Advertisement

Advances on Fixed Point Results on Partial Metric Spaces

  • Erdal Karapınar
  • Kenan Taş
  • Vladimir Rakočević
Chapter
Part of the Nonlinear Systems and Complexity book series (NSCH, volume 23)

Abstract

In this note, we shall consider recent advances and improvements on fixed point theory in the setting of partial metric spaces. We investigate the existence and uniqueness of several distinct type contractive mapping in the context of complete partial metric space. We also recollect sum existing results to give complete survey for this topic.

References

  1. 1.
    Abedeljawad, T., Karapınar, E., Taş, K.: Existence and uniqueness of common fixed point on partial metric spaces. Appl. Math. Lett. 24, 1894–1899 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Abdeljawad, T., Karapınar, E., Tas, K.: A generalized contraction principle with control functions on partial metric spaces. Comput. Math. Appl. 63(3), 716–719 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Achari, J.: Results on non-unique fixed points. Publ. L’Institut Math. 26, 5–9 (1978)zbMATHGoogle Scholar
  4. 4.
    Agarwal, R.P., Alghamdi, M.A., Shahzad, N.: Fixed point theory for cyclic generalized contractions in partial metric spaces. Fixed Point Theory Appl. 2012, 40 (2012)Google Scholar
  5. 5.
    Alghamdi, M.A., Karapınar, E.: G − β − ψ Contractive type mappings and related fixed point theorems. J. Inequal. Appl. 2013, Article ID 70 (2013)Google Scholar
  6. 6.
    Alghamdi, M.A., Karapınar, E.: G − β − ψ Contractive type mappings in G-metric spaces. Fixed Point Theory Appl. 2013, Article ID 123 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ali, M.U., Kamran, T., Karapınar, E.: On (α, ψ, η)-contractive multivalued mappings. Fixed Point Theory Appl. 2014, 7 (2014)Google Scholar
  8. 8.
    Aliouche, A., Popa, V.: General common fixed point theorems for occasionally weakly compatible hybrid mappings and applications. Novi Sad. J. Math. 39(1), 89–109 (2009)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Altun, I., Acar, O.: Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces. Topol. Appl. 159, 2642–2648 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Altun, I., Erduran, A.: Fixed point theorems for monotone mappings on partial metric spaces. Fixed Point Theory Appl. Article ID 508730 (2011)Google Scholar
  11. 11.
    Altun, I., Simsek, H.: Some fixed point theorems on dualistic partial metric spaces. J. Adv. Math. Stud. 1, 1–8 (2008)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Altun, I., Sola, F., Simsek, H.: Generalized contractions on partial metric spaces. Topol. Appl. 157, 2778–2785 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Aydi, H.: Fixed point results for weakly contractive mappings in ordered partial metric spaces. J. Adv. Math. Stud. 4(2), 1–12 (2011)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Aydi, H.: Some fixed point results in ordered partial metric spaces. J. Nonlinear Sci. Appl. 4(2), 210–217 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Aydi, H.: Some coupled fixed point results on partial metric spaces. Int. J. Math. Math. Sci. Article ID 647091 (2011)Google Scholar
  16. 16.
    Aydi, H.: Fixed point results for weakly contractive mappings in ordered partial metric spaces. J. Adv. Math. Stud. 4(2), 1–12 (2011)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Aydi, H.: Fixed point theorems for generalized weakly contractive condition in ordered partial metric spaces. J. Nonlinear Anal. Optim. Theory Appl. 2(2), 33–48 (2011)MathSciNetGoogle Scholar
  18. 18.
    Aydi, H.: Common fixed point results for mappings satisfying (ψ, ϕ)-weak contractions in ordered partial metric space. Int. J. Math. Stat. 12(2), 53–64 (2012)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Aydi, H., Karapınar, E.: A Meir-Keeler common type fixed point theorem on partial metric spaces. Fixed Point Theory Appl. 2012, 26 (2012)Google Scholar
  20. 20.
    Aydi, H., Karapınar, E., Shatanawi, W.: Coupled fixed point results for (ψ, φ)-weakly contractive condition in ordered partial metric spaces. Comput. Math. Appl. 62(12), 4449–4460 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Aydi, H., Abbas, M., Vetro, C.: Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces. Topol. Appl. 159, 3234–3242 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Aydi, H., Vetro, C., Sintunavarat, W., Kumam, P.: Coincidence and fixed points for contractions and cyclical contractions in partial metric spaces. Fixed Point Theory Appl. 2012(124) (2012)Google Scholar
  23. 23.
    Aydi, H., Bilgili, N., Karapınar, E.: Common fixed point results from quasi-metric spaces to G-metric spaces. J. Egypt. Math. Soc. 23(2), 356–361 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Aydi, H., Vetro, C., Karapınar, E.: On Ekeland’s variational principle in partial metric spaces. Appl. Math. Inf. Sci. 9(1), 257–262 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Aydi, H., Jellali, M., Karapinar, E.: Common fixed points for generalized α-implicit contractions in partial metric spaces: consequences and application. RACSAM - Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 109(2), 367–384 (2015)Google Scholar
  26. 26.
    Bae, I., Kim, K.: Common fixed point theorems without commuting conditions. Korean J. Math. Sci. 8, 147–155 (2001)Google Scholar
  27. 27.
    Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 3, 133–181 (1922)CrossRefGoogle Scholar
  28. 28.
    Baskaran, R., Subrahmanyam, P.V.: A note on the solution of a class of functional equations. Appl. Anal. 22, 235–241 (1986)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Bellman, R.: Methods of nonliner analysis. Mathematics in Science and Engineering, vol. II, 61. Academic, New York (1973)Google Scholar
  30. 30.
    Bellman, R., Lee, E.S.: Functional equations in dynamic programming. Aequationes Math. 17, 1–18 (1978)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Berinde, V.: Some remarks on a fixed point theorem for Ćirić-type almost contractions. Carpathian J. Math. 25(2), 157–162 (2009)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Berinde, V.: Common fixed points of noncommuting almost contractions in cone metric spaces. Math. Commun. 15(1), 229–241 (2010)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Berinde, V.: Approximating common fixed points of noncommuting almost contractions in metric spaces. Fixed Point Theory 11(2), 179–188 (2010)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Berinde, V.: Common fixed points of noncommuting discontinuous weakly contractive mappings in cone metric spaces. Taiwan. J. Math. 14(5), 1763–1776 (2010)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Berinde, V., Vetro, F.: Common fixed points of mappings satisfying implicit contractive conditions. Fixed Point Theory Appl. 2012, 105 (2012)Google Scholar
  36. 36.
    Bhakta, T.C., Mitra, S.: Some existence theorems for functional equations arising in dynamic programming. J. Math. Anal. Appl. 98, 348–362 (1984)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Bianchini, R.M., Grandolfi, M.: Transformazioni di tipo contracttivo generalizzato in uno spazio metrico. Atti Acad. Naz. Lincei, VII. Ser. Rend. Cl. Sci. Fis. Mat. Natur. 45, 212–216 (1968)Google Scholar
  38. 38.
    Border, K.C.: Fixed Point Theorems with Applications to Economics and Game Theory. Cambridge University Press, New York (1985)CrossRefGoogle Scholar
  39. 39.
    Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. Springer, New York (2005)zbMATHGoogle Scholar
  40. 40.
    Branciari, A.: A fixed point theorem for mappings satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. 29, 531–536 (2002)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Bukatin, M., Kopperman, R., Matthews, S., Pajoohesh, H.: Partial metric spaces. Am. Math. Mon. 116(8), 708–718 (2009)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Caristi, J.: Fixed point theorems for mapping satisfying inwardness conditions. Trans. Am. Math. Soc. 215, 241–251 (1976)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Chen, C.-M., Karapınar, E.: Fixed point results for the α-Meir-Keeler contraction on partial Hausdorff metric spaces. J. Inequal. Appl. 2013, 410 (2013)Google Scholar
  44. 44.
    Chi, K.P., Karapınar, E., Thanh, T.D.: A generalized contraction principle in partial metric spaces. Math. Comput. Model. 55, 1673–1681 (2012). https://doi.org/10.1016/j.mcm.2011.11.005 MathSciNetCrossRefGoogle Scholar
  45. 45.
    Ćirić, L.B.: On some maps with a nonunique fixed point. Publ. L’Institut Math. 17, 52–58 (1974)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Ćirić, L.B.: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 45(2), 267–273 (1974)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Ćirić, L.j., Samet, B., Aydi, H., Vetro, C.: Common fixed points of generalized contractions on partial metric spaces and an application. Appl. Math. Comput. 218, 2398–2406 (2011)Google Scholar
  48. 48.
    Clarke, F.: Pointwise contraction criteria for the existence of fixed points. MRC Technical Report 1658. University of Wisconsin, Madison, Wisconsin; Bull. Canad. Math. Soc. July 1976Google Scholar
  49. 49.
    Czerwik, S.: Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostraviensis 1, 5–11 (1993)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Ekeland, I.: Sur les prob‘ emes variationnels. C.R. Acad. Sci. Paris 275, 1057–1059 (1972)Google Scholar
  51. 51.
    Escardo, M.H.: Pcf Extended with real numbers. Theor. Comput. Sci. 162, 79–115 (1996)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Fréchet, M.R.: Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo 22, 1–74 (1906). https://doi.org/10.1007/BF03018603 CrossRefGoogle Scholar
  53. 53.
    Gillespie, J.B., Houghton, C.J.: A metric space approach to the information channel capacity of spike trains. J. Comput. Neurosci. 30(1), 201–209 (2011)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Gulyaz, S., Karapınar, E.: Coupled fixed point result in partially ordered partial metric spaces through implicit function. Hacet. J. Math. Stat. 42(4), 347–357 (2013)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Haghi, R.H., Rezapour, Sh., Shahzad, N.: Be careful on partial metric fixed point results. Topol. Appl. 160(3), 450–454 (2013)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Heckmann, R.: Approximation of metric spaces by partial metric spaces. Appl. Categ. Struct. 7, 71–83 (1999)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Hitzler, P., Seda, A.: Mathematical Aspects of Logic Programming Semantics. Studies in Informatics Series. Chapman and Hall/CRC Press, Taylor and Francis Group, Boca Raton (2011)zbMATHGoogle Scholar
  58. 58.
    Huang, L.G., Zhang, X.: Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 332(2), 1468–1476 (2007)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Ilić, D., Pavlović, V., Rakoc̆ević, V.: Some new extensions of Banach’s contraction principle to partial metric space. Appl. Math. Lett. 24(8), 1326–1330 (2011)Google Scholar
  60. 60.
    Ilić, D., Pavlović, V., Rakoc̆ević, V.: Extensions of the Zamfirescu theorem to partial metric spaces. Original Research Article Math. Comput. Model. 55(3–4), 801–809 (2012)Google Scholar
  61. 61.
    Imdad, M., Kumar, S., Khan, M.S.: Remarks on some fixed point theorems satisfying implicit relations. Radovi Math. 1, 35–143 (2002)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Jleli, M., Karapınar, E., Samet, B.: Best proximity points for generalized α − ψ-proximal contractive type mappings. J. Appl. Math. Article ID 534127 (2013)Google Scholar
  63. 63.
    Jleli, M., Karapınar, E., Samet, B.: Fixed point results for α − ψ λ contractions on gauge spaces and applications. Abstr. Appl. Anal. Article ID 730825 (2013)Google Scholar
  64. 64.
    Jleli, M., Karapınar, E., Samet, B.: Further remarks on fixed point theorems in the context of partial metric spaces. Abstr. Appl. Anal. Article ID: 715456 (2013)Google Scholar
  65. 65.
    Kannan, R.: Some results on fixed points. Bull. Calcutta Math. Soc. 60, 71–76 (1968)MathSciNetzbMATHGoogle Scholar
  66. 66.
    Karapınar, E.: Generalizations of Caristi Kirk’s theorem on partial metric spaces. Fixed Point Theory Appl. 2011(4) (2011)Google Scholar
  67. 67.
    Karapınar, E.: A note on common fixed point theorems in partial metric spaces. Miskolc Math. Notes 12(2), 185–191 (2011)MathSciNetzbMATHGoogle Scholar
  68. 68.
    Karapınar, E.: Some fixed point theorems on the class of comparable partial metric spaces on comparable partial metric spaces. Appl. General Topol. 12(2), 187–192 (2011)MathSciNetzbMATHGoogle Scholar
  69. 69.
    Karapinar, E.: Ćirić types nonunique fixed point theorems on partial metric spaces. J. Nonlinear Sci. Appl. 5, 74–83 (2012)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Karapınar, E.: Weak ϕ-contraction on partial metric spaces. J. Comput. Anal. Appl. 16(6), 14(2), 206–210 (2012)Google Scholar
  71. 71.
    Karapınar, E., Erhan, I.M.: Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 24, 1900–1904 (2011)MathSciNetCrossRefGoogle Scholar
  72. 72.
    Karapınar, E., Erhan, I.M.: Fixed point theorem for cyclic maps on partial metric spaces. Appl. Math. Inform. Sci. 6, 239–244 (2012)MathSciNetGoogle Scholar
  73. 73.
    Karapınar, E., Romaguera, S.: Nonunique fixed point theorems in partial metric spaces. Filomat 27(7), 1305–1314 (2013)MathSciNetCrossRefGoogle Scholar
  74. 74.
    Karapınar, E., Samet, B.: Generalized (α − ψ)-contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal. 2012, Article ID 793486, 17 p. (2012)Google Scholar
  75. 75.
    Karapınar, E., Yuksel, U.: Some common fixed point theorems in partial metric spaces. J. Appl. Math. Article ID 263621, 17 p. (2011). https://doi.org/10.1155/2011/263621
  76. 76.
    Karapınar, E., Shobkolaei, N., Sedghi, S., Vaezpour, S.M.: A common fixed point theorem for cyclic operators on partial metric spaces. Filomat 26(2), 407–414 (2012)MathSciNetCrossRefGoogle Scholar
  77. 77.
    Karapınar, E., Erhan, I., Ozturk, A.: Fixed point theorems on quasi-partial metric spaces. Math. Comput. Model. 57(9–10), 2442–2448 (2013)MathSciNetCrossRefGoogle Scholar
  78. 78.
    Karapınar, E., Kuman, P., Salimi, P.: On α − ψ-Meri-Keeler contractive mappings. Fixed Point Theory Appl. 2013, 94 (2013)Google Scholar
  79. 79.
    Karapınar, E., Alsulami, H.H., Noorwali, M.: Some extensions for Geragthy type contractive mappings. J. Inequal. Appl. 2015, 303 (2015)Google Scholar
  80. 80.
    Kirk, W.A., Srinivasan, P.S., Veeramani, P.: Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point Theory 4(1), 79–89 (2003)MathSciNetzbMATHGoogle Scholar
  81. 81.
    Kopperman, R.D., Matthews, S.G., Pajoohesh, H.: What do partial metrics represent? Notes distributed at the 19th Summer Conference on Topology and its Applications, University of CapeTown (2004)Google Scholar
  82. 82.
    Kramosil, O., Michalek, J.: Fuzzy metric and statistical metric spaces. Kybernetika 11, 326–334 (1975)MathSciNetzbMATHGoogle Scholar
  83. 83.
    Künzi, H.P.A., Pajoohesh, H., Schellekens, M.P.: Partial quasi-metrics. Theor. Comput. Sci. 365(3), 237–246 (2006)MathSciNetCrossRefGoogle Scholar
  84. 84.
    Matthews, S.G.: Partial metric topology. Research Report 212. Dept. of Computer Science. University of Warwick (1992)Google Scholar
  85. 85.
    Matthews, S.G.: Partial metric topology. Proc. 8th Summer of Conference on General Topology and Applications. Ann. New York Acad. Sci. 728, 183–197 (1994)Google Scholar
  86. 86.
    Meir, A., Keeler, E.: A theorem on contraction mappings. J. Math. Anal. Appl. 28, 326–329 (1969)MathSciNetCrossRefGoogle Scholar
  87. 87.
    Menger, K.: Statistical metrics. Proc. Nat. Acad. Sci. USA 28, 535–537 (1942)MathSciNetCrossRefGoogle Scholar
  88. 88.
    Mohammadi, B., Rezapour, Sh., Shahzad, N.: Some results on fixed points of α-ψ-Ciric generalized multifunctions. Fixed Point Theory Appl. 2013, 24 (2013)Google Scholar
  89. 89.
    Mustafa, Z., Sims, B.: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 7(2), 289–297 (2006)MathSciNetzbMATHGoogle Scholar
  90. 90.
    Nadler, S.B.: Multi-valued contraction mappings. Pac. J. Math. 30, 475–488 (1969)MathSciNetCrossRefGoogle Scholar
  91. 91.
    Ok, E.A.: Real Analysis with Economic Applications. Princeton University Press, Princeton (2007)zbMATHGoogle Scholar
  92. 92.
    Oltra, S., Valero, O.: Banach’s fixed point theorem for partial metric spaces. Rend. Istid. Math. Univ. Trieste 36, 17–26 (2004)MathSciNetzbMATHGoogle Scholar
  93. 93.
    Pachpatte, B.G.: On Ćirić type maps with a nonunique fixed point. Indian J. Pure Appl. Math. 10, 1039–1043 (1979)MathSciNetzbMATHGoogle Scholar
  94. 94.
    Paesano, D., Vetro, P.: Suzuki’s type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces. Topol. Appl. 159(3), 911–920 (2012)MathSciNetCrossRefGoogle Scholar
  95. 95.
    Popa, V.: Fixed point theorems for implicit contractive mappings. Stud. Cerc. St. Ser. Mat. Univ. Bacau. 7, 129–133 (1997)zbMATHGoogle Scholar
  96. 96.
    Popa, V.: Some fixed point theorems for compatible mappings satisfying an implicit relation. Demonstratio Math. 32, 157–163 (1999)MathSciNetzbMATHGoogle Scholar
  97. 97.
    Popa, V.: A general fixed point theorem for four weakly compatible mappings satisfying an implicit relation. Filomat. 19, 45–51 (2005)MathSciNetCrossRefGoogle Scholar
  98. 98.
    Popa, V., Patriciu, A.M.: A general fixed point theorem for mappings satisfying an ϕ-implicit relation in complete G-metric spaces. Gazi Univ. J. Sci. 25(2), 403–408 (2012)Google Scholar
  99. 99.
    Popa, V., Patriciu, A.M.: A general fixed point theorem for pairs of weakly compatible mappings in G-metric spaces. J. Nonlinear Sci. Appl. 5, 151–160 (2012)MathSciNetCrossRefGoogle Scholar
  100. 100.
    Popescu, O.: Some new fixed point theorems for α-Geraghty contractive type maps in metric spaces. Fixed Point Theory Appl. 2014, 190 (2014)Google Scholar
  101. 101.
    Proinov, P.D.: A generalization of the Banach contraction principle with high order of convergence of successive approximations. Nonlinear Anal. (TMA) 67, 2361–2369 (2007)Google Scholar
  102. 102.
    Proinov, P.D.: New general convergence theory for iterative processes and its applications to Newton Kantorovich type theorems. J. Complex. 26, 3–42 (2010)MathSciNetCrossRefGoogle Scholar
  103. 103.
    Ran, A.C.M., Reurings, M.C.B.: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 132, 1435–1443 (2003)MathSciNetCrossRefGoogle Scholar
  104. 104.
    Reich, S.: Kannan’s fixed point theorem. Boll. Un. Mat. Ital. 4(4), 1–11(1971)Google Scholar
  105. 105.
    Roldan, A., Martinez-Moreno, J., Roldan, C., Karapınar, E.: Multidimensional fixed point theorems in partially ordered complete partial metric spaces under (psi,varphi)-contractivity conditions. Abstr. Appl. Anal. Article ID: 634371 (2013)Google Scholar
  106. 106.
    Romaguera, S.: A Kirk type characterization of completeness for partial metric spaces. Fixed Point Theory Appl. 2010, Article ID 493298, 6 p. (2010)Google Scholar
  107. 107.
    Romaguera, S.: Matkowski’s type theorems for generalized contractions on (ordered) partial metric spaces. Appl. General Topol. 12(2), 213–220 (2011)MathSciNetzbMATHGoogle Scholar
  108. 108.
    Romaguera, S.: Fixed point theorems for generalized contractions on partial metric spaces. Topol. Appl. 159, 194–199 (2012)MathSciNetCrossRefGoogle Scholar
  109. 109.
    Romaguera, S., Schellekens, M.: Duality and quasi-normability for complexity spaces. Appl. General Topol. 3, 91–112 (2002)MathSciNetCrossRefGoogle Scholar
  110. 110.
    Romaguera, S., Schellekens, M.: Partial metric monoids and semivaluation spaces. Topol. Appl. 153(5–6), 948–962 (2005)MathSciNetCrossRefGoogle Scholar
  111. 111.
    Romaguera, S., Valero, O.: A quantitative computational model for complete partial metric spaces via formal balls. Math. Struct. Comput. Sci. 19(3), 541–563 (2009)MathSciNetCrossRefGoogle Scholar
  112. 112.
    Rus, I.A.: Generalized Contractions and Applications. Cluj University Press, Cluj-Napoca (2001)zbMATHGoogle Scholar
  113. 113.
    Samet, B., Rajović, M., Lazović, R., Stoiljković, R.: Common fixed point results for nonlinear contractions in ordered partial metric spaces. Fixed Point Theory Appl. 2011, 71 (2011)Google Scholar
  114. 114.
    Samet, B., Vetro, C., Vetro, P.: Fixed point theorem for α − ψ contractive type mappings. Nonlinear Anal. 75, 2154–2165 (2012)MathSciNetCrossRefGoogle Scholar
  115. 115.
    Samet, B., Vetro, C., Vetro, F.: From metric spaces to partial metric spaces. Fixed Point Theory Appl. 2013, 5 (2013)Google Scholar
  116. 116.
    Schellekens, M.P.: A characterization of partial metrizability: domains are quantifiable. Theor. Comput. Sci. 305(1–3), 409–432 (2003)MathSciNetCrossRefGoogle Scholar
  117. 117.
    Schellekens, M.P.: The correspondence between partial metrics and semivaluations. Theor. Comput. Sci. 315(1), 135–149 (2004)MathSciNetCrossRefGoogle Scholar
  118. 118.
    Sehgal, V.M.: Some fixed and common fixed point theorems in metric spaces. Can. Math. Bull. 17(2), 257–259 (1974)MathSciNetCrossRefGoogle Scholar
  119. 119.
    Shatanawi, W., Samet, B., Abbas, M.: Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces. Math. Comput. Model. (2011). https://doi.org/10.1016/j.mcm.2011.08.042 zbMATHGoogle Scholar
  120. 120.
    Shobkolaei, N., Vaezpour, S.M., Sedghi, S.: A common fixed point theorem on ordered partial metric spaces. J. Basic. Appl. Sci. Res. 1(12), 3433–3439 (2011)Google Scholar
  121. 121.
    Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory. MIT Press, Cambridge (1981)zbMATHGoogle Scholar
  122. 122.
    Squassina, M.: On Ekeland’s variational principle. J. Fixed Point Theory Appl. 10, 191–195 (2011)MathSciNetCrossRefGoogle Scholar
  123. 123.
    Turinici, M.: Abstract comparison principles and multivariable Gronwall-Bellman inequalities. J. Math. Anal. Appl. 117, 100–127 (1986)MathSciNetCrossRefGoogle Scholar
  124. 124.
    Valero, O.: On Banach fixed point theorems for partial metric spaces. Appl. Gen. Topol. 6(2), 229–240 (2005)MathSciNetCrossRefGoogle Scholar
  125. 125.
    Vetro, F., Radenović, S.: Nonlinear ψ-quasi-contractions of Ćirić-type in partial metric spaces. Appl. Math. Comput. 219(4), 1594–1600 (2012)MathSciNetzbMATHGoogle Scholar
  126. 126.
    Vetro, C., Vetro, F.: Common fixed points of mappings satisfying implicit relations in partial metric spaces. J. Nonlinear Sci. Appl. 6(3), 152–161 (2013)MathSciNetCrossRefGoogle Scholar
  127. 127.
    Vetro, C., Vetro, F.: Metric or partial metric spaces endowed with a finite number of graphs: a tool to obtain fixed point results. Topol. Appl. 164, 125–137 (2014)MathSciNetCrossRefGoogle Scholar
  128. 128.
    Waszkiewicz, P.: Quantitative continuous domains. Appl. Categ. Struct. 11, 41–67 (2003)MathSciNetCrossRefGoogle Scholar
  129. 129.
    Waszkiewicz, P.: Partial metrisability of continuous posets. Math. Struct. Comput. Sci. 16(2), 359–372 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Erdal Karapınar
    • 1
    • 2
  • Kenan Taş
    • 3
  • Vladimir Rakočević
    • 4
  1. 1.Atilim UniversityAnkaraTurkey
  2. 2.King Saud UniversityRiyadhSaudi Arabia
  3. 3.Department of MathematicsÇankaya UniversityAnkaraTurkey
  4. 4.University of NišFaculty of Sciences and MathematicsNišSerbia

Personalised recommendations