T1 Mapping in Cardiomyopathy from Cancer Treatment

  • Jennifer H. Jordan
  • W. Gregory HundleyEmail author


Cancer survivorship rates are increasing globally and survivors are now faced with an increased likelihood of comorbidities associated with advancing age and side effects from cancer treatment. Cardio-oncology is an emerging clinical discipline that explores the relationship between cardiovascular disease and cancer treatment. Mounting evidence acquired over the past 20 years highlight an increasing occurrence of cardiovascular events among cancer survivors that threatens to offset gains recognized in cancer treatment such that overall cancer survivorship is threatened. To understand the mechanisms by which cancer and its treatment promote cardiovascular dysfunction and cardiovascular events, recent research has focused on the use of cardiovascular magnetic resonance imaging (CMR) tissue characterization using T1 mapping. This technique can provide assessments of the left ventricular (LV) myocardium before, during, and after cancer treatment. This chapter reviews the results published to date using CMR T1 mapping in patients treated for cancer with the goal of gaining understanding of subclinical cardiovascular disease that impacts cancer survivors’ quality of life and survival.


Cardio-oncology Cardiotoxicity T1 mapping Extracellular volume ECV mapping Myocardial fibrosis Myocardial injury 


  1. 1.
    Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, Stein KD, Alteri R, Jemal A. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016;66:271–89.CrossRefPubMedGoogle Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol Biomarkers Prev. 2016;25:16–27.CrossRefPubMedGoogle Scholar
  4. 4.
    Berry GJ, Jorden M. Pathology of radiation and anthracycline cardiotoxicity. Pediatr Blood Cancer. 2005;44:630–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Grenier MA, Lipshultz SE. Epidemiology of anthracycline cardiotoxicity in children and adults. Semin Oncol. 1998;25:72–85.PubMedGoogle Scholar
  6. 6.
    Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.CrossRefPubMedGoogle Scholar
  7. 7.
    Okwuosa TM, Barac A. Burgeoning cardio-oncology programs challenges and opportunities for early career cardiologists/faculty directors. J Am Coll Cardiol. 2015;66:1193–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Hortobagyi GN. Drug therapy—treatment of breast cancer. N Engl J Med. 1998;339:974–84.CrossRefPubMedGoogle Scholar
  9. 9.
    Lipshultz SE, Colan SD, Gelber RD, Perezatayde AR, Sallan SE, Sanders SP. Late cardiac effects of doxorubicin therapy for acute lymphoblastic-leukemia in childhood. N Engl J Med. 1991;324:808–15.CrossRefPubMedGoogle Scholar
  10. 10.
    Meléndez GC, Hundley WG. Is myocardial fibrosis a new frontier for discovery in cardiotoxicity related to the administration of anthracyclines? Circ Cardiovasc Imaging. 2016;9(12).Google Scholar
  11. 11.
    Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998;339:900–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Torti FM, Aston D, Lum BL, Kohler M, Williams R, Spaulding JT, Shortliffe L, Freiha FS. Weekly doxorubicin in endocrine refractory carcinoma of the prostate. J Clin Oncol. 1983;1:477–82.CrossRefPubMedGoogle Scholar
  13. 13.
    Valdivieso M, Burgess MA, Ewer MS, Mackay B, Wallace S, Benjamin RS, Ali MK, Bodey GP, Freireich EJ. Increased therapeutic index of weekly doxorubicin in the therapy of non-small cell lung cancer—a prospective, randomized study. J Clin Oncol. 1984;2:207–14.CrossRefPubMedGoogle Scholar
  14. 14.
    Mulrooney DA, Yeazel MW, Kawashima T, Mertens AC, Mitby P, Stovall M, Donaldson SS, Green DM, Sklar CA, Robison LL. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ. 2009;339:b4606.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT, Friedman DL, Marina N, Hobbie W, Kadan-Lottick NS, Schwartz CL, Leisenring W, Robison LL. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med. 2006;355:1572–82.CrossRefPubMedGoogle Scholar
  16. 16.
    Lipshultz SE, Alvarez JA, Scully RE. Anthracycline associated cardiotoxicity in survivors of childhood cancer. Heart. 2008;94:525–33.CrossRefPubMedGoogle Scholar
  17. 17.
    Breast Cancer Facts & Figures 2011–2012. Atlanta: American Cancer Society, Inc.Google Scholar
  18. 18.
    Shankar SM, Marina N, Hudson MM, Hodgson DC, Adams MJ, Landier W, Bhatia S, Meeske K, Chen MH, Kinahan KE, Steinberger J, Rosenthal D. Monitoring for cardiovascular disease in survivors of childhood cancer: report from the Cardiovascular Disease Task Force of the Children’s Oncology Group. Pediatrics. 2008;121:e387–96.CrossRefPubMedGoogle Scholar
  19. 19.
    Patnaik JL, Byers T, Diguiseppi C, Dabelea D, Denberg TD. Cardiovascular disease competes with breast cancer as the leading cause of death for older females diagnosed with breast cancer: A retrospective cohort study. Breast Cancer Res. 2011;13:R64.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sawyer DB, Peng X, Chen B, Pentassuglia L, Lim CC. Mechanisms of anthracycline cardiac injury: can we identify strategies for cardioprotection? Prog Cardiovasc Dis. 2010;53:105–13.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhu S-G, Kukreja RC, Das A, Chen Q, Lesnefsky EJ, Xi L. Dietary nitrate supplementation protects against doxorubicin-induced cardiomyopathy by improving mitochondrial function. J Am Coll Cardiol. 2011;57:2181–9.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    An J, Li P, Li J, Dietz R, Donath S. ARC is a critical cardiomyocyte survival switch in doxorubicin cardiotoxicity. J Mol Med. 2009;87:401–10.CrossRefPubMedGoogle Scholar
  23. 23.
    Childs AC, Phaneuf SL, Dirks AJ, Phillips T, Leeuwenburgh C. Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio. Cancer Res. 2002;62:4592–8.PubMedGoogle Scholar
  24. 24.
    Sorensen BS, Sinding J, Andersen AH, Alsner J, Jensen PB, Westergaard O. Mode of action of topoisomerase II-targeting agents at a specific DNA sequence: uncoupling the DNA binding, cleavage and religation events. J Mol Biol. 1992;228:778–86.CrossRefPubMedGoogle Scholar
  25. 25.
    Kim Y, Ma AG, Kitta K, Fitch SN, Ikeda T, Ihara Y, Simon AR, Evans T, Suzuki YJ. Anthracycline-induced suppression of GATA-4 transcription factor: implication in the regulation of cardiac myocyte apoptosis. Mol Pharmacol. 2003;63:368–77.CrossRefPubMedGoogle Scholar
  26. 26.
    Huang C, Zhang X, Ramil JM, Rikka S, Kim L, Lee Y, Gude NA, Thistlethwaite PA, Sussman MA, Gottlieb RA. Juvenile exposure to anthracyclines impairs cardiac progenitor cell function and vascularization resulting in greater susceptibility to stress-induced myocardial injury in adult mice. Circulation. 2010;121:675–83.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cosper PF, Leinwand LA. Cancer causes cardiac atrophy and autophagy in a sexually dimorphic manner. Cancer Res. 2011;71:1710–20.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhao Y, Mclaughlin D, Robinson E, Harvey AP, Hookham MB, Shah AM, Mcdermott BJ, Grieve DJ. Nox2 NADPH oxidase promotes pathologic cardiac remodeling associated with Doxorubicin chemotherapy. Cancer Res. 2010;70:9287–97.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Peng X, Chen B, Lim CC, Sawyer DB. The cardiotoxicology of anthracycline chemotherapeutics: translating molecular mechanism into preventative medicine. Mol Interv. 2005;5:163–71.CrossRefPubMedGoogle Scholar
  30. 30.
    Mewton N, Liu CY, Croisille P, Bluemke D, Lima JAC. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol. 2011;57:891–903.CrossRefPubMedGoogle Scholar
  31. 31.
    Thavendiranathan P, Wintersperger BJ, Flamm SD, Marwick TH. Cardiac MRI in the assessment of cardiac injury and toxicity from cancer chemotherapy: a systematic review. Circ Cardiovasc Imaging. 2013b;6:1080–91.CrossRefPubMedGoogle Scholar
  32. 32.
    Vasu S, Hundley WG. Understanding cardiovascular injury after treatment for cancer: an overview of current uses and future directions of cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2013;15:66–83.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bovelli D, Plataniotis G, Roila F, Group, E. G. W. Cardiotoxicity of chemotherapeutic agents and radiotherapy-related heart disease: ESMO clinical practice guidelines. Ann Oncol. 2010;21:v277–82.CrossRefPubMedGoogle Scholar
  34. 34.
    Fallah-Rad N, Walker JR, Wassef A, Lytwyn M, Bohonis S, Fang T, Tian G, Kirkpatrick ID, Singal PK, Krahn M. The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II–positive breast cancer treated with adjuvant trastuzumab therapy. J Am Coll Cardiol. 2011;57:2263–70.CrossRefPubMedGoogle Scholar
  35. 35.
    Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, Hicks M, Puzanov I, Alexander MR, Bloomer TL. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375:1749–55.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ewer MS, Yeh ET. Cancer and the heart: PMPH-USA; 2013.Google Scholar
  37. 37.
    Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, Ganame J, Sebag IA, Agler DA, Badano LP, Banchs J, Cardinale D, Carver J, Cerqueira M, Decara JM, Edvardsen T, Flamm SD, Force T, Griffin BP, Jerusalem G, Liu JE, Magalhaes A, Marwick T, Sanchez LY, Sicari R, Villarraga HR, Lancellotti P. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2014;27:911–39.CrossRefPubMedGoogle Scholar
  38. 38.
    Bellenger N, Burgess M, Ray S, Lahiri A, Coats A, Cleland J, Pennell D. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance. Are they interchangeable? Eur Heart J. 2000;21:1387–96.CrossRefPubMedGoogle Scholar
  39. 39.
    Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, Civelli M, Lamantia G, Colombo N, Curigliano G, Fiorentini C, Cipolla CM. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131:1981–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Hundley WG, Bluemke DA, Finn JP, Flamm SD, Fogel MA, Friedrich MG, Ho VB, Jerosch-Herold M, Kramer CM, Manning WJ, Patel M, Pohost GM, Stillman AE, White RD, Woodard PK. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. Circulation. 2010;121:2462–508.CrossRefPubMedGoogle Scholar
  41. 41.
    Raman SV, Shah M, Mccarthy B, Garcia A, Ferketich AK. Multi-detector row cardiac computed tomography accurately quantifies right and left ventricular size and function compared with cardiac magnetic resonance. Am Heart J. 2006;151:736–44.CrossRefPubMedGoogle Scholar
  42. 42.
    Thavendiranathan P, Grant AD, Negishi T, Plana JC, Popovic ZB, Marwick TH. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol. 2013a;61:77–84.CrossRefPubMedGoogle Scholar
  43. 43.
    Walker J, Bhullar N, Fallah-Rad N, Lytwyn M, Golian M, Fang T, Summers AR, Singal PK, Barac I, Kirkpatrick ID, Jassal DS. Role of three-dimensional echocardiography in breast cancer: comparison with two-dimensional echocardiography, multiple-gated acquisition scans, and cardiac magnetic resonance imaging. J Clin Oncol. 2010;28:3429–36.CrossRefPubMedGoogle Scholar
  44. 44.
    Alexander J, Dainiak N, Berger HJ, Goldman L, Johnstone D, Reduto L, Duffy T, Schwartz P, Gottschalk A, Zaret BL. Serial assessment of doxorubicin cardiotoxicity with quantitative radionuclide angiocardiography. N Engl J Med. 1979;300:278–83.CrossRefPubMedGoogle Scholar
  45. 45.
    Schwartz RG, Mckenzie WB, Alexander J, Sager P, D’Souza A, Manatunga A, Schwartz PE, Berger HJ, Setaro J, Surkin L, et al. Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy. Seven-year experience using serial radionuclide angiocardiography. Am J Med. 1987;82:1109–18.CrossRefPubMedGoogle Scholar
  46. 46.
    Walker CM, Saldana DA, Gladish GW, Dicks DL, Kicska G, Mitsumori LM, Reddy GP. Cardiac complications of oncologic therapy. Radiographics. 2013;33:1801–15.CrossRefPubMedGoogle Scholar
  47. 47.
    Ewer MS, Ali MK, Mackay B, Wallace S, Valdivieso M, Legha SS, Benjamin RS, Haynie TP. A comparison of cardiac biopsy grades and ejection fraction estimations in patients receiving Adriamycin. J Clin Oncol. 1984;2:112–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Gottdiener JS, Mathisen DJ, Borer JS, Bonow RO, Myers CE, Barr LH, Schwartz DE, Bacharach SL, Green MV, Rosenberg SA. Doxorubicin cardiotoxicity—assessment of late left-ventricular dysfunction by radionuclide cineangiography. Ann Intern Med. 1981;94:430–5.CrossRefPubMedGoogle Scholar
  49. 49.
    Ky B, Putt M, Sawaya H, French B, Januzzi JL, Sebag IA, Plana JC, Cohen V, Banchs J, Carver JR. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol. 2014;63:809–16.CrossRefPubMedGoogle Scholar
  50. 50.
    Stoodley PW, Richards DA, Hui R, Boyd A, Harnett PR, Meikle SR, Clarke J, Thomas L. Two-dimensional myocardial strain imaging detects changes in left ventricular systolic function immediately after anthracycline chemotherapy. Eur J Echocardiogr. 2011;12:945–52.CrossRefPubMedGoogle Scholar
  51. 51.
    Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Cohen V, Gosavi S, Carver JR, Wiegers SE, Martin RP, Picard MH, Gerszten RE, Halpern EF, Passeri J, Kuter I, Scherrer-Crosbie M. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol. 2011;107:1375–80.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Thavendiranathan P, Poulin F, Lim KD, Plana JC, Woo A, Marwick TH. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol. 2014;63:2751–68.CrossRefPubMedGoogle Scholar
  53. 53.
    Lange SA, Ebner B, Wess A, Kogel M, Gajda M, Hitschold T, Jung J. Echocardiography signs of early cardiac impairment in patients with breast cancer and trastuzumab therapy. Clin Res Cardiol. 2012;101:415–26.CrossRefPubMedGoogle Scholar
  54. 54.
    Marchandise B, Schroeder E, Bosly A, Doyen C, Weynants P, Kremer R, Pouleur H. Early detection of doxorubicin cardiotoxicity: interest of Doppler echocardiographic analysis of left ventricular filling dynamics. Am Heart J. 1989;118:92–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Stoddard MF, Seeger J, Liddell NE, Hadley TJ, Sullivan DM, Kupersmith J. Prolongation of isovolumetric relaxation time as assessed by Doppler echocardiography predicts doxorubicin-induced systolic dysfunction in humans. J Am Coll Cardiol. 1992;20:62–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Tassan-Mangina S, Codorean D, Metivier M, Costa B, Himberlin C, Jouannaud C, Blaise AM, Elaerts J, Nazeyrollas P. Tissue Doppler imaging and conventional echocardiography after anthracycline treatment in adults: early and late alterations of left ventricular function during a prospective study. Eur J Echocardiogr. 2006;7:141–6.CrossRefPubMedGoogle Scholar
  57. 57.
    Aletras AH, Ding SJ, Balaban RS, Wen H. DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. J Magn Reson. 1999;137:247–52.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Osman NF, Kerwin WS, Mcveigh ER, Prince JL. Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn Reson Med. 1999;42:1048–60.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Drafts BC, Twomley KM, D’Agostino R Jr, Lawrence J, Avis N, Ellis LR, Thohan V, Jordan J, Melin SA, Torti FM, Little WC, Hamilton CA, Hundley WG. Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging. 2013;6:877–85.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kongbundansuk S, Hundley WG. Noninvasive imaging of cardiovascular injury related to the treatment of cancer. JACC Cardiovasc Imaging. 2014;7:824–38.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Jordan JH, Sukpraphrute B, Meléndez GC, Jolly M-P, D’Agostino RB, Hundley WG. Early myocardial strain changes during potentially cardiotoxic chemotherapy may occur as a result of reductions in left ventricular end-diastolic volume. Circulation. 2017;135:2575–7.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Meléndez GC, Sukpraphrute B, D’Agostino RB, Jordan JH, Klepin HD, Ellis L, Lamar Z, Vasu S, Lesser G, Burke GL. Frequency of left ventricular end-diastolic volume–mediated declines in ejection fraction in patients receiving potentially cardiotoxic cancer treatment. Am J Cardiol. 2017;119:1637–42.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Devita VT, Hellman S, Rosenberg SA. Cancer, principles & practice of oncology. Philadelphia, PA: Lippincott Williams & Wilkins; 2005.Google Scholar
  64. 64.
    Ferrans VJ. Overview of cardiac pathology in relation to anthracycline cardiotoxicity. Cancer Treat Rep. 1978;62:955–61.PubMedGoogle Scholar
  65. 65.
    Olson HM, Young DM, Prieur DJ, Leroy AF, Reagan RL. Electrolyte and morphologic alterations of myocardium in adriamycin-treated rabbits. Am J Pathol. 1974;77:439–54.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Cottin Y, Ribuot C, Maupoil V, Godin D, Arnould L, Brunotte F, Rochette L. Early incidence of adriamycin treatment on cardiac parameters in the rat. Can J Physiol Pharmacol. 1994;72:140–5.CrossRefPubMedGoogle Scholar
  67. 67.
    Thompson RC, Canby RC, Lojeski EW, Ratner AV, Fallon JT, Pohost GM. Adriamycin cardiotoxicity and proton nuclear-magnetic-resonance relaxation properties. Am Heart J. 1987;113:1444–9.CrossRefPubMedGoogle Scholar
  68. 68.
    Wassmuth R, Lentzsch S, Erdbruegger U, Schulz-Menger J, Doerken B, Dietz R, Friedrich MG. Subclinical cardiotoxic effects of anthracyclines as assessed by magnetic resonance imaging—a pilot study. Am Heart J. 2001;141:1007–13.CrossRefPubMedGoogle Scholar
  69. 69.
    Lightfoot JC, D’Agostino RB, Hamilton CA, Jordan J, Torti FM, Kock ND, Jordan J, Workman S, Hundley WG. Novel approach to early detection of doxorubicin cardiotoxicity by gadolinium-enhanced cardiovascular magnetic resonance imaging. Circ Cardiovasc Imaging. 2010;3(5):550–8. Scholar
  70. 70.
    Jordan JH, D’Agostino RB, Hamilton CA, Vasu S, Hall ME, Kitzman DW, Thohan V, Lawrence JA, Ellis LR, Lash TL. Longitudinal assessment of concurrent changes in left ventricular ejection fraction and left ventricular myocardial tissue characteristics after administration of cardiotoxic chemotherapies using T1-weighted and T2-weighted cardiovascular magnetic resonance. Circ Cardiovasc Imaging. 2014;7:872–9.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Neilan TG, Coelho OR, Shah RV, Feng JZH, Pena-Herrera D, Mandry D, Pierre-Mongeon F, Heydari B, Francis SA, Moslehi J, Kwong RY, Jerosch-Herold M. Myocardial extracellular volume by cardiac magnetic resonance imaging in patients treated with anthracycline-based chemotherapy. Am J Cardiol. 2013;111:717–22.CrossRefPubMedGoogle Scholar
  72. 72.
    Tham EB, Haykowsky MJ, Chow K, Spavor M, Kaneko S, Khoo NS, Pagano JJ, Mackie AS, Thompson RB. Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: Relationship to exercise capacity, cumulative dose and remodeling. J Cardiovasc Magn Reson. 2013;15:48.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Toro-Salazar OH, Gillan E, O’Loughlin M, Burke GS, Ferranti J, Stainsby J, Liang B, Mazur W, Raman S, Hor K. Occult cardiotoxicity in childhood cancer survivors exposed to anthracycline therapy. Circ Cardiovasc Imaging. 2013;6(6):873–80.CrossRefPubMedGoogle Scholar
  74. 74.
    Jordan JH, Vasu S, Morgan TM, D’Agostino RB Jr, Meléndez GC, Hamilton CA, Arai AE, Liu S, Liu CY, Lima JAC, Bluemke DA, Burke GL, Hundley WG. Anthracycline-associated T1 mapping characteristics are elevated independent of the presence of cardiovascular comorbidities in cancer survivors. Circ Cardiovasc Imaging. 2016;9(8).
  75. 75.
    Meléndez GC, Jordan JH, D’Agostino RB Jr, Vasu S, Hamilton CA, Hundley WG. Progressive three-month increase in left ventricular myocardial extracellular volume fraction after receipt of anthracycline based chemotherapy. JACC Cardiovasc Imaging. 2016.
  76. 76.
    Farhad H, Staziaki PV, Addison D, Coelho-Filho OR, Shah RV, Mitchell RN, Szilveszter B, Abbasi SA, Kwong RY, Scherrer-Crosbie M. Characterization of the changes in cardiac structure and function in mice treated with anthracyclines using serial cardiac magnetic resonance imaging. Circ Cardiovasc Imaging. 2016;9:e003584.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Shelburne N, Adhikari B, Brell J, Davis M, Desvigne-Nickens P, Freedman A, Minasian L, Force T, Remick SC. Cancer treatment-related cardiotoxicity: current state of knowledge and future research priorities. J Natl Cancer Inst. 2014;106(9).Google Scholar
  78. 78.
    Mcdonald RJ, Mcdonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, Williamson EE, Eckel LJ. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology. 2015;275:772–82.CrossRefPubMedGoogle Scholar
  79. 79.
    Montagne A, Toga AW, Zlokovic BV. Blood-brain barrier permeability and gadolinium: benefits and potential pitfalls in research. JAMA Neurol. 2016;73:13–4.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Murata N, Gonzalez-Cuyar LF, Murata K, Fligner C, Dills R, Hippe D, Maravilla KR. Macrocyclic and other non–group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Investig Radiol. 2016;51:447–53.CrossRefGoogle Scholar
  81. 81.
    Berisha S, Han J, Shahid M, Han Y, Witschey WR. Measurement of myocardial T 1ρ with a motion corrected, parametric mapping sequence in humans. PLoS One. 2016;11:e0151144.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Stromp TA, Leung SW, Andres KN, Jing L, Fornwalt BK, Charnigo RJ, Sorrell VL, Vandsburger MH. Gadolinium free cardiovascular magnetic resonance with 2-point Cine balanced steady state free precession. J Cardiovasc Magn Reson. 2015;17:90.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Van Oorschot JW, Visser F, Eikendal AL, Vonken E-JP, Luijten PR, Chamuleau SA, Leiner T, Zwanenburg JJ. Single breath-hold T1ρ-mapping of the heart for endogenous assessment of myocardial fibrosis. Investig Radiol. 2016;51:505–12.CrossRefGoogle Scholar
  84. 84.
    Moslehi J, Amgalan D, Kitsis RN. Grounding cardio-oncology in basic and clinical science. Circulation. 2017;136:3–5.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Internal MedicineSection on Cardiovascular Medicine, Wake Forest School of MedicineWinston-SalemUSA

Personalised recommendations