cowell SJ, Newby DE, Prescott RJ, Bloomfield P, Reid J, Northridge DB, et al. A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N Engl J Med. 2005;352(23):2389–97.CrossRefPubMedGoogle Scholar
  10. 10.
    Chan KL, Teo K, Dumesnil JG, Ni A, Tam J, Investigators A. Effect of lipid lowering with rosuvastatin on progression of aortic stenosis results of the aortic stenosis progression observation: measuring effects of rosuvastatin (ASTRONOMER) trial. Circulation. 2010;121(2):306–U247.CrossRefPubMedGoogle Scholar
  11. 11.
    Hein S, Arnon E, Kostin S, Schönburg M, Elsässer A, Polyakova V, et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation. 2003;107(7):984–91.CrossRefPubMedGoogle Scholar
  12. 12.
    Azevedo CF, Nigri M, Higuchi ML, Pomerantzeff PM, Spina GS, Sampaio RO, et al. Prognostic significance of myocardial fibrosis quantification by histopathology and magnetic resonance imaging in patients with severe aortic valve disease. J Am Coll Cardiol. 2010;56(4):278–87.CrossRefPubMedGoogle Scholar
  13. 13.
    Krayenbeuhl HP, Hess OM, Monrad ES, Schneider J, Mall G, Turina M. Left-ventricular myocardial structure in aortic-valve disease before, intermediate, and late after aortic-valve replacement. Circulation. 1989;79(4):744–55.CrossRefGoogle Scholar
  14. 14.
    Flett AS, Sado DM, Quarta G, Mirabel M, Pellerin D, Herrey AS, et al. Diffuse myocardial fibrosis in severe aortic stenosis: an equilibrium contrast cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging. 2012;13(10):jes102–826.CrossRefGoogle Scholar
  15. 15.
    Shah ASV, Chin CWL, Vassiliou V, Cowell SJ, Doris M, Kwok TC, et al. Left ventricular hypertrophy with strain and aortic stenosis. Circulation. 2014;130(18):1607–16.CrossRefPubMedGoogle Scholar
  16. 16.
    Dobson LE, Musa TA, Fairbairn TA, Uddin A, Blackman DJ, Ripley DP, et al. CMR assessment of longitudinal left ventricular function following transcatheter aortic valve implantation (TAVI) for severe aortic stenosis. J Cardiovasc Magn Reson. 2015;17(1):P180.CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Ibrahim E-SH. Myocardial tagging by cardiovascular magnetic resonance: evolution of techniques—pulse sequences, analysis algorithms, and applications. J Cardiovasc Magn Reson. 2011;13(1):36.CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Dweck MR, Joshi S, Murigu T, Gulati A, Alpendurada F, Jabbour A, et al. Left ventricular remodeling and hypertrophy in patients with aortic stenosis: insights from cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14(1):1–1.CrossRefGoogle Scholar
  19. 19.
    Gunther S, Grossman W. Determinants of ventricular function in pressure-overload hypertrophy in man. Circulation. 1979;59(4):679–88.CrossRefPubMedGoogle Scholar
  20. 20.
    Salcedo EE, Korzick DH, Currie PJ, Stewart WJ, Lever HM, Goormastic M. Determinants of left ventricular hypertrophy in patients with aortic stenosis. Cleve Clin J Med. 1989;56(6):590–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Cioffi G, Faggiano P, Vizzardi E, Tarantini L, Cramariuc D, Gerdts E, et al. Prognostic effect of inappropriately high left ventricular mass in asymptomatic severe aortic stenosis. Heart. 2011;97(4):301–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Gerdts E, Rossebø AB, Pedersen TR, Cioffi G, Lønnebakken MT, Cramariuc D, et al. Relation of left ventricular mass to prognosis in initially asymptomatic mild to moderate aortic valve stenosis. Circ Cardiovasc Imaging. 2015;8(11):e003644; discussion e003644.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Yilmaz A, Kindermann I, Kindermann M, Mahfoud F, Ukena C, Athanasiadis A, et al. Comparative evaluation of left and right ventricular endomyocardial biopsy: differences in complication rate and diagnostic performance. Circulation. 2010;122(9):900–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Debl K, Djavidani B, Buchner S, Lipke C, Nitz W, Feuerbach S, et al. Delayed hyperenhancement in magnetic resonance imaging of left ventricular hypertrophy caused by aortic stenosis and hypertrophic cardiomyopathy: visualisation of focal fibrosis. Heart. 2006;92(10):1447–51.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rudolph A, Abdel-Aty H, Bohl S, Boyé P, Zagrosek A, Dietz R, et al. Noninvasive detection of fibrosis applying contrast-enhanced cardiac magnetic resonance in different forms of left ventricular hypertrophy relation to remodeling. J Am Coll Cardiol. 2009;53(3):284–91.CrossRefPubMedGoogle Scholar
  26. 26.
    Dweck MR, Joshi S, Murigu T, Alpendurada F, Jabbour A, Melina G, et al. Midwall fibrosis is an independent predictor of mortality in patients with aortic stenosis. J Am Coll Cardiol. 2011;58(12):1271–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Barone-Rochette G, Piérard S, De Meester de Ravenstein C, Seldrum S, Melchior J, Maes F, et al. Prognostic significance of LGE by CMR in aortic stenosis patients undergoing valve replacement. J Am Coll Cardiol. 2014;64(2):144–54.CrossRefPubMedGoogle Scholar
  28. 28.
    Mahmod M, Piechnik SK, Levelt E, Ferreira VM, Francis JM, Lewis A, et al. Adenosine stress native T1 mapping in severe aortic stenosis: evidence for a role of the intravascular compartment on myocardial T1 values. J Cardiovasc Magn Reson. 2014;16(1):92.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Weidemann F, Herrmann S, Störk S, Niemann M, Frantz S, Lange V, et al. Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis. Circulation. 2009;120(7):577–84.CrossRefPubMedGoogle Scholar
  30. 30.
    Chin CWL, Shah ASV, McAllister DA, Joanna Cowell S, Alam S, Langrish JP, et al. High-sensitivity troponin I concentrations are a marker of an advanced hypertrophic response and adverse outcomes in patients with aortic stenosis. Eur Heart J. 2014;35(34):2312–21.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Singh A, Horsfield MA, Bekele S, Khan JN, Greiser A, McCann GP. Myocardial T1 and extracellular volume fraction measurement in asymptomatic patients with aortic stenosis: reproducibility and comparison with age-matched controls. Eur Heart J Cardiovasc Imaging. 2015;16(7):763–70.CrossRefPubMedGoogle Scholar
  32. 32.
    Eberli FR, Ritter M, Schwitter J, Bortone A, Schneider J, Hess OM, et al. Coronary reserve in patients with aortic valve disease before and after successful aortic valve replacement. Eur Heart J. 1991;12(2):127–38.CrossRefPubMedGoogle Scholar
  33. 33.
    Bull S, White SK, Piechnik SK, Flett AS, Ferreira VM, Loudon M, et al. Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart. 2013;99(13):932–7.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lee S-P, Lee W, Lee JM, Park E-A, Kim H-K, Kim Y-J, et al. Assessment of diffuse myocardial fibrosis by using MR imaging in asymptomatic patients with aortic stenosis. Radiology. 2015;274(2):359–69.CrossRefPubMedGoogle Scholar
  35. 35.
    Kockova R, Kacer P, Pirk J, Maly J, Sukupova L, Sikula V, et al. Native T1 relaxation time and extracellular volume fraction as accurate markers of diffuse myocardial fibrosis in heart valve disease—comparison with targeted left ventricular myocardial biopsy. Circ J. 2016;80(5):1202–9.CrossRefPubMedGoogle Scholar
  36. 36.
    De Meester de Ravenstein C, Bouzin C, Lazam S, Boulif J, Amzulescu M, Melchior J, et al. Histological validation of measurement of diffuse interstitial myocardial fibrosis by myocardial extravascular volume fraction from Modified Look-Locker imaging (MOLLI) T1 mapping at 3 T. J Cardiovasc Magn Reson. 2015;17(1):48.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Chin CWL, Semple S, Malley T, White AC, Mirsadraee S, Weale PJ, et al. Optimization and comparison of myocardial T1 techniques at 3T in patients with aortic stenosis. Eur Heart J Cardiovasc Imaging. 2014;15(5):556–65.CrossRefPubMedGoogle Scholar
  38. 38.
    Fontana M, White SK, Banypersad SM. Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quantification equilibrium contrast CMR. J Cardiovasc Magn Reson. 2012;14:88.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation. 2010;122(2):138–44.CrossRefPubMedGoogle Scholar
  40. 40.
    White SK, Sado DM, Fontana M, Banypersad SM, Maestrini V, Flett AS, et al. T1 mapping for myocardial extracellular volume measurement by CMR: bolus only versus primed infusion technique. JACC Cardiovasc Imaging. 2013;6(9):955–62.CrossRefPubMedGoogle Scholar
  41. 41.
    Sado DM, Flett AS, Banypersad SM, White SK, Maestrini V, Quarta G, et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart. 2012;98(19):1436–41.CrossRefPubMedGoogle Scholar
  42. 42.
    Wong TC, Piehler K, Meier CG, Testa SM, Klock AM, Aneizi AA, et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short term mortality. Circulation. 2012;126(10):1206–16.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Treibel TA, Fontana M, Maestrini V, Castelletti S, Rosmini S, Simpson J, et al. Automatic Measurement of the Myocardial Interstitium: synthetic extracellular volume quantification without hematocrit sampling. JACC Cardiovasc Imaging. 2016;9(1):54–63.CrossRefPubMedGoogle Scholar
  44. 44.
  45. 45.
    Antony R, Daghem M, McCann GP, Daghem S, Moon J, Pennell DJ, et al. Cardiovascular magnetic resonance activity in the United Kingdom: a survey on behalf of the British Society of Cardiovascular Magnetic Resonance. J Cardiovasc Magn Reson. 2011;13(1):57.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Dabir D, Child N, Kalra A, Rogers T, Gebker R, Jabbour A, et al. Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study. J Cardiovasc Magn Reson. 2014;16(1):69.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Mack MJ, Leon MB, Smith CR, Miller DC, Moses JW, Tuzcu EM, et al. 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet. 2015;385(9986):2477–84.CrossRefGoogle Scholar
  48. 48.
    Kapadia SR, Leon MB, Makkar RR, Tuzcu EM, Svensson LG, Kodali S, et al. 5-year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperable aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet. 2015;385(9986):2485–91.CrossRefPubMedGoogle Scholar
  49. 49.
    Leon MB, Smith CR, Mack MJ, Makkar RR, Svensson LG, Kodali SK, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2016;374(17):1609–20.CrossRefPubMedGoogle Scholar
  50. 50.
    Helm PA, Caravan P, French BA, Jacques V, Shen L, Xu Y, et al. Postinfarction myocardial scarring in mice: molecular MR imaging with use of a collagen-targeting contrast agent. Radiology. 2008;247(3):788–96.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wildgruber M, Bielicki I, Aichler M, Kosanke K, Feuchtinger A, Settles M, et al. Assessment of myocardial infarction and postinfarction scar remodeling with an elastin-specific magnetic resonance agent. Circ Cardiovasc Imaging. 2014;7(2):321–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Ven Le F, Tizón-Marcos H, Fuchs C, Mathieu P, Pibarot P, Larose E. Valve tissue characterization by magnetic resonance imaging in calcific aortic valve disease. Can J Cardiol. 2014;30(12):1676–83.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Russell J. Everett
    • 1
  • David E. Newby
    • 1
  • Marc R. Dweck
    • 1
  1. 1.British Heart Foundation Centre for Cardiovascular Science, University of EdinburghEdinburghUK

Personalised recommendations