Fixed Point Results for Mixed Multivalued Mappings of Feng-Liu Type on Mb-Metric Spaces

  • Hakan Şahin
  • Ishak Altun
  • Duran Türkoğlu
Part of the Nonlinear Systems and Complexity book series (NSCH, volume 23)


In this paper, first we present a more suitable definition of Mb-metric than existing in the literature. Our approach includes the concepts of both M-metric and b-metric on a nonempty set X. Then, we established the topological structure of Mb-metric space. After that by taking into account the set X ∪ C(X), where C(X) the class of all nonempty closed subsets of X, we introduce the concept of mixed multivalued mapping on Mb-metric space and then we present a general fixed point result for mixed multivalued mapping. Our result certainly contains the well-known Feng-Liu fixed point theorem. Consequently, to show the validity of our results we provided some illustrative examples.


  1. 1.
    Agarwal, R.P., Alghamdi, M.A., Shahzad, N.: Fixed point theory for cyclic generalized contractions in partial metric spaces. Fixed Point Theory Appl. 2012, 40 (2012)Google Scholar
  2. 2.
    Asadi, M., Karapınar, E., Salimi, P.: New extension of p -metric spaces with some fixed point results on M-metric spaces. J. Inequal. Appl. 2014, 18 (2014)Google Scholar
  3. 3.
    Aydi, H., Abbas, M., Vetro, C.: Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces. Topol. Appl. 159(14), 3234–3242 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bakhtin, I.A.: The contraction mapping principle in quasi-metric spaces. Funct. Anal. Unianowsk Gos. Ped. Inst. 30, 26–37(1989)zbMATHGoogle Scholar
  5. 5.
    Berinde, M., Berinde, V.: On a general class of multi-valuedweakly Picard mappings. J. Math. Anal. Appl. 326(2), 772–782 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Berinde, V., Păcurar, M.: The role of the Pompeiu-Hausdorff metric in fixed point theory. Creat. Math. Inform. 22(2), 35–42 (2013)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Ćirić, L.: Multi-valued nonlinear contraction mappings. Nonlinear Anal. 71(7–8), 2716–2723 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ćirić, L., Samet, B., Aydi, H., Vetro, C.: Common fixed points of generalized contractions on partial metric spaces and an application. Appl. Math. Comput. 218(6), 2398–2406 (2011)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Daffer, P.Z., Kaneko, H.: Fixed Points of generalized contractive multi-valued mappings. J. Math. Anal. Appl. 192(2), 655–666 (1995)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Feng, Y., Liu, S.: Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings. J. Math. Anal. Appl. 317(1), 103–112 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Matthews, S.G.: Partial metric topology. In: Papers on General Topology and Applications, vol. 728, pp. 183–197 (1994)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Mlaiki, N., Zarrad, A., Souyah, N., Mukheımer, A., Abdeljawed, T.: Fixed point theorems in M b-metric spaces. J. Math. Anal. 7(5), 1–9 (2016)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Nadler, S.B.: Multi-valued contraction mappings. Pac. J. Math. 30(2), 475–488 (1969)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Reich, S.: Some problems and results in fixed point theory. Contemp. Math. 21, 179–187 (1983)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Romaguera, S.: On Nadler’s fixed point theorem partial metric spaces. Math. Sci. Appl. E- Notes 1(1), 1–8 (2013)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Hakan Şahin
    • 1
    • 2
  • Ishak Altun
    • 3
  • Duran Türkoğlu
    • 1
  1. 1.Department of Mathematics, Faculty of ScienceGazi UniversityAnkaraTurkey
  2. 2.Department of Mathematics, Faculty of ScienceAmasya UniversityAmasyaTurkey
  3. 3.Department of Mathematics, Faculty of ScienceKırıkkale UniversityKırıkkaleTurkey

Personalised recommendations