Advertisement

Influence of External Factors on Inter-City Influenza Spread in Russia: A Modeling Approach

  • V. N. LeonenkoEmail author
  • Yu. K. Novoselova
Chapter

Abstract

The work is dedicated to the mathematical modeling of inter-city influenza spread in Russian Federation. The authors combine the local SEIR model of the influenza outbreak in an urban environment and the model of inter-city virus spread via migration flows, calibrating the resulting multicomponent model to long-term data on weekly acute respiratory infection incidence in 41 Russian cities. The aims of the research are: (a) to compare the modeling output with the observed picture of the virus spread and to assess its accuracy; (b) to assess the influence of the quality of transport data on the output; (c) to assess the applicability of the model for predicting influenza spread in Russia and to discuss the ways of changing the model to enhance its predictive ability.

Notes

Acknowledgements

The authors thank Vladislav Karbovskii and Vladislav Shmatkov (ITMO University) for providing the transport flow matrices. This research is financially supported by The Russian Science Foundation (Agreement #14-21-00137).

References

  1. 1.
    A. Aguirre, E. Gonzalez, The feasibility of forecasting influenza epidemics in Cuba. Mem. Inst. Oswaldo Cruz 87(3), 429–432 (1992)CrossRefGoogle Scholar
  2. 2.
    J.E. Anderson, The gravity model. Annu. Rev. Econ. 3, 133–160 (2011)CrossRefGoogle Scholar
  3. 3.
    O.V. Baroyan, L.A. Genchikov, L.A. Rvachev, V.A. Shashkov, An attempt at large-scale influenza epidemic modelling by means of a computer. Bull. Int. Epid. Assoc. 18, 22–31 (1969)Google Scholar
  4. 4.
    A. Flahault et al., Modelling the 1985 influenza epidemic in France. Stat. Med. 7(11), 1147–1155 (1988)CrossRefGoogle Scholar
  5. 5.
    J. Greenspan, S. Valkova, Documenting the missed opportunity period for influenza vaccination in office-based settings. Online J. Public Health Inform. 7(1), e26 (2015)Google Scholar
  6. 6.
    Yu.G. Ivannikov, A.T. Ismagulov, Epidemiologiya grippa (the epidemiology of influenza). Almaty, Kazakhstan, 1983 (in Russian)Google Scholar
  7. 7.
    Yu.G. Ivannikov, P.I. Ogarkov, An experience of mathematical computing forecasting of the influenza epidemics for big territory. Zhurnal Infectologii 4(3), 101–106 (2012) (in Russian)Google Scholar
  8. 8.
    V.N. Leonenko, S.V. Ivanov, Fitting the SEIR model of seasonal influenza outbreak to the incidence data for Russian cities. Russ. J. Numer. Anal. Math. Model. 31, 267–279 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    V.N. Leonenko, S.V. Ivanov, Influenza peaks prediction in Russian cities: comparing the accuracy of two SEIR models. Math. Biosci. Eng. 15(1), 209–232 (2018).  https://doi.org/10.3934/mbe.2018009 MathSciNetzbMATHGoogle Scholar
  10. 10.
    V.N. Leonenko, S.V. Ivanov, Yu.K. Novoselova, A computational approach to investigate patterns of acute respiratory illness dynamics in the regions with distinct seasonal climate transitions. Proc. Comput. Sci. 80, 2402–2412 (2016)CrossRefGoogle Scholar
  11. 11.
    V.N. Leonenko, Yu.K. Novoselova, K.M. Ong, Influenza outbreaks forecasting in Russian cities: is Baroyan-Rvachev approach still applicable? Proc. Comput. Sci. 101, 282–291 (2016)CrossRefGoogle Scholar
  12. 12.
    D. Liu, J. Nocedal, On the limited memory BFGS method for large-scale optimization. Math. Program. 45, 503–528 (1989)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Research Institute of Influenza website. http://influenza.spb.ru/en/
  14. 14.
    L.A. Rvachev, I.M. Longini, A mathematical model for the global spread of influenza. Math. Biosci. 75(1), 3–22 (1985)MathSciNetCrossRefGoogle Scholar
  15. 15.
    C. Segolene, K. Pakdaman, P.-Y. Boëlle, Commuter mobility and the spread of infectious diseases: application to influenza in France. PloS one 9(1), e83002 (2014)Google Scholar
  16. 16.
    Slishkom populyarnyy marshrut Moskva-Sankt-Peterburg (in Russian) // ATO.RU. http://www.ato.ru/content/slishkom-populyarnyy-marshrut-moskva-sankt-peterburg
  17. 17.
    C.C. Spicer, C.J. Lawrence, Epidemic influenza in greater London. J. Hyg. 93(01), 105–112 (1984)CrossRefGoogle Scholar
  18. 18.
    J. Tamerius, M.I. Nelson, S.Z. Zhou, C. Viboud, M.A. Miller, W.J. Alonso, Global influenza seasonality: reconciling patterns across temperate and tropical regions. Environ. Health Perspect. 119(4), 439 (2011)Google Scholar
  19. 19.
    S.P. Van Noort, R. Aguas, S. Ballesteros, M.G.M. Gomes, The role of weather on the relation between influenza and influenza-like illness. J. Theor. Biol. 298, 131–137 (2012)CrossRefGoogle Scholar
  20. 20.
    WHO, Influenza (seasonal). Fact sheet No. 211, March 2014. http://www.who.int/mediacentre/factsheets/fs211/en/
  21. 21.
    Yandex.Raspisaniya. http://rasp.yandex.ru

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ITMO UniversitySaint PetersburgRussian Federation

Personalised recommendations