Advertisement

Neural Secretions and Regulation of Gut Functions

  • Menizibeya Osain Welcome
Chapter

Abstract

Neural secretions of the gut are substances released from the neurons or nerve terminals of the gastrointestinal (GI) tract to regulate the functioning of the GI system as well as extragut tissues and organs. The neural secretions may be mediated and released centrally or peripherally to act on the GI tract and extragut tissues/organs. The central neural secretions that act on the gut are mediated by the brain and spinal cord, whereas peripherally mediated neural secretions are regulated and released from the intrinsic nervous system of the gut (enteric nervous system) and extrinsic nervous system. Progressive advancement of knowledge on neural secretions of the gut was dictated mainly by technological progress. This area of study (regarding neural secretions and regulation of gut) has increasingly been recognized as a new field of science called neurogastroenterology. The science of neural secretions and regulation of GI functioning began around the eighteenth to nineteenth centuries. The founding fathers of this new science were William Maddock Bayliss (1860–1924), Ernest Henry Starling (1866–1927), Georg Meissner (1829–1905), Leopold Auerbach (1828–1897), Santiago Ramón y Cajal (1852–1934), Alexander Stanislavovich Dogiel (1852–1922), John Newport Langley (1852–1925), Paul Trendelenburg (1884–1931), and Harold Hirschsprung (1830–1916) among others. The second half of the twentieth century was marked by substantial advancement in neurogastroenterology, and generally in science. Development of the broader field “gastroenteroneuro endocrinology,” which comprises neurogastroenterology and gut endocrinology, was enhanced by progress in genetics and molecular biology pioneered by James Watson (1928–), Francis Crick (1916–2004), and Maurice Hugh Frederick Wilkins (1916–2004); peptide biochemistry, and the invention of the radioimmunoassay, which enabled the measurement of minute quantities of neuropeptides. The gut produces over 50 types of neural secretions (neurotransmitters, neuromodulators), and tens of different types of neurons have been identified in the gut alone. This makes the gut one of the most important organs that can mediate neural signals at the peripheral level and in extragut tissues and organs such as the brain and adipose tissues. With extensively growing data on neurotransmitters of the gut and their functions, it is necessary to provide state-of-the-art information on neural secretions of the gut and their mechanisms of regulation. This chapter provides contemporary information on fundamental aspects of the neural secretions of the gut, gives an account of the course of discovery of these secretions (neurotransmitters) of the gut, and provides the mechanisms of neural regulation of GI functions. The clinical importance of the neurotransmitters is systematically described.

Keywords

Neural secretions Mediator Neurotransmitter Hormone Neuromodulator Gastrin-releasing peptide (human bombesin) The amphibian Acetylcholine ATP Serotonin 5-hydroxytryptamine Histamine 2-(1H-imidazol-4-yl) ethanamine Γ-aminobutyric acid Tachykinins Substance P Neurokinin A Β-tachykinin (neurokinin B or neuropeptide beta) Γ-tachykinin (also called gamma-neuropeptide) Norepinephrine (noradrenaline or noradrenalin) Epinephrine (adrenalin or adrenaline) Neurotensin Glutamate Neuropeptide Y or neuropeptide tyrosine Peptide YY Vasoactive intestinal polypeptide Peptide histidine isoleucine or peptide histidine isoleucinamide Peptide histidine methionine or peptide MI Peptide histidine valine or peptide HV Pituitary adenylate cyclase-activating peptide Calcitonin gene-related peptide Nitric oxide Carbon monoxide Hydrogen sulfide Enkephalins Β-endorphin Dynorphin Anandamide 2-arachidonoylglycerol Virodhamine (O-arachidonoyl-ethanolamine) Noladin (2-arachidonyl-glyceryl ether) And N-arachidonoyl dopamine Ajay Verma Alan N. Taylor Alfred Nobel Anne Marie Staub Candace Beebe Pert Cyrus Hartwell Fiske Daniel Bovet Ferid Murad George Barger Hans Walter Kosterlitz Henry Hallett Dale John Hughes John Jacob Abel Julius Axelrod Karl Lohmann Kazuhiko Tatemoto Kikunae Ikeda Lev Popielskij (Leon Popielski) Louis J. Ignarro Mats Carlquist Otto Loewi Raphael Mechoulam Robert E. Carraway Robert Francis Furchgott Robert H. Wasserman Sami I. Said Sir Bernard Katz Sir John Henry Gaddum Sir Patrick Playfair Laidlaw Solomon Halbert Snyder Susan E. Leeman Thomas J Mcdonald Ulf Svante Von Euler Viktor Mutt Vittorio Erspamer Yechiel Gaoni Yellagaprada SubbaRow 

Abbreviations

5-HT

5-hydroxytryptamine (serotonin)

ACE

Angiotensin-converting-enzyme

Acetyl-CoA

Acetyl co-enzyme A

Ach

Acetylcholine

AChR

Acetylcholine receptor

ADP

Adenosine diphosphate

Ang

Angiotensin

ARB

Angiotensin receptor blocker

ATP

Adenosine triphosphate

BB-3 or BRS-3

Bombesin receptor subtype 3

Ca2+

Calcium ion

cAMP

Cyclic adenosine monophosphate

CAT

Choline acetyltransferase

CGRP

Calcitonin gene-related peptide

CO

Carbon monoxide

DAG

Diacylglycerol

DYN

Dynorphin

ENK

Encephalin

GABA

Γ-aminobutyric acid

Gq/11-type G proteins

Gq type G protein

GRP

Gastrin-releasing peptide

GRPR

GRP receptors

H2S

Hydrogen sulfide

Hz

Hertz

IBS

Irritable bowel syndrome

InsP3

Inositol triphosphate

K+

Potassium ion

Kir

Inward-rectifier potassium ion channel or GIRK (G protein inwardly rectifying potassium channel)

L-DOPA

L-3,4-dihydroxyphenylalanine

M4, M3

Subtypes of muscarine-sensitive acetylcholine receptors

mAChR

Muscarinic acetylcholine receptor

Na+

Sodium ion

nAChR

Nicotinic acetylcholine receptor

NADA

N-arachidonoyl dopamine

NO

Nitric oxide

NPY

Neuropeptide Y or neuropeptide tyrosine

PACAP

Pituitary adenylate cyclase-activating peptide

Peptide HI or PHI

Peptide histidine isoleucin or peptide histidine isoleucinamide

PHM

Peptide histidine methionine or peptide MI

PHV

Peptide histidine valine or peptide HV

PLC

Phospholipase C

PTX

Pertussis toxin

PYY

Peptide YY

RAAS

Renin–angiotensin–aldosterone system

SERT

Serotonin reuptake transporter

TK

Tachykinins

TpH1, TpH2

Tryptophan hydroxylases

VAChT

Vesicular ACh transporter

VDCCs

Voltage-dependent Ca2+ channels

VIP

Vasoactive intestinal polypeptide

Bibliography

  1. 1.
    McCorry LK (2007) Physiology of the autonomic nervous system. Am J Pharm Educ 71(4):78PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Browning KN, Travagli RA (2014) Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol 4(4):1339–1368PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Altaf MA, Sood MR (2008) The nervous system and gastrointestinal function. Dev Disabil Res Rev 14(2):87–95CrossRefPubMedGoogle Scholar
  4. 4.
    McConalogue K, Furness JB (1994) Gastrointestinal neurotransmitters. Baillieres Clin Endocrinol Metab 8(1):51–76CrossRefPubMedGoogle Scholar
  5. 5.
    Goyal RK, Hirano I (1996) The enteric nervous system. N Engl J Med 334:1106–1115CrossRefPubMedGoogle Scholar
  6. 6.
    Constantinescu M (2016) The enteric nervous system. In: Constantinescu C, Arsenescu R, Arsenescu V (eds) Neuro-immuno-gastroenterology. Springer International Publishing, Cham, SwitzerlandCrossRefGoogle Scholar
  7. 7.
    Lundgren O (2000) Sympathetic input into the enteric nervous system. Gut 47:iv33–iv35CrossRefGoogle Scholar
  8. 8.
    Rao M, Gershon MD (2016) The bowel and beyond: the enteric nervous system in neurological disorders. Nat Rev Gastroenterol Hepatol 13:517–528PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Gershon MD (1981) The enteric nervous system. Annu Rev Neurosci 4:227–272CrossRefPubMedGoogle Scholar
  10. 10.
    Crowell MD, Wessinger SB (2007) 5-HT and the brain-gut axis: opportunities for pharmacologic intervention. Expert Opin Investig Drugs 16(6):761–765CrossRefPubMedGoogle Scholar
  11. 11.
    Nikitina OS, Welcome MO, Pereverzev VA (2016) Human anatomy and physiology. In: 2 parts. Part 1. Belarusian State Medical University Press, MinskGoogle Scholar
  12. 12.
    Nikitina OS, Welcome MO, Pereverzev VA (2016) Human anatomy and physiology. In: 2 parts. Part 2. Belarusian State Medical University Press, Minsk, BelarusGoogle Scholar
  13. 13.
    Kubarko AI, Semenovich AA, Pereverzev VA, Lobanok LM, Kharlamova AN, Aleksandrov DA (2014) Normal physiology. In 2 parts. Part 2. Vysheishaya shkola, Minsk, BelarusGoogle Scholar
  14. 14.
    Vermeulen W, De Man JG, Pelckmans PA, De Winter BY (2014) Neuroanatomy of lower gastrointestinal pain disorders. World J Gastroenterol 20(4):1005–1020PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Hansen MB (2003) The enteric nervous system I: organisation and classification. Pharmacol Toxicol 92(3):105–113CrossRefPubMedGoogle Scholar
  16. 16.
    Hansen MB (2003) The enteric nervous system II: gastrointestinal functions. Pharmacol Toxicol 92(6):249–257CrossRefPubMedGoogle Scholar
  17. 17.
    Segal K, Lisnyansky I, Nageris B, Feinmesser R (1996) Parasympathetic innervation of the salivary glands. Operat Tech Otolaryngol Head Neck Surg 7(4):333–338CrossRefGoogle Scholar
  18. 18.
    Beyak M, Bulmer D, Jiang W, Keating W, Grundy D (2006) Extrinsic sensory afferent nerves innervating the gastrointestinal tract. In: JoHnson LR (ed) Physiology of the GI tract. Academic Press, San Diego, CA, USAGoogle Scholar
  19. 19.
    Dorofeeva AA, Panteleev SS, Makarov FN (2008) Parasympathetic innervation of the initial segments of the large intestine in cats. Neurosci Behav Physiol 38(9):923–927CrossRefPubMedGoogle Scholar
  20. 20.
    Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia A-S, McNamara JO, Williams SM (eds) (2001) Neuroscience, 2nd edn. Sinauer Associates, Sunderland, Massachusetts, United StatesGoogle Scholar
  21. 21.
    Rohner-Jeanrenaud F, Ionescu E, Jeanrenaud B (1983) The origins and role of efferent vagal nuclei in hyperinsulinemia in hypothalamic and genetically obese rodents. J Auton Nerv Syst 9(1):173–184CrossRefPubMedGoogle Scholar
  22. 22.
    De Groat WC, Booth AM, Milne RJ, Roppolo JR (1982) Parasympathetic preganglionic neurons in the sacral spinal cord. J Auton Nerv Syst 5(1):23–43CrossRefPubMedGoogle Scholar
  23. 23.
    Fox D (2017) The shock tactics set to shake up immunology: an experimental procedure is exposing the links between the nervous and immune systems. Could it be the start of a revolution? Nature 545:20–22CrossRefPubMedGoogle Scholar
  24. 24.
    Howland RH (2014) Vagus nerve stimulation. Curr Behav Neurosci Rep 1(2):64–73PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Phillips RJ, Powley TL (2007) Innervation of the gastrointestinal tract: patterns of aging. Auton Neurosci 136(1–2):1–19PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Uesaka T, Young HM, Pachnis V, Enomoto H (2016) Development of the intrinsic and extrinsic innervation of the gut. Dev Biol 417(2):158–167CrossRefPubMedGoogle Scholar
  27. 27.
    Dumont L (1955) Parasympathetic innervation of the salivary glands. C R Hebd Seances Acad Sci 240(2):240–242PubMedGoogle Scholar
  28. 28.
    Aminoff MJ, Daroff RB (eds) (2014) Encyclopedia of the neurological sciences, 2nd edn. Elsevier, San DiegoGoogle Scholar
  29. 29.
    Siéssere S, Vitti M, Sousa LG, Semprini M, Iyomasa MM, Regalo SC (2008) Anatomic variation of cranial parasympathetic ganglia. Braz Oral Res 22(2):101–105CrossRefPubMedGoogle Scholar
  30. 30.
    Senger M, Stoffels HJ, Angelov DN (2014) Topography, syntopy and morphology of the human otic ganglion: a cadaver study. Ann Anat 196(5):327–335CrossRefPubMedGoogle Scholar
  31. 31.
    Khosravani N, Sandberg M, Ekström J (2006) The otic ganglion in rats and its parotid connection: cholinergic pathways, reflex secretion and a secretory role for the facial nerve. Exp Physiol 91(1):239–247CrossRefPubMedGoogle Scholar
  32. 32.
    Piagkou M, Demesticha T, Piagkos G, Ioannis C, Skandalakis P, Johnson EO (2012) The mandibular nerve: the anatomy of nerve injury and entrapment, maxillofacial surgery. In: Assael L (ed) InTech, Rijeka, CroatiaGoogle Scholar
  33. 33.
    Vranish JR, Bailey EF (2015) A comprehensive assessment of genioglossus electromyographic activity in healthy adults. J Neurophysiol 113(7):2692–2699PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Zaidi FN, Meadows P, Jacobowitz O, Davidson TM (2013) Tongue anatomy and physiology, the scientific basis for a novel targeted neurostimulation system designed for the treatment of obstructive sleep apnea. Neuromodulation 16(4):376–386CrossRefPubMedGoogle Scholar
  35. 35.
    Brierley SM, Jones RC 3rd, Xu L, Gebhart GF, Blackshaw LA (2005) Activation of splanchnic and pelvic colonic afferents by bradykinin in mice. Neurogastroenterol Motil 17(6):854–862CrossRefPubMedGoogle Scholar
  36. 36.
    Brierley SM, Jones RC 3rd, Gebhart GF, Blackshaw LA (2004) Splanchnic and pelvic mechanosensory afferents signal different qualities of colonic stimuli in mice. Gastroenterology 127(1):166–178CrossRefPubMedGoogle Scholar
  37. 37.
    Dorofeeva AA, Panteleev SS, Makarov FN (2008) Participation of sacral parasympathetic nucleus in the innervation of the descending colon and the rectum in cats. Morfologiia 133(1):38–41PubMedGoogle Scholar
  38. 38.
    Dujovny N, Quiros RM, Saclarides TJ (2004) Anorectal anatomy and embryology. Surg Oncol Clin 13(2):277–293CrossRefGoogle Scholar
  39. 39.
    Birnbaum E (2015) Surgical anatomy of the colon, rectum and anus. In: Ratto C, Parrello A, Dionisi L, Litta F (eds) Coloproctology. Springer International Publishing, Cham, SwitzerlandGoogle Scholar
  40. 40.
    Tong WD, Ridolfi TJ, Kosinski L, Ludwig K, Takahashi T (2010) Effects of autonomic nerve stimulation on colorectal motility in rats. Neurogastroenterol Motil 22(6):688–693PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Brookes SJH, Spencer NJ, Costa M, Zagorodnyuk VP (2013) Extrinsic primary afferent signalling in the gut. Nat Rev Gastroenterol Hepatol 10:286–296CrossRefPubMedGoogle Scholar
  42. 42.
    Uvnäs-Moberg K (1994) Role of efferent and afferent vagal nerve activity during reproduction: integrating function of oxytocin on metabolism and behaviour. Psychoneuroendocrinology 19(5–7):687–695CrossRefPubMedGoogle Scholar
  43. 43.
    Contreras RJ, Beckstead RM, Norgren R (1982) The central projections of the trigeminal, facial, glossopharyngeal and vagus nerves: an autoradiographic study in the rat. J Auton Nerv Syst 6(3):303–322CrossRefPubMedGoogle Scholar
  44. 44.
    de Lartigue G, de La Serre CB, Raybould HE (2011) Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin. Physiol Behav 105(1):100–105PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Stapelfeldt WH, Szurszewski JH (1989) Central neurotensin nerves modulate colo-colonic reflex activity in the guinea-pig inferior mesenteric ganglion. J Physiol 411:347–365PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Moran TH, Baldessarini AR, Salorio CF, Lowery T, Schwartz GJ (1997) Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin. Am J Physiol 272(4 Pt 2):R1245–R1251PubMedGoogle Scholar
  47. 47.
    Chang HY, Mashimo H, Goyal RK (2003) IV. Current concepts of vagal efferent projections to the gut. Am J Physiol Gastrointest Liver Physiol 284(3):G357–G366CrossRefPubMedGoogle Scholar
  48. 48.
    Schwartz GJ, McHugh PR, Moran TH (1993) Gastric loads and cholecystokinin synergistically stimulate rat gastric vagal afferents. Am J Physiol 265(4 Pt 2):R872–R876PubMedGoogle Scholar
  49. 49.
    Schwartz GJ (2000) The role of gastrointestinal vagal afferents in the control of food intake: current prospects. Nutrition 16(10):866–873CrossRefPubMedGoogle Scholar
  50. 50.
    Fox EA (2006) A genetic approach for investigating vagal sensory roles in regulation of gastrointestinal function and food intake. Auton Neurosci 126–127:9–29CrossRefPubMedGoogle Scholar
  51. 51.
    Bressloff P (2009) Cable theory of protein receptor trafficking in a dendritic tree. Physical Rev E 79(4 Pt 1):041904CrossRefGoogle Scholar
  52. 52.
    Bell J (2009) Cable theory. In: Binder MD, Hirokawa N, Windhorst U (eds) Encyclopedia of neuroscience. Springer-Verlag, Berlin, GermanyGoogle Scholar
  53. 53.
    Windhorst U, Lalley PM (2009) Action potential propagation. In: Binder MD, Hirokawa N, Windhorst U (eds) Encyclopedia of neuroscience. Springer, HeidelbergGoogle Scholar
  54. 54.
    Nakajima S, Onodera K (1969) Adaptation of the generator potential in the crayfish stretch receptors under constant length and constant tension. J Physiol 200(1):187–204PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Belmonte C (2013) Nociceptor generator potential. In: Gebhart GF, Schmidt RF (eds) Encyclopedia of pain. Springer, HeidelbergGoogle Scholar
  56. 56.
    Loewenstein WR, Altamirano-Orrego R (1958) The refractory state of the generator and propagated potentials in a pacinian corpuscle. J Gen Physiol 41(4):805–824PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Gees M, Alpizar YA, Boonen B, Sanchez A, Everaerts W, Segal A et al (2013) Mechanisms of transient receptor potential vanilloid 1 activation and sensitization by allyl isothiocyanate. Mol Pharmacol 84(3):325–334CrossRefPubMedGoogle Scholar
  58. 58.
    Mazzone SB (2005) An overview of the sensory receptors regulating cough. Cough 1:2PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Kennedy WR, deF Webster H, Yoon KS (1975) Human muscle spindles: fine structure of the primary sensory ending. J Neurocytol 4(6):675–695CrossRefPubMedGoogle Scholar
  60. 60.
    Dimitriou M, Edin BB (2008) Discharges in human muscle receptor afferents during block grasping. J Neurosci 28(48):12632–12642CrossRefPubMedGoogle Scholar
  61. 61.
    Iglesias PA (2012) A systems biology view of adaptation in sensory mechanisms. Adv Exp Med Biol 736:499–516CrossRefPubMedGoogle Scholar
  62. 62.
    Frings S, Bradley J (eds) (2005) Transduction channels in sensory cells. Wiley-VCH Verlag GmbH, WeinheimGoogle Scholar
  63. 63.
    Terre V, Ashmore JF, Lamb TD, Menini A (1995) Transduction and adaptation in sensory receptor cells. J Neurosci 75(12):7757–7768CrossRefGoogle Scholar
  64. 64.
    Møller AR (2011) Anatomy and physiology of sensory systems. In: Intraoperative neurophysiological monitoring. Springer, New YorkGoogle Scholar
  65. 65.
    Kääb S, Nuss HB, Chiamvimonvat N, O’Rourke B, Pak PH, Kass DA et al (1996) Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ Res 78(2):262–273CrossRefPubMedGoogle Scholar
  66. 66.
    Yakovlev AV, Koroleva KS, Valiullina FF, Khazipov RN (2013) Resting membrane potential of rat ventroposteriomedial thalamic neurons during postnatal development. Biochem (Mosc) Suppl Ser A Membr Cell Biol 7(3):207–212CrossRefGoogle Scholar
  67. 67.
    Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology, 4th edn. WH Freeman, New YorkGoogle Scholar
  68. 68.
    Forsythe ID, Redman SJ (1988) The dependence of motoneurone membrane potential on extracellular ion concentrations studied in isolated rat spinal cord. J Physiol 404:83–99PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Bean BP (2007) The action potential in mammalian central neurons. Nat Rev Neurosci 8:451–465CrossRefGoogle Scholar
  70. 70.
    Clay JR, Forger DB, Paydarfar D (2012) Ionic mechanism underlying optimal stimuli for neuronal excitation: role of Na+ channel inactivation. PLoS ONE 7(9):e45983PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Andreoli TE, Hoffman JF, Fanestil DD, Schultz SG (eds) (1986) Physiology of membrane disorders. Springer, New YorkGoogle Scholar
  72. 72.
    Kurbel S (2011) Donnan effect on chloride ion distribution as a determinant of body fluid composition that allows action potentials to spread via fast sodium channels. Theor Biol Med Model 8:16PubMedCentralCrossRefPubMedGoogle Scholar
  73. 73.
    Shin EH, Li Y, Kumar U, Sureka HV, Zhang X, Payne CK (2013) Membrane potential mediates the cellular binding of nanoparticles. Nanoscale 5(13):5879–5886PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    Platre MP, Jaillais Y (2017) Anionic lipids and the maintenance of membrane electrostatics in eukaryotes. Plant Signal Behav 12(2):e1282022PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Ma Y, Poole K, Goyette J, Gaus K (2017) Introducing membrane charge and membrane potential to T cell signaling. Front Immunol 8:1513PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    Osorio N, Delmas P (2011) Patch clamp recording from enteric neurons in situ. Nat Protoc 6:15–27CrossRefPubMedGoogle Scholar
  77. 77.
    Carbone SE, Jovanovska V, Nurgali K, Brookes SJH (2014) Human enteric neurons: morphological, electrophysiological, and neurochemical identification. Neurogastroenterol Motil 26(12):1812–1816PubMedCentralCrossRefPubMedGoogle Scholar
  78. 78.
    Hawkins EG, Dewey WL, Anitha M, Srinivasan S, Grider JR, Akbarali HI (2013) Electrophysiological characteristics of enteric neurons isolated from the Immortomouse. Dig Dis Sci 58(6):1516–1527PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    Galligan JJ, Akbarali HI (2014) Molecular physiology of enteric opioid receptors. Am J Gastroenterol Suppl 2:17–21PubMedCentralCrossRefPubMedGoogle Scholar
  80. 80.
    Strichartz GR, Ritchie JM (1987) The action of local anesthetics on ion channels of excitable tissues. In: Strichartz GR (ed) Local anesthetics. Handbook of experimental pharmacology, vol 81. Springer, BerlinCrossRefGoogle Scholar
  81. 81.
    North RA (1982) Electrophysiology of the enteric neurons. Mediators and drugs in gastrointestinal motility I. In: Bertaccini G (ed) Handbook of experimental pharmacology. Springer, BerlinCrossRefGoogle Scholar
  82. 82.
    Roth BJ (1994) Mechanisms for electrical stimulation of excitable tissue. Crit Rev Biomed Eng 22(3–4):253–305PubMedGoogle Scholar
  83. 83.
    Franconi F, Huxtable RJ (1987) Introduction: pharmacology of excitable tissues. In: Huxtable RJ, Franconi F, Giotti A (eds) The biology of taurine. Advances in experimental medicine and biology. Springer, New YorkGoogle Scholar
  84. 84.
    Hao J, Wang X-D, Dan Y, Poo M-M, Zhang X-H (2009) An arithmetic rule for spatial summation of excitatory and inhibitory inputs in pyramidal neurons. PNAS 106(51):21906–21911PubMedCentralCrossRefPubMedGoogle Scholar
  85. 85.
    Britten KH, Heuer HW (1999) Spatial summation in the receptive fields of MT neurons. J Neurosci 19(12):5074–5084CrossRefPubMedGoogle Scholar
  86. 86.
    Oertel D (1985) Use of brain slices in the study of the auditory system: spatial and temporal summation of synaptic inputs in cells in the anteroventral cochlear nucleus of the mouse. J Acoust Soc Am 78(1 Pt 2):328–333CrossRefPubMedGoogle Scholar
  87. 87.
    Zhang Y, Shao S, Zhang J, Wang L, Wang K, Svensson P (2017) Temporal summation and motor function modulation during repeated jaw movements in patients with temporomandibular disorder pain and healthy controls. Pain 158(7):1272–1279CrossRefPubMedGoogle Scholar
  88. 88.
    Magee Jeffrey C (2000) Dendritic integration of excitatory synaptic input. Nat Rev Neurosci 1:181–190CrossRefPubMedGoogle Scholar
  89. 89.
    Hiroyoshi M (2009) Synaptic integration. In: Binder MD, Hirokawa N, Windhorst U (eds) Encyclopedia of neuroscience. Springer, Berlin, GermanyGoogle Scholar
  90. 90.
    Stewart M (1997) Antidromic and orthodromic responses by subicular neurons in rat brain slices. Brain Res 769(1):71–85CrossRefPubMedGoogle Scholar
  91. 91.
    Grill WM, Cantrell MB, Robertson MS (2008) Antidromic propagation of action potentials in branched axons: implications for the mechanisms of action of deep brain stimulation. J Comput Neurosci 24(1):81–93CrossRefPubMedGoogle Scholar
  92. 92.
    Bakkum DJ, Frey U, Radivojevic M, Russell TL, Müller J, Fiscella M et al (2013) Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites. Nat Commun 4:2181PubMedCentralCrossRefPubMedGoogle Scholar
  93. 93.
    Gogan P, Gueritaud JP, Tyc-Dumont S (1983) Comparison of antidromic and orthodromic action potentials of identified motor axons in the cat’s brain stem. J Physiol 335:205–220PubMedCentralCrossRefPubMedGoogle Scholar
  94. 94.
    Bielajew C, Lapointe M, Kiss I, Shizgal P (1982) Absolute and relative refractory periods of the substrates for lateral hypothalamic and ventral midbrain self-stimulation. Physiol Behav 28(1):125–132CrossRefPubMedGoogle Scholar
  95. 95.
    Fouriezos G, Walker S, Rick J, Bielajew C (1987) Refractoriness of neurons mediating intracranial self-stimulation in the anterior basal forebrain. Behav Brain Res 24(1):73–80CrossRefPubMedGoogle Scholar
  96. 96.
    Lowitzsch K, Hopf HC, Galland J (1977) Changes of sensory conduction velocity and refractory periods with decreasing tissue temperature in man. J Neurol 216(3):181–188CrossRefPubMedGoogle Scholar
  97. 97.
    Yeomans JS (1979) The absolute refractory periods of self-stimulation neurons. Physiol Behav 22(5):911–919CrossRefPubMedGoogle Scholar
  98. 98.
    Gregory JE, Harvey RJ, Proske U (1977) A ‘late supernormal period’ in the recovery of excitability following an action potential in muscle spindle and tendon organ receptors. J Physiol 271(2):449–472PubMedCentralCrossRefPubMedGoogle Scholar
  99. 99.
    Joung B, Park H-W, Maruyama M, Tang L, Song J, Han S et al (2011) Intracellular calcium and the mechanism of anodal supernormal excitability in Langendorff perfused rabbit ventricles. Circ J 75(4):834–843PubMedCentralCrossRefPubMedGoogle Scholar
  100. 100.
    Parkin PJ, Le Quesne PM (1982) Effect of a synthetic pyrethroid deltamethrin on excitability changes following a nerve impulse. J Neurol Neurosurg Psychiatry 45(4):337–342PubMedCentralCrossRefPubMedGoogle Scholar
  101. 101.
    Stöhr M, Gilliatt RW, Willison RG (1981) Supernormal excitability of human sensory fibers after ischemia. Muscle Nerve 4(1):73–75CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Stöhr M (1981) Activity-dependent variations in threshold and conduction velocity of human sensory fibers. J Neurol Sci 49(1):47–54CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    McIntyre CC, Richardson AG, Grill WM (2002) Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. J Neurophysiol 87(2):995–1006CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Barth DS, Di S (1991) Laminar excitability cycles in neocortex. J Neurophysiol 65(4):891–898CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Stockbridge N (1988) Etiology of the supernormal period. Biophys J 54(5):777–780PubMedCentralCrossRefPubMedGoogle Scholar
  106. 106.
    Ng A, Burke D, Al-Shehab A (1987) Hyperexcitability of cutaneous afferents during the supernormal period. Relevance to paraesthesiae. Brain 110(Pt 4):1015–1031CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Trombin F, Gnatkovsky V, de Curtis M (2011) Changes in action potential features during focal seizure discharges in the entorhinal cortex of the in vitro isolated guinea pig brain. J Neurophysiol 106(3):1411–1423CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Xie C, Lin Z, Hanson L, Cui Y, Cui B (2012) Intracellular recording of action potentials by nanopillar electroporation. Nat Nanotechnol 7:185–190PubMedCentralCrossRefPubMedGoogle Scholar
  109. 109.
    Oswald MJ, Oorschot DE, Schulz JM, Lipski J, Reynolds JNJ (2009) IH current generates the afterhyperpolarisation following activation of subthreshold cortical synaptic inputs to striatal cholinergic interneurons. J Physiol 587(Pt 24):5879–5897PubMedCentralCrossRefPubMedGoogle Scholar
  110. 110.
    Lancaster B, Hu H, Ramakers GMJ, Storm JF (2001) Interaction between synaptic excitation and slow afterhyperpolarization current in rat hippocampal pyramidal cells. J Physiol 536(Pt 3):809–823PubMedCentralCrossRefPubMedGoogle Scholar
  111. 111.
    Shah M, Haylett DG (2000) Ca2 + channels involved in the generation of the slow afterhyperpolarization in cultured rat hippocampal pyramidal neurons. J Neurophysiol 83:2554–2561CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Gu N, Vervaeke K, Hu H, Storm JF (2005) Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium afterhyperpolarization and excitability control in CA1 hippocampal pyramidal cells. J Physiol 566:689–715PubMedCentralCrossRefPubMedGoogle Scholar
  113. 113.
    Andrade R, Foehring RC, Tzingounis AV (2012) Essential role for phosphatidylinositol 4,5-bisphosphate in the expression, regulation, and gating of the slow afterhyperpolarization current in the cerebral cortex. Front Cell Neurosci 6:47PubMedCentralCrossRefPubMedGoogle Scholar
  114. 114.
    Gulledge AT, Dasari S, Onoue K, Stephens EK, Hasse JM, Avesar D (2013) A sodium-pump-mediated afterhyperpolarization in pyramidal neurons. J Neurosci 33:13025–13041PubMedCentralCrossRefPubMedGoogle Scholar
  115. 115.
    Wu WW, Chan CS, Disterhoft JF (2004) Slow afterhyperpolarization governs the development of NMDA receptor-dependent afterdepolarization in CA1 pyramidal neurons during synaptic stimulation. J Neurophysiol 92(4):2346–2356CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Aponte Y, Lien CC, Reisinger E, Jonas P (2006) Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus. J Physiol 574(Pt 1):229–243PubMedCentralCrossRefPubMedGoogle Scholar
  117. 117.
    Cloues RK, Sather WA (2003) Afterhyperpolarization regulates firing rate in neurons of the suprachiasmatic nucleus. J Neurosci 23(5):1593–1604CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Binder MD, Hirokawa N, Windhorst U (eds) (2009) Encyclopedia of neuroscience. Springer, HeidelbergGoogle Scholar
  119. 119.
    Le Ray D, De Sevilla DF, Porto AB, Fuenzalida M, Buño W (2004) Heterosynaptic metaplastic regulation of synaptic efficacy in CA1 pyramidal neurons of rat hippocampus. Hippocampus 14(8):1011–1025CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Emmelin N (1981) Nervous control of mammalian salivary glands. Philos Trans R Soc Lond B Biol Sci 296(1080):27–35CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Proctor GB, Carpenter G (2007) Regulation of salivary gland function by autonomic nerves. Auton Neurosci 133(1):3–18CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Mittal RK (2011) Motor function of the pharynx, esophagus, and its sphincters. Morgan & Claypool Life Sciences, San DiegoGoogle Scholar
  123. 123.
    Liu L, Arnold R, Robinson M (2012) Dissection and exposure of the whole course of deep nerves in human head specimens after decalcification. Int J Otolaryngol 2012:418650PubMedCentralPubMedGoogle Scholar
  124. 124.
    McManus LJ, Dawes PJD, Stringer MD (2012) Surgical anatomy of the chorda tympani: a micro-CT study. Surg Radiol Anat 34(6):513–518CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Laage-Hellman JE, Stromblad BC (1960) Secretion from human submaxillary gland after section of the chorda tympani. J Appl Physiol 15:295–297CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Possover M, Chiantera V, Baekelandt J (2007) Anatomy of the sacral roots and the pelvic splanchnic nerves in women using the LANN technique. Surg Laparosc Endosc Percutan Tech 17(6):508–510CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Burnett AL, Wesselmann U (1999) History of the neurobiology of the pelvis. Urology 53(6):1082–1089CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Tong WD, Ridolfi TJ, Kosinski L, Ludwig K, Takahashi T (2010) Effects of autonomic nerve stimulation on colorectal motility in rats. Neurogastroenterol Motil 22(6):688–693PubMedCentralCrossRefPubMedGoogle Scholar
  129. 129.
    Ridolfi TJ, Tong W-D, Takahashi T, Kosinski L, Ludwig KA (2009) Sympathetic and parasympathetic regulation of rectal motility in rats. J Gastrointest Surg 13(11):2027–2033PubMedCentralCrossRefPubMedGoogle Scholar
  130. 130.
    Maruyama S, Okabe S, Endo M, Sato K, Iwai T (2003) The role of the rectal branches of pelvic plexus in defecation and colonic motility in a canine model. J Med Dent Sci 50(4):275–284PubMedPubMedCentralGoogle Scholar
  131. 131.
    Carlstedt A, Fasth S, Hultén L, Nordgren S (1988) The sympathetic innervation of the internal anal sphincter and rectum in the cat. Acta Physiol Scand 133(3):423–431CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Coggeshall RE, Hancock MB, Applebaum ML (1976) Categories of axons in mammalian rami communicantes. J Comp Neurol 167(1):105–123CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Coggeshall RE, Galbraith SL (1978) Categories of axons in mammalian rami communicantes. Part II. J Comp Neurol 181(2):349–359CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Jänig W, McLachlan EM (1987) Organization of lumbar spinal outflow to distal colon and pelvic organs. Physiol Rev 67(4):1332–1404CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Jänig W, McLachlan EM (1986) The sympathetic and sensory components of the caudal lumbar sympathetic trunk in the cat. J Comp Neurol 245(1):62–73CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Kuo DC, Hisamitsu T, de Groat WC (1984) A sympathetic projection from sacral paravertebral ganglia to the pelvic nerve and to postganglionic nerves on the surface of the urinary bladder and large intestine of the cat. J Comp Neurol 226(1):76–86CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Baron R, Jänig W, McLachlan EM (1985) The afferent and sympathetic components of the lumbar spinal outflow to the colon and pelvic organs in the cat. I. The hypogastric nerve. J Comp Neurol 238(2):135–146CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Appenzeller O, Ogin G (1974) Myelinated fibres in human paravertebral sympathetic chain: white rami communicantes in alcoholic and diabetic patients. J Neurol Neurosurg Psychiatry 37(10):1155–1161PubMedCentralCrossRefPubMedGoogle Scholar
  139. 139.
    Aminoff MJ, Daroff RB (eds) (2014) Encyclopedia of the Neurological Sciences, 2nd edn. Academic Press, San DiegoGoogle Scholar
  140. 140.
    Nógrádi A, Vrbová G (2006) Anatomy and physiology of the spinal cord. In: Antal N (ed) Transplantation of neural tissue into the spinal cord part of the series neuroscience intelligence unit. Springer, New York, USGoogle Scholar
  141. 141.
    Song ZF, Sun MM, Wu ZY, Xia CL (2010) Anatomical study and clinical significance of the rami communicantes between cervicothoracic ganglion and brachial plexus. Clin Anat 23(7):811–814CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Barson AJ, Sands J (1977) Regional and segmental characteristics of the human adult spinal cord. J Anat 123(Pt 3):797–803PubMedCentralPubMedGoogle Scholar
  143. 143.
    Ko H-Y, Park JH, Shin YB, Baek SY (2004) Gross quantitative measurements of spinal cord segments in human. Spinal Cord 42:35–40CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Miolan JP, Niel JP (1996) The mammalian sympathetic prevertebral ganglia: integrative properties and role in the nervous control of digestive tract motility. J Auton Nerv Syst 58(3):125–138CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Gilman AG, Goodman LS, Rail TW, Murad F (eds) (1985) The pharmacological basis of therapeutics, 7th edn. Macmillan Publishing Company, New YorkGoogle Scholar
  146. 146.
    Brunton L, Knollman B, Hilal-Dandan R (2017) Goodman and Gilman’s pharmacological basis of therapeutics, 13th edn. McGraw-Hill, New YorkGoogle Scholar
  147. 147.
    McDougal DH, Hermann GE, Rogers RC (2011) Vagal afferent stimulation activates astrocytes in the nucleus of the solitary tract via AMPA receptors: evidence of an atypical neural–glial interaction in the brainstem. J Neurosci 31(39):14037–14045PubMedCentralCrossRefPubMedGoogle Scholar
  148. 148.
    Klarer M, Arnold M, Gunther L, Winter C, Langhans W, Meyer U (2014) Gut vagal afferents differentially modulate innate anxiety and learned fear. J Neurosci 34(21):7067–7077CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Bodenlos JS, Kose S, Borckardt JJ, Nahas Z, Darlene S, O’Neil PM et al (2007) Vagus nerve stimulation and emotional responses to food among depressed patients. J Diabetes Sci Technol 1(5):771–779PubMedCentralCrossRefPubMedGoogle Scholar
  150. 150.
    Park MC, Goldman MA, Carpenter LL, Price LH, Friehs GM (2007) Vagus nerve stimulation for depression: rationale, anatomical and physiological basis of efficacy and future prospects. Acta Neurochir Suppl 97(Pt 2):407–416CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Berthoud H-R (2008) The vagus nerve, food intake and obesity. Regul Pept 149(1–3):15–25PubMedCentralCrossRefPubMedGoogle Scholar
  152. 152.
    Jin H, Guo J, Liu J, Lyu B, Foreman RD, Yin J et al (2017) Anti-inflammatory effects and mechanisms of vagal nerve stimulation combined with electroacupuncture in a rodent model of TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol 313(3):G192–G202CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Browning KN, Verheijden S, Boeckxstaens GE (2017) The vagus nerve in appetite regulation, mood, and intestinal inflammation. Gastroenterology 152(4):730–744CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Rexed B (1952) The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol 96(3):414–495CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Rexed B (1954) A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 100(2):297–379CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Room R, Carstairs C (2003) Bror Rexed: an architect of drug control but far from a fundamentalist. Addiction 98(1):127–128CrossRefGoogle Scholar
  157. 157.
    Sarikcioglu L, Ozsoy U (2008) Bror Rexed (1914–2002). J Neurol 255(12):1988–1989CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Pearce JMS (2008) The development of spinal cord anatomy. Eur Neurol 59:286–291CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    O’Brien JS, Sampson EL (1965) Lipid composition of the normal human brain: gray matter, white matter, and myelin. J Lipid Res 6:537–544PubMedPubMedCentralGoogle Scholar
  160. 160.
    Caputi F, Spaziante R, de Divitiis E, Nashold BS Jr (1995) Luigi Rolando and his pioneering efforts to relate structure to function in the nervous system. J Neurosurg 83(5):933–937CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Petras JM (1968) The substantia gelatinosa of Rolando. Experientia 24(10):1045–1047CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Willis WD (1985) Nociceptive pathways: anatomy and physiology of nociceptive ascending pathways. Philos Trans R Soc Lond B Biol Sci 308(1136):253–270CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Gebhart GF, Schmidt RF (eds) (2013) Encyclopedia of pain. Springer-Verlag, Heidelberg, GermanyGoogle Scholar
  164. 164.
    Ristanović D, Milosević NT (2007) A confirmation of Rexed’s laminar hypothesis using the Sholl linear method complemented by nonparametric statistics. Neurosci Lett 414(3):286–290CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Mannen T, Iwata M, Toyokura Y, Nagashima K (1982) The Onuf’s nucleus and the external anal sphincter muscles in amyotrophic lateral sclerosis and Shy-Drager syndrome. Acta Neuropathol 58(4):255–260CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Onufrowicz B (1899) Notes on the arrangement and function of the cell groups in the sacral region of the spinal cord. J Nerv Ment Dis 26:498–504CrossRefGoogle Scholar
  167. 167.
    Onufrowicz B (1900) On the arrangement and function of the cell groups of the sacral region of the spinal cord in man. Arch Neurol Psychopathol 3:387–411Google Scholar
  168. 168.
    Fields RD (2008) White matter in learning, cognition and psychiatric disorders. Trends Neurosci 31(7):361–370PubMedCentralCrossRefPubMedGoogle Scholar
  169. 169.
    Scheel M, Storm C, Gentsch A, Nee J, Luckenbach F, Ploner CJ, Leithner C (2013) The prognostic value of gray-white-matter ratio in cardiac arrest patients treated with hypothermia. Scand J Trauma Resusc Emerg Med 21:23PubMedCentralCrossRefPubMedGoogle Scholar
  170. 170.
    Strominger NL, Demarest RJ, Laemle LB (2012) The reticular formation and the limbic system. In: Strominger NL, Demarest RJ, Laemle LB (eds) Noback’s human nervous system: structure and function, 7th edn. Springer, NYCrossRefGoogle Scholar
  171. 171.
    Willis WD, Westlund KH (2013) Spinal dorsal horn pathways, dorsal column (visceral). In: Gebhart GF, Schmidt RF (eds) Encyclopedia of pain. Springer, BerlinGoogle Scholar
  172. 172.
    Palecek J, Willis WD (2003) The dorsal column pathway facilitates visceromotor responses to colorectal distention after colon inflammation in rats. Pain 104(3):501–507CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Willis WD Jr, Westlund KN (2001) The role of the dorsal column pathway in visceral nociception. Curr Pain Headache Rep 5(1):20–26CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Palecek J (2004) The role of dorsal columns pathway in visceral pain. Physiol Res 53:S125–S130PubMedPubMedCentralGoogle Scholar
  175. 175.
    Wood JD (2011) Visceral pain: spinal afferents, enteric mast cells, enteric nervous system and stress. Curr Pharm Des 17(16):1573–1575CrossRefPubMedGoogle Scholar
  176. 176.
    Elsenbruch S (2011) Abdominal pain in Irritable Bowel Syndrome: a review of putative psychological, neural and neuro-immune mechanisms. Brain Behav Immun 25(3):386–394CrossRefPubMedGoogle Scholar
  177. 177.
    Curatolo M (2011) Pathophysiology of abdominal pain. Ther Umsch 68(8):415–419CrossRefPubMedGoogle Scholar
  178. 178.
    Todd AJ (2017) Identifying functional populations among the interneurons in laminae I–III of the spinal dorsal horn. Mol Pain 13:1744806917693003PubMedCentralCrossRefPubMedGoogle Scholar
  179. 179.
    Wood JD (2007) Neuropathophysiology of functional gastrointestinal disorders. World J Gastroenterol 13(9):1313–1332PubMedCentralCrossRefPubMedGoogle Scholar
  180. 180.
    Holmes GM (2012) Upper gastrointestinal dysmotility after spinal cord injury: is diminished vagal sensory processing one culprit? Front Physiol 3:277PubMedCentralCrossRefPubMedGoogle Scholar
  181. 181.
    Boyle KA, Gutierrez-Mecinas M, Polgár E, Mooney N, O’Connor E, Furuta T et al (2017) A quantitative study of neurochemically defined populations of inhibitory interneurons in the superficial dorsal horn of the mouse spinal cord. Neuroscience 363:120–133PubMedCentralCrossRefPubMedGoogle Scholar
  182. 182.
    Van Oudenhove L, Coen SJ, Aziz Q (2007) Functional brain imaging of gastrointestinal sensation in health and disease. World J Gastroenterol 13(25):3438–3445PubMedCentralCrossRefPubMedGoogle Scholar
  183. 183.
    Tran L, Wiskur B, Meerveld BG-V (2012) The role of the anterolateral bed nucleus of the stria terminalis in stress-induced nociception. Am J Physiol Gastrointest Liver Physiol 302(11):G1301–G1309CrossRefPubMedGoogle Scholar
  184. 184.
    Dubin Adrienne E, Patapoutian Ardem (2010) Nociceptors: the sensors of the pain pathway. J Clin Invest 120(11):3760–3772PubMedCentralCrossRefPubMedGoogle Scholar
  185. 185.
    Smith ES, Lewin GR (2009) Nociceptors: a phylogenetic view. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 195(12):1089–1106PubMedCentralCrossRefPubMedGoogle Scholar
  186. 186.
    Elie DAC (2009) Neuroanatomy of pain and pain pathways. In: Biobehavioral approaches to pain, pp 17–43. Springer, New YorkGoogle Scholar
  187. 187.
    Boadas-Vaello P, Castany S, Homs J, Álvarez-Pérez B, Deulofeu M, Verdú E (2016) Neuroplasticity of ascending and descending pathways after somatosensory system injury: reviewing knowledge to identify neuropathic pain therapeutic targets. Spinal Cord 54(5):330–340CrossRefPubMedGoogle Scholar
  188. 188.
    Sharma A, Lelic D, Brock C, Paine P, Aziz Q (2009) New technologies to investigate the brain-gut axis. World J Gastroenterol 15(2):182–191PubMedCentralCrossRefPubMedGoogle Scholar
  189. 189.
    De Giorgio R, Barbara G, Blennerhassett P, Wang L, Stanghellini V, Corinaldesi R et al (2001) Intestinal inflammation and activation of sensory nerve pathways: a functional and morphological study in the nematode infected rat. Gut 49:822–827PubMedCentralCrossRefPubMedGoogle Scholar
  190. 190.
    Guska NI (1966) Role of the reticular formation in regulation of the interoceptive reflex reactions of the stomach and small intestine. Biull Eksp Biol Med 62(8):14–18PubMedGoogle Scholar
  191. 191.
    Davison JS (1992) Central organization of gastrointestinal vagal reflexes. In: Thomson ABR, Shaffer E (eds) Modern concepts in gastroenterology part of the series topics in gastroenterology. Springer, New YorkCrossRefGoogle Scholar
  192. 192.
    Camilleri M, Saslow SB, Bharucha AE (1996) Gastrointestinal sensation: mechanisms and relation to functional gastrointestinal disorders. Gastroenterol Clin 25(1):247–258CrossRefGoogle Scholar
  193. 193.
    McC Brooks C, Koizumi K, Siebens AA (1956) Inhibitory action of bulbar and suprabulbar reticular formation on the spinal reflex pathway. Am J Physiol 184:497–504Google Scholar
  194. 194.
    Yezierski RP (2013) Spinomesencephalic tract. In: Gebhart GF, Schmidt RF (eds) Encyclopedia of pain. Springer, BerlinGoogle Scholar
  195. 195.
    Blomqvist A, Craig AD (1991) Organization of spinal and trigeminal input to the PAG. In: Depaulis A, Bandler R (eds) The midbrain periaqueductal gray matter volume 213 of the series NATO ASI series. Springer, New York, USACrossRefGoogle Scholar
  196. 196.
    Zhang X (2013) Spinohypothalamic tract, anatomical organization, and response properties. In: Gebhart GF, Schmidt RF (eds) Encyclopedia of pain. Springer, BerlinGoogle Scholar
  197. 197.
    Donald D, Price G (2002) Nicholas Verne. Does the spinothalamic tract to ventroposterior lateral thalamus and somatosensory cortex have roles in both pain sensation and pain-related emotions? J Pain 3(2):105–108CrossRefGoogle Scholar
  198. 198.
    Todd AJ (2013) Spinothalamic tract neurons: neurotransmitter inputs and receptors. In: Gebhart GF, Schmidt RF (eds) Encyclopedia of pain. Springer, BerlinGoogle Scholar
  199. 199.
    Herrero MT, Barcia C, Navarro JM (2002) Functional anatomy of thalamus and basal ganglia. Childs Nerv Syst 18(8):386–404CrossRefPubMedGoogle Scholar
  200. 200.
    Stahnisch FW, Nakashima AS (2013) Theodore Brown Rasmussen (1910–2002). J Neurol 260(10):2694–2696PubMedCentralCrossRefPubMedGoogle Scholar
  201. 201.
    Penfield W, Rasmussen T (1950) The cerebral cortex of man: a study of localization of function. Macmillan, New YorkGoogle Scholar
  202. 202.
    Kell CA, von Kriegstein K, Rösler A, Kleinschmidt A, Laufs H (2005) The sensory cortical representation of the human penis: revisiting somatotopy in the male homunculus. J Neurosci 25(25):5984–5987CrossRefPubMedGoogle Scholar
  203. 203.
    Seriès P, Stocker AA, Simoncelli EP (2009) Is the homunculus “aware” of sensory adaptation? Neural Comput 21(12):3271–3304PubMedCentralCrossRefPubMedGoogle Scholar
  204. 204.
    Szurszewski JH (1981) Physiology of mammalian prevertebral ganglia. Annu Rev Physiol 43:53–68CrossRefPubMedGoogle Scholar
  205. 205.
    Travagli RA, Hermann GE, Browning KN, Rogers RC (2006) Brainstem circuits regulating gastric function. Annu Rev Physiol 68:279–305PubMedCentralCrossRefPubMedGoogle Scholar
  206. 206.
    Williams EK, Chang RB, Strochlic DE, Umans BD, Lowell BB, Liberles SD (2016) Sensory neurons that detect stretch and nutrients in the digestive system. Cell 166(1):209–221PubMedCentralCrossRefPubMedGoogle Scholar
  207. 207.
    Wood JD, Alpers DH, Andrews PLR (1999) Fundamentals of neurogastroenterology. Gut 45(Suppl II):II6–II16PubMedCentralCrossRefPubMedGoogle Scholar
  208. 208.
    King BF, Szurszewski JH (1989) Peripheral reflex pathways involving abdominal viscera: transmission of impulses through prevertebral ganglia. Am J Physiol 256(3 Pt 1):G581–G588PubMedGoogle Scholar
  209. 209.
    Hartman DA, Krier J (1984) Synaptic and antidromic potentials of visceral neurones in ganglia of the lumbar sympathetic chain of the cat. J Physiol 350:413–428PubMedCentralCrossRefPubMedGoogle Scholar
  210. 210.
    Meyer K, Damasio A (2009) Convergence and divergence in a neural architecture for recognition and memory. Trend Neurosci 32(7):376–382CrossRefPubMedGoogle Scholar
  211. 211.
    Man K, Kaplan J, Damasio H, Damasio A (2013) Neural convergence and divergence in the mammalian cerebral cortex: From experimental neuroanatomy to functional neuroimaging. J Comp Neurol 521(18):4097–4111CrossRefPubMedGoogle Scholar
  212. 212.
    Satinoff E (1974) Neural integration of thermoregulatory responses. In: Dicara LV (ed) Limbic and autonomic nervous systems research. Plenum, New York, USAGoogle Scholar
  213. 213.
    Jackson S, Blake R (2010) Neural integration of information specifying human structure from form, motion, and depth. J Neurosci 30(3):838PubMedCentralCrossRefPubMedGoogle Scholar
  214. 214.
    Tsuruoka M, Maeda M, Inoue T (2005) Stimulation of the nucleus locus coeruleus/subcoeruleus suppresses visceromotor responses to colorectal distention in the rat. Neurosci Lett 381(1–2):97–101CrossRefPubMedGoogle Scholar
  215. 215.
    Szabadi E (2013) Functional neuroanatomy of the central noradrenergic system. J Psychopharmacol 27(8):659–693CrossRefGoogle Scholar
  216. 216.
    van Wassenaer-van Hall HN, van den Heuvel AG, Jansen GH, Hoogenraad TU, Mali WP (1995) Cranial MR in Wilson disease: abnormal white matter in extrapyramidal and pyramidal tracts. AJNR Am J Neuroradiol 16(10):2021–2027PubMedGoogle Scholar
  217. 217.
    Ennis M, Aston-Jones G (1988) Activation of locus coeruleus from nucleus paragigantocellularis: a new excitatory amino acid pathway in brain. J Neurosci 8(10):3644–3657CrossRefPubMedGoogle Scholar
  218. 218.
    de Oliveira-Souza R (2012) The human extrapyramidal system. Med Hypotheses 79(6):843–852CrossRefPubMedGoogle Scholar
  219. 219.
    Nielson JL, Sears-Kraxberger I, Strong MK, Wong JK, Willenberg R, Steward O (2010) Unexpected survival of neurons of origin of the pyramidal tract after spinal cord injury. J Neurosci 30(34):11516–11528PubMedCentralCrossRefPubMedGoogle Scholar
  220. 220.
    Rea P (2015) Essential clinical anatomy of the nervous system. Academic Press, LondonGoogle Scholar
  221. 221.
    Wang F, Bobrow L, Liu J, Spencer L, Blumberg HP (2012) Corticolimbic functional connectivity in adolescents with bipolar disorder. PLoS ONE 7(11):e50177PubMedCentralCrossRefPubMedGoogle Scholar
  222. 222.
    Graeff FG, Cristina MLS, Nogueira RL, Audi EA, Oliveira RMW (1993) Role of the amygdala and periaqueductal gray in anxiety and panic. Behav Brain Res 58(1–2):123–131CrossRefPubMedGoogle Scholar
  223. 223.
    Wang F, Kalmar JH, He Y, Jackowski M, Chepenik LG, Edmiston EE et al (2009) Functional and structural connectivity between the perigenual anterior cingulate and amygdala in bipolar disorder. Biol Psychiatry 66(5):516–521PubMedCentralCrossRefPubMedGoogle Scholar
  224. 224.
    Ferrucci M, Giorgi FS, Bartalucci A, Busceti CL, Fornai F (2013) The effects of locus coeruleus and norepinephrine in methamphetamine toxicity. Curr Neuropharmacol 11(1):80–94PubMedCentralPubMedGoogle Scholar
  225. 225.
    Mark MF, Purpura DP (2009) Autism, fever, epigenetics and the locus coeruleus. Brain Res Rev 59(2):388–392CrossRefGoogle Scholar
  226. 226.
    Mouton PR, Pakkenberg B, Gundersen HJ, Price DL (1994) Absolute number and size of pigmented locus coeruleus neurons in young and aged individuals. J Chem Neuroanat 7(3):185–190CrossRefPubMedGoogle Scholar
  227. 227.
    Goncharuk VD (1994) Changes in ganglion nodosum neurons associated with stress-related cardiac deficiency. Exp Toxicol Pathol 46(6):457–464CrossRefPubMedGoogle Scholar
  228. 228.
    Jänig W (1988) Integration of gut function by sympathetic reflexes. Baillieres Clin Gastroenterol 2(1):45–62CrossRefPubMedGoogle Scholar
  229. 229.
    Welcome MO, Pereverzev VA (2013) A mini-review of the mechanisms of glucose memory enhancement. Int J Med Pharm Sci 4(1):17–30Google Scholar
  230. 230.
    Welcome MO, Mastorakis NE, Pereverzev VA (2015) Sweet taste receptor signaling network: possible implication for cognitive functioning. Neurol Res Int (Hindawi Publishing Corporation) 2015:606479Google Scholar
  231. 231.
    Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13(2):54–63CrossRefPubMedGoogle Scholar
  232. 232.
    Zorec R, Verkhratsky A, Rodríguez JJ, Parpura V (2016) Astrocytic vesicles and gliotransmitters: slowness of vesicular release and synaptobrevin2-laden vesicle nanoarchitecture. Neuroscience 323:67–75CrossRefPubMedGoogle Scholar
  233. 233.
    Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32(8):421–431CrossRefPubMedGoogle Scholar
  234. 234.
    Uher E-M, Swash M (1998) Sacral reflexes: physiology and clinical application. Dis Colon Rectum 41(9):1165–1177CrossRefPubMedGoogle Scholar
  235. 235.
    Furness JB (2006) Novel gut afferents: intrinsic afferent neurons and intestinofugal neurons. Auton Neurosci 125(1–2):81–85CrossRefPubMedGoogle Scholar
  236. 236.
    Lang IM, Medda BK, Shaker R (2001) Mechanisms of reflexes induced by esophageal distension. Am J Physiol Gastrointest Liver Physiol 281(5):G1246–G1263CrossRefPubMedGoogle Scholar
  237. 237.
    Zehr EP, Stein RB (1999) What functions do reflexes serve during human locomotion? Prog Neurobiol 58(2):185–205CrossRefPubMedGoogle Scholar
  238. 238.
    Nishino T (2000) Physiological and pathophysiological implications of upper airway reflexes in humans. Jpn J Physiol 50(1):3–14CrossRefPubMedGoogle Scholar
  239. 239.
    Widdicombe J (1998) Upper airway reflexes. Curr Opin Pulm Med 4(6):376–382CrossRefPubMedGoogle Scholar
  240. 240.
    Bornstein JC, Costa M, Grider JR (2004) Enteric motor and interneuronal circuits. Neurogastroenterol Motil 16(Suppl 1):34–8CrossRefPubMedGoogle Scholar
  241. 241.
    Enck P, Greving I, Klosterhalfen S, Wietek B (2006) Upper and lower gastrointestinal motor and sensory dysfunction after human spinal cord injury. Prog Brain Res 152:373–384CrossRefPubMedGoogle Scholar
  242. 242.
    Chang HY, Mashimo H, Goyal RK (2003) Musings on the wanderer: what’s new in our understanding of vago-vagal reflex? IV. Current concepts of vagal efferent projections to the gut. Am J Physiol Gastrointest Liver Physiol 284(3):G357–G366CrossRefPubMedGoogle Scholar
  243. 243.
    Hsieh JH, Chen RF, Wu JJ, Yen CT, Chai CY (1998) Vagal innervation of the gastrointestinal tract arises from dorsal motor nucleus while that of the heart largely from nucleus ambiguus in the cat. J Auton Nerv Syst 70(1–2):38–50CrossRefPubMedGoogle Scholar
  244. 244.
    Harper AA, Kidd C, Scratcherd T (1959) Vago-vagal reflex effects on gastric and pancreatic secretion and gastrointestinal motility. J Physiol (Lond) 148417–36Google Scholar
  245. 245.
    Thor PJ, Sobocki J (2000) Neuromodulation of vago-vagal reflex. Przegl Lek 57(5):79–81PubMedGoogle Scholar
  246. 246.
    Grabauskas G, Wu X, Song I, Zhou SY, Lanigan T, Owyang C (2016) Increased activation of the TRESK K+ mediates vago-vagal reflex malfunction in diabetic rats. Gastroenterology 151(5):910–922PubMedCentralCrossRefPubMedGoogle Scholar
  247. 247.
    Bonaz B, Sinniger V, Pellissier S (2017) The vagus nerve in the neuro-immune axis: implications in the pathology of the gastrointestinal tract. Front Immunol 8:1452PubMedCentralCrossRefPubMedGoogle Scholar
  248. 248.
    Zhang Y, Hermanson ME, Eddinger TJ (2013) Tonic and phasic smooth muscle contraction is not regulated by the PKCα—CPI-17 pathway in swine stomach antrum and fundus. PLoS ONE 8(9):e74608PubMedCentralCrossRefPubMedGoogle Scholar
  249. 249.
    Condon RE, Cowles V, Schulte WJ, Frantzides C, Matsumoto T (1986) The effect of whole-gut lavage on colon motility and gastrocolic response in a monkey. Surgery 99(5):531–536PubMedGoogle Scholar
  250. 250.
    Niv Y (2007) Cost, benefit, tonic, phasic: what do response rates tell us about dopamine and motivation? Ann N Y Acad Sci 1104:357–376CrossRefPubMedGoogle Scholar
  251. 251.
    Niv Y, Daw ND, Joel D, Dayan P (2007) Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology 191(3):507–520CrossRefPubMedGoogle Scholar
  252. 252.
    Ostry DJ, Gribble PL, Levin MF, Feldman AG (1997) Phasic and tonic stretch reflexes in muscles with few muscle spindles: human jaw-opener muscles. Exp Brain Res 116(2):299–308CrossRefPubMedGoogle Scholar
  253. 253.
    Mazzuoli-Weber G, Schemann M (2015) Mechanosensitivity in the enteric nervous system. Front Cell Neurosci 9:408PubMedCentralPubMedGoogle Scholar
  254. 254.
    Schemann M, Mazzuoli G (2010) Multifunctional mechanosensitive neurons in the enteric nervous system. Auton Neurosci 153(1–2):21–25CrossRefPubMedGoogle Scholar
  255. 255.
    Alcaino C, Farrugia G, Beyder A (2017) Mechanosensitive piezo channels in the gastrointestinal tract. Curr Top Membr 79:219–244PubMedCentralCrossRefPubMedGoogle Scholar
  256. 256.
    Ochoa-Cortes F, Turco F, Linan-Rico A, Soghomonyan S, Whitaker E, Wehner S et al (2016) Enteric glial cells: a new frontier in neurogastroenterology and clinical target for inflammatory bowel diseases. Inflamm Bowel Dis 22(2):433–449CrossRefPubMedGoogle Scholar
  257. 257.
    Lake JI, Heuckeroth RO (2013) Enteric nervous system development: migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol 305(1):G1–G24PubMedCentralCrossRefPubMedGoogle Scholar
  258. 258.
    Heuckeroth RO, Schäfer KH (2016) Gene-environment interactions and the enteric nervous system: Neural plasticity and Hirschsprung disease prevention. Dev Biol 417(2):188–197PubMedCentralCrossRefPubMedGoogle Scholar
  259. 259.
    de Souza SR, de Miranda Neto MH, Martins Perles JV, Vieira Frez FC, Zignani I et al (2017) Antioxidant effects of the quercetin in the jejunal myenteric innervation of diabetic rats. Front Med (Lausanne) 4:8Google Scholar
  260. 260.
    Bush TG (2002) Enteric glial cells. An upstream target for induction of necrotizing enterocolitis and Crohn’s disease? BioEssays 24(2):130–140CrossRefPubMedGoogle Scholar
  261. 261.
    Neunlist M, Rolli-Derkinderen M, Latorre R, Van Landeghem L, Coron E, Derkinderen P, De Giorgio R (2014) Enteric glial cells: recent developments and future directions. Gastroenterology 147(6):1230–1237CrossRefPubMedGoogle Scholar
  262. 262.
    Smith TH, Ngwainmbi J, Grider JR, Dewey WL, Akbarali HI (2013) An in-vitro preparation of isolated enteric neurons and glia from the myenteric plexus of the adult mouse. J Vis Exp 78:50688Google Scholar
  263. 263.
    Vieira-Frez FC, Martins-Colombo-Perles JV, Robert-Linden D, Gibbons SJ, Amilcar-Martins H, Almeida-Brito-Romualdo D et al (2017) Restoration of density of interstitial cells of Cajal in the jejunum of diabetic rats after quercetin supplementation. Rev Esp Enferm Dig 109(3):190–195PubMedGoogle Scholar
  264. 264.
    Bassotti G, Villanacci V, Antonelli E, Morelli A, Salerni B (2007) Enteric glial cells: new players in gastrointestinal motility? Lab Invest 87(7):628–632PubMedCentralCrossRefPubMedGoogle Scholar
  265. 265.
    Gulbransen BD, Sharkey KA (2012) Novel functional roles for enteric glia in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 9(11):625–632CrossRefPubMedGoogle Scholar
  266. 266.
    Sasselli V, Pachnis V, Burns AJ (2012) The enteric nervous system. Dev Biol 366(1):64–73CrossRefPubMedGoogle Scholar
  267. 267.
    Grubišić V, Parpura V (2017) Two modes of enteric gliotransmission differentially affect gut physiology. Glia 65(5):699–711PubMedCentralCrossRefPubMedGoogle Scholar
  268. 268.
    Abdo H, Derkinderen P, Gomes P, Chevalier J, Aubert P, Masson D et al (2010) Enteric glial cells protect neurons from oxidative stress in part via reduced glutathione. FASEB J 24(4):1082–1094CrossRefPubMedGoogle Scholar
  269. 269.
    Joseph NM, He S, Quintana E, Kim YG, Núñez G, Morrison SJ (2011) Enteric glia are multipotent in culture but primarily form glia in the adult rodent gut. J Clin Invest 121(9):3398–3411PubMedCentralCrossRefPubMedGoogle Scholar
  270. 270.
    Liñán-Rico A, Turco F, Ochoa-Cortes F, Harzman A, Needleman BJ, Arsenescu R et al (2016) Molecular signaling and dysfunction of the human reactive enteric glial cell phenotype: implications for GI infection, IBD, POI, neurological, motility, and GI disorders. Inflamm Bowel Dis 22(8):1812–1834PubMedCentralCrossRefPubMedGoogle Scholar
  271. 271.
    Chow AK, Gulbransen BD (2017) Potential roles of enteric glia in bridging neuroimmune communication in the gut. Am J Physiol Gastrointest Liver Physiol 312(2):G145–G152CrossRefPubMedGoogle Scholar
  272. 272.
    Gershon MD, Rothman TP (1991) Enteric glia. Glia 4(2):195–204CrossRefPubMedGoogle Scholar
  273. 273.
    Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6:671–682CrossRefPubMedGoogle Scholar
  274. 274.
    Cameron-Curry P (1995) Glial lineage of the peripheral nervous system. C R Seances Soc Biol Fil 189(2):253–261PubMedGoogle Scholar
  275. 275.
    Zhang S-C (2001) Defining glial cells during CNS development. Nat Rev Neurosci 2:840–843CrossRefPubMedGoogle Scholar
  276. 276.
    Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD et al (2016) Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89(1):37–53CrossRefGoogle Scholar
  277. 277.
    Yokoyama A, Yang L, Itoh S, Mori K, Tanaka J (2004) Microglia, a potential source of neurons, astrocytes, and oligodendrocytes. Glia 45(1):96–104CrossRefPubMedGoogle Scholar
  278. 278.
    Rusznák Z, Henskens W, Schofield E, Kim WS, Fu Y (2016) Adult neurogenesis and gliogenesis: possible mechanisms for neurorestoration. Exp Neurobiol 25(3):103–112PubMedCentralCrossRefPubMedGoogle Scholar
  279. 279.
    Faria TP (2015) Glial cells. In: Parnham M (ed) Encyclopedia of inflammatory diseases. Springer, Basel, SwitzerlandGoogle Scholar
  280. 280.
    Echevarría D, Martínez S (2004) The myelin glial cell of the peripheral nervous system: the schwann cell. In: Herdegen T, Delgado-García J (eds) Brain damage and repair. Springer, DordrechtGoogle Scholar
  281. 281.
    Jessen KR (2004) Glial cells. Int J Biochem Cell Biol 36(10):1861–1867CrossRefPubMedGoogle Scholar
  282. 282.
    Jessen KR, Mirsky R (1980) Glial cells in the enteric nervous system contain glial fibrillary acidic protein. Nature 286(5774):736–737CrossRefPubMedGoogle Scholar
  283. 283.
    Costa M, Brookes SJH, Hennig GW (2000) Anatomy and physiology of the enteric nervous system. Gut 47(5):iv15–iv19Google Scholar
  284. 284.
    Llinás R, Jahnsen H (1982) Electrophysiology of mammalian thalamic neurones in vitro. Nature 297:406–408CrossRefGoogle Scholar
  285. 285.
    Janiszewski L (1972) Electrophysiology of the neuron. Acta Physiol Pol 5:941–953PubMedGoogle Scholar
  286. 286.
    Furness JB (2000) Types of neurons in the enteric nervous system. J Auton Nerv Syst 81(1–3):87–96CrossRefPubMedGoogle Scholar
  287. 287.
    Krammer H-J, Kühnel W (1992) Immunohistochemistry for intermediate filaments in the enteric nervous system of the porcine small intestine. Ann Anat 174(4):275–278CrossRefPubMedGoogle Scholar
  288. 288.
    Foong JP, Tough IR, Cox HM, Bornstein JC (2014) Properties of cholinergic and non-cholinergic submucosal neurons along the mouse colon. J Physiol 592(Pt 4):777–793PubMedCentralCrossRefPubMedGoogle Scholar
  289. 289.
    Dong H, Jiang Y, Srinivasan S, Mittal RK (2013) Morphological, immunocytochemical, and functional characterization of esophageal enteric neurons in primary culture. Am J Physiol Gastrointest Liver Physiol 305(2):G129–G138PubMedCentralCrossRefPubMedGoogle Scholar
  290. 290.
    Walberg F (1984) On the morphology of the mesencephalic trigeminal cells. New data based on tracer studies. Brain Res 322(1):119–123CrossRefPubMedGoogle Scholar
  291. 291.
    Ueck M, Sato T, Ohba S, Wake K, Kobayashi H (1989) The neural organization of the pineal complex in the frog: stratification and regional differences. Arch Histol Cytol 52:459–467CrossRefPubMedGoogle Scholar
  292. 292.
    Howard D, Bull L, De Lacy BC (2015) Evolving unipolar memristor spiking neural networks. Connection Sci 27(4):397–416CrossRefGoogle Scholar
  293. 293.
    Wirsig CR, Leonard CM (1986) Acetylcholinesterase and luteinizing hormone-releasing hormone distinguish separate populations of terminal nerve neurons. Neuroscience 19(3):719–740CrossRefPubMedGoogle Scholar
  294. 294.
    Wood JD (2012) Cellular neurophysiology of enteric neurons. In: Wood J, Johnson L (eds) Physiology of the gastrointestinal tract, 5th edn. Elsevier, San DiegoGoogle Scholar
  295. 295.
    Carbone SE, Jovanovska V, Nurgali K, Brookes SJH (2014) Human enteric neurons: morphological, electrophysiological, and neurochemical identification. Neurogastroenterol Motil 26(12):1812–1816PubMedCentralCrossRefPubMedGoogle Scholar
  296. 296.
    Pompolo S, Furness JB (1990) Ultrastructure and synaptology of neurons immunoreactive for gamma-aminobutyric acid in the myenteric plexus of the guinea pig small intestine. J Neurocytol 19(4):539–549CrossRefPubMedGoogle Scholar
  297. 297.
    Hu H-Z, Gao N, Zhu MX, Liu S, Ren J, Gao C et al (2003) Slow excitatory synaptic transmission mediated by P2Y1 receptors in the guinea-pig enteric nervous system. J Physiol 550(Pt 2):493–504PubMedCentralCrossRefPubMedGoogle Scholar
  298. 298.
    Bertrand PP, Thomas EA (2004) Multiple levels of sensory integration in the intrinsic sensory neurons of the enteric nervous system. Clin Exp Pharmacol Physiol 31(11):745–755CrossRefPubMedGoogle Scholar
  299. 299.
    Takaki M, Nakayama S (1990) Electrical behavior of myenteric neurons induced by mesenteric nerve stimulation in the guinea pig ileum. Acta Med Okayama 44(5):257–261PubMedGoogle Scholar
  300. 300.
    Ohno N, Xue L, Yamamoto Y, Suzuki H (1996) Properties of the inhibitory junction potential in smooth muscle of the guinea-pig gastric fundus. Br J Pharmacol 117(5):974–978PubMedCentralCrossRefPubMedGoogle Scholar
  301. 301.
    Komori K, Suzuki H (1986) Distribution and properties of excitatory and inhibitory junction potentials in circular muscle of the guinea-pig stomach. J Physiol 370:339–355PubMedCentralCrossRefPubMedGoogle Scholar
  302. 302.
    Beckett EAH, Sanders KM, Ward SM (2017) Inhibitory responses mediated by vagal nerve stimulation are diminished in stomachs of mice with reduced intramuscular interstitial cells of Cajal. Sci Rep 7:44759PubMedCentralCrossRefPubMedGoogle Scholar
  303. 303.
    Baker SA, Mutafova-Yambolieva V, Monaghan K, Horowitz B, Sanders KM, Koh SD (2003) Mechanism of active repolarization of inhibitory junction potential in murine colon. Am J Physiol Gastrointest Liver Physiol 285(5):G813–G821CrossRefPubMedPubMedCentralGoogle Scholar
  304. 304.
    Dong H, Jiang Y, Dong J, Mittal RK (2015) Inhibitory motor neurons of the esophageal myenteric plexus are mechanosensitive. Am J Physiol Cell Physiol 308(5):C405–C413CrossRefPubMedPubMedCentralGoogle Scholar
  305. 305.
    Hotta R, Stamp LA, Foong JPP, McConnell SN, Bergner AJ, Anderson RB et al (2013) Transplanted progenitors generate functional enteric neurons in the postnatal colon. J Clin Invest 123(3):1182–1191PubMedCentralCrossRefPubMedGoogle Scholar
  306. 306.
    Mueller MH, Xue B, Glatzle J, Hahn J, Grundy D, Kreis ME (2009) Extrinsic afferent nerve sensitivity and enteric neurotransmission in murine jejunum in vitro. Am J Physiol Gastrointest Liver Physiol 297(4):G655–G662CrossRefPubMedGoogle Scholar
  307. 307.
    Berthoud HR, Blackshaw LA, Brookes SJH, Grundy D (2004) Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract. Neurogastroenterol Motil 16(1):28–33CrossRefPubMedPubMedCentralGoogle Scholar
  308. 308.
    Song X, Chen BN, Zagorodnyuk VP, Lynn PA, Blackshaw LA, Grundy D et al (2009) Identification of medium/high threshold extrinsic mechanosensitive afferent nerves to the gastrointestinal tract. Gastroenterology 137(1):274–284PubMedCentralCrossRefPubMedGoogle Scholar
  309. 309.
    Chiocchetti R, Grandis A, Bombardi C, Lucchi ML, Dal Lago DT, Bortolami R, Furness JB (2006) Extrinsic and intrinsic sources of calcitonin gene-related peptide immunoreactivity in the lamb ileum: a morphometric and neurochemical investigation. Cell Tissue Res 323(2):183–196CrossRefPubMedPubMedCentralGoogle Scholar
  310. 310.
    Kugler EM, Michel K, Zeller F, Demir IE, Ceyhan GO, Schemann M, Mazzuoli-Weber G (2015) Mechanical stress activates neurites and somata of myenteric neurons. Front Cell Neurosci 9:342PubMedCentralPubMedGoogle Scholar
  311. 311.
    Browning KN, Verheijden S, Boeckxstaens GE (2017) The vagus nerve in appetite regulation, mood, and intestinal inflammation. Gastroenterology 152(4):730–744CrossRefPubMedPubMedCentralGoogle Scholar
  312. 312.
    Kunze WA, Furness JB (1999) The enteric nervous system and regulation of intestinal motility. Annu Rev Physiol 61:117–142CrossRefPubMedPubMedCentralGoogle Scholar
  313. 313.
    Clerc N, Furness JB (2004) Intrinsic primary afferent neurones of the digestive tract. Neurogastroenterol Motil 16(1):24–27CrossRefPubMedPubMedCentralGoogle Scholar
  314. 314.
    Furness JB, Jones C, Nurgali K, Clerc N (2004) Intrinsic primary afferent neurons and nerve circuits within the intestine. Prog Neurobiol 72(2):143–164CrossRefPubMedPubMedCentralGoogle Scholar
  315. 315.
    Porter JT, Johnson CK, Agmon A (2001) Diverse types of interneurons generate thalamus-evoked feedforward inhibition in the mouse barrel cortex. J Neurosci 21(8):2699–2710CrossRefPubMedPubMedCentralGoogle Scholar
  316. 316.
    Zaitsev AV (2013) Classification and function of GABAergic interneurons of the mammalian cerebral cortex. Biochem (Mosc) Suppl Ser A Membr Cell Biol 7(4):245–259CrossRefGoogle Scholar
  317. 317.
    Kepecs A, Fishell G (2014) Interneuron cell types are fit to function. Nature 505:318–326PubMedCentralCrossRefPubMedGoogle Scholar
  318. 318.
    Tsugorka TM, Dovgan’ OV, Stepanyuk AR, Cherkas VP (2007) Variety of types of cortical interneurons. Neurophysiology 39(3):227–236CrossRefGoogle Scholar
  319. 319.
    Bui TV, Cushing S, Dewey D, Fyffe RE, Rose PK (2003) Comparison of the morphological and electrotonic properties of Renshaw cells, Ia inhibitory interneurons, and motoneurons in the cat. J Neurophysiol 90(5):2900–2918CrossRefPubMedPubMedCentralGoogle Scholar
  320. 320.
    Koehler W, Windhorst U (1985) Responses of the spinal alpha-motoneurone-Renshaw cell system to various differentially distributed segmental afferent and descending inputs. Biol Cybern 51(6):417–426CrossRefPubMedPubMedCentralGoogle Scholar
  321. 321.
    Maltenfort MG, Heckman CJ, Rymer WZ (1998) Decorrelating actions of Renshaw interneurons on the firing of spinal motoneurons within a motor nucleus: a simulation study. J Neurophysiol 80(1):309–323CrossRefPubMedPubMedCentralGoogle Scholar
  322. 322.
    Fyffe RE (1990) Evidence for separate morphological classes of Renshaw cells in the cat’s spinal cord. Brain Res 536(1–2):301–304CrossRefPubMedPubMedCentralGoogle Scholar
  323. 323.
    Marshall I, Al-Kazwini SJ, Holman JJ, Craig RK (1988) Human alpha-calcitonin gene-related peptide (CGRP) is a potent vasodilator in human mesenteric vasculature. Br J Clin Pharmacol 26(6):691–695PubMedCentralCrossRefPubMedGoogle Scholar
  324. 324.
    Cooke JP, Dzau VJ (1997) Nitric oxide synthase: role in the genesis of vascular disease. Annu Rev Med 48:489–509CrossRefPubMedPubMedCentralGoogle Scholar
  325. 325.
    Hwang SJ, Durnin L, Dwyer L, Rhee P-L, Ward SM, Koh SD, Sanders KM, Mutafova-Yambolieva VN (2011) ß-nicotinamide adenine dinucleotide is an enteric inhibitory neurotransmitter in human and non-human primate colons. Gastroenterology 140(2):608–617CrossRefPubMedPubMedCentralGoogle Scholar
  326. 326.
    Adinolfi B, Romanini A, Vanni A, Martinotti E, Chicca A, Fogli S, Nieri P (2013) Anticancer activity of anandamide in human cutaneous melanoma cells. Eur J Pharmacol 718(1–3):154–159CrossRefPubMedPubMedCentralGoogle Scholar
  327. 327.
    Clapper JR, Moreno-Sanz G, Russo R, Guijarro A, Vacondio F, Duranti A et al (2010) Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism. Nat Neurosci 13:1265–1270PubMedCentralCrossRefPubMedGoogle Scholar
  328. 328.
    Bishay P, Häussler A, Lim HY, Oertel B, Galve-Roperh I, Ferreirós N, Tegeder I (2013) Anandamide deficiency and heightened neuropathic pain in aged mice. Neuropharmacology 71:204–215CrossRefPubMedPubMedCentralGoogle Scholar
  329. 329.
    Nichols K, Staines W, Wu J-Y, Krantis A (1995) Immunopositive GABAergic neural sites display nitric oxide synthase-related NADPH diaphorase activity in the human colon. J Auton Nerv Syst 50(3):253–262CrossRefPubMedPubMedCentralGoogle Scholar
  330. 330.
    Denef C (2008) Paracrinicity: the story of 30 years of cellular pituitary. J Neuroendocrinol 20(1):1–70PubMedCentralPubMedGoogle Scholar
  331. 331.
    Singh AB, Harris RC (2005) Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell Signal 17(10):1183–1193CrossRefPubMedPubMedCentralGoogle Scholar
  332. 332.
    Clinton JM, Davis CJ, Zielinski MR, Jewett KA, Krueger JM (2011) Biochemical regulation of sleep and sleep bio-markers. J Clin Sleep Med 7(5):S38–S42PubMedCentralPubMedGoogle Scholar
  333. 333.
    Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (eds) (1999) Basic neurochemistry: molecular, cellular and medical aspects, 6th edn. Lippincott-Raven, PhiladelphiaGoogle Scholar
  334. 334.
    Schousboe A, Bak LK, Waagepetersen HS (2013) Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Front Endocrinol (Lausanne) 4:102Google Scholar
  335. 335.
    Takeda K, Ueda T (2017) Effective mechanism for synthesis of neurotransmitter glutamate and its loading into synaptic vesicles. Neurochem Res 42(1):64–76CrossRefPubMedPubMedCentralGoogle Scholar
  336. 336.
    Behar KL (2009) GABA synthesis and metabolism. In: Squire LR (ed) Encyclopedia of neuroscience. Academic Press, San DiegoGoogle Scholar
  337. 337.
    Rama Sastry BV, Henderson GI (1976) Mechanisms of acetylcholine synthesis by rat brain choline acetyltransferase and its regulation by products and inhibitors. In: Bradley PB, Dhawan BN (eds) Drugs and central synaptic transmission. Macmillan, London, UKGoogle Scholar
  338. 338.
    Kumar GK (2011) Hypoxia and neurotransmitter synthesis. Am J Physiol Cell Physiol 300(4):C743–C751PubMedCentralCrossRefPubMedGoogle Scholar
  339. 339.
    Welford RWD, Vercauteren M, Trébaul A, Cattaneo C, Eckert D, Garzotti M et al (2016) Serotonin biosynthesis as a predictive marker of serotonin pharmacodynamics and disease-induced dysregulation. Sci Rep 6:30059PubMedCentralCrossRefPubMedGoogle Scholar
  340. 340.
    Bark SJ, Hook V (2007) The future of proteomic analysis in biological systems and molecular medicine. Mol BioSyst 3:14CrossRefPubMedPubMedCentralGoogle Scholar
  341. 341.
    Kulkarni S, Zou B, Hanson J, Micci M-A, Tiwari G, Becker L et al (2011) Gut-derived factors promote neurogenesis of CNS-neural stem cells and nudge their differentiation to an enteric-like neuronal phenotype. Am J Physiol Gastrointest Liver Physiol 301(4):G644–G655PubMedCentralCrossRefPubMedGoogle Scholar
  342. 342.
    Berghe PV (2008) Electrochemical detection of neurotransmitters in the gut wall. Neurogastroenterol Motil 20(11):1185–1188CrossRefGoogle Scholar
  343. 343.
    Chavez RA, Miller SG, Moore HP (1996) A biosynthetic regulated secretory pathway in constitutive secretory cells. J Cell Biol 133(6):1177–1191CrossRefPubMedPubMedCentralGoogle Scholar
  344. 344.
    Morvan J, Tooze SA (2008) Discovery and progress in our understanding of the regulated secretory pathway in neuroendocrine cells. Histochem Cell Biol 129(3):243–252PubMedCentralCrossRefPubMedGoogle Scholar
  345. 345.
    Ponnambalam S, Baldwin SA (2003) Constitutive protein secretion from the trans-Golgi network to the plasma membrane. Mol Membr Biol 20(2):129–139CrossRefPubMedPubMedCentralGoogle Scholar
  346. 346.
    Ungar D, Hughson FM (2003) SNARE protein structure and function. Annu Rev Cell Dev Biol 19:493–517CrossRefPubMedPubMedCentralGoogle Scholar
  347. 347.
    Hay JC, Scheller RH (1997) SNAREs and NSF in targeted membrane fusion. Curr Opin Cell Biol 9(4):505–512CrossRefPubMedPubMedCentralGoogle Scholar
  348. 348.
    De Camilli P (1995) The eighth Datta Lecture. Molecular mechanisms in synaptic vesicle recycling. FEBS Lett 369(1):3–12CrossRefPubMedPubMedCentralGoogle Scholar
  349. 349.
    Yu I-M, Hughson FM (2010) Tethering factors as organizers of intracellular vesicular traffic. Annu Rev Cell Dev Biol 26:137–156CrossRefPubMedPubMedCentralGoogle Scholar
  350. 350.
    Ungar D, Hughson FM (2003) SNARE protein structure and function. Annu Rev Cell Dev Biol 19:493–517CrossRefPubMedPubMedCentralGoogle Scholar
  351. 351.
    Chen YA, Scheller RH (2001) SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2:98–106CrossRefPubMedPubMedCentralGoogle Scholar
  352. 352.
    Jena BP (2009) Porosome: the secretory portal in cells. Biochemistry 48(19):4009–4018PubMedCentralCrossRefPubMedGoogle Scholar
  353. 353.
    Neher E (1993) Secretion without full fusion. Nature 363:497–498CrossRefPubMedPubMedCentralGoogle Scholar
  354. 354.
    Jena BP (2015) ‘Porosome’ discovered nearly 20 years ago provides molecular insights into the kiss-and-run mechanism of cell secretion. J Cell Mol Med 19(7):1427–1440PubMedCentralCrossRefPubMedGoogle Scholar
  355. 355.
    Jena BP (2012) Porosome: the secretory portal. Exp Biol Med 237(7):748–757CrossRefGoogle Scholar
  356. 356.
    Bryant AS, Li B, Beenhakker MP, Huguenard JR (2009) Maintenance of thalamic epileptiform activity depends on the astrocytic glutamate-glutamine cycle. J Neurophysiol 102(5):2880–2888PubMedCentralCrossRefPubMedGoogle Scholar
  357. 357.
    Cremona O, De Camilli P (1997) Synaptic vesicle endocytosis. Curr Opin Neurobiol 7(3):323–330CrossRefPubMedPubMedCentralGoogle Scholar
  358. 358.
    Scheller RH (2013) In search of the molecular mechanism of intracellular membrane fusion and neurotransmitter release. Nat Med 19:1232–1235CrossRefPubMedPubMedCentralGoogle Scholar
  359. 359.
    MacDonald PE, Braun M, Galvanovskis J, Rorsman P (2006) Release of small transmitters through kiss-and-run fusion pores in rat pancreatic β cells. Cell Metab 4(4):283–290CrossRefPubMedPubMedCentralGoogle Scholar
  360. 360.
    Bhalla US (2004) Models of cell signaling pathways. Curr Opin Genet Dev 14(4):375–381CrossRefPubMedPubMedCentralGoogle Scholar
  361. 361.
    Canales A, Jia X, Froriep UP, Koppes RA, Tringides CM, Selvidge J et al (2015) Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat Biotechnol 33:277–284CrossRefPubMedPubMedCentralGoogle Scholar
  362. 362.
    Sánchez D, Anand U, Gorelik J, Benham CD, Bountra C, Lab M et al (2007) Localized and non-contact mechanical stimulation of dorsal root ganglion sensory neurons using scanning ion conductance microscopy. J Neurosci Methods 159(1):26–34CrossRefPubMedPubMedCentralGoogle Scholar
  363. 363.
    Tang M, Song Q, Li N, Jiang Z, Huang R, Cheng G (2013) Enhancement of electrical signaling in neural networks on graphene films. Biomaterials 34(27):6402–6411CrossRefPubMedPubMedCentralGoogle Scholar
  364. 364.
    Connors BW (2009) Electrical signaling with neuronal gap junctions. In: Harris AL, Locke D (eds) Connexins. Humana Press, New York, USAGoogle Scholar
  365. 365.
    Fields D (2011) Nonsynaptic and nonvesicular ATP release from neurons and relevance to neuron–glia signaling. Semin Cell Dev Biol 22(2):214–219PubMedCentralCrossRefPubMedGoogle Scholar
  366. 366.
    Sharkey KA, Lomax AE, Bertrand PP, Furness JB (1998) Electrophysiology, shape, and chemistry of neurons that project from guinea pig colon to inferior mesenteric ganglia. Gastroenterology 115(4):909–918CrossRefPubMedPubMedCentralGoogle Scholar
  367. 367.
    Linden DR (2012) Colitis is associated with a loss of intestinofugal neurons. Am J Physiol Gastrointest Liver Physiol 303(10):G1096–G1104PubMedCentralCrossRefPubMedGoogle Scholar
  368. 368.
    Hibberd TJ, Zagorodnyuk VP, Spencer NJ, Brookes SJ (2012) Identification and mechanosensitivity of viscerofugal neurons. Neuroscience 225:118–129CrossRefPubMedPubMedCentralGoogle Scholar
  369. 369.
    Franze K, Janmey PA, Guck J (2013) Mechanics in neuronal development and repair. Annu Rev Biomed Eng 15:227–251CrossRefPubMedPubMedCentralGoogle Scholar
  370. 370.
    Arulmoli J, Pathak MM, McDonnell LP, Nourse JL, Tombola F, Earthman JC, Flanagan LA (2015) Static stretch affects neural stem cell differentiation in an extracellular matrix-dependent manner. Sci Rep 5:8499PubMedCentralCrossRefPubMedGoogle Scholar
  371. 371.
    Mayer CJ, Wood JD (1975) Properties of mechanosensitive neurons within Auerbach’s plexus of the small intestine of the cat. Pflugers Arch 357(1–2):35–49CrossRefPubMedPubMedCentralGoogle Scholar
  372. 372.
    Mazzuoli G, Schemann M (2012) Mechanosensitive enteric neurons in the myenteric plexus of the mouse intestine. PLoS ONE 7(7):e39887PubMedCentralCrossRefPubMedGoogle Scholar
  373. 373.
    Furness JB, Koopmans HS, Robbins HL, Lin HC (2000) Identification of intestinofugal neurons projecting to the coeliac and superior mesenteric ganglia in the rat. Auton Neurosci 83(1–2):81–85CrossRefPubMedPubMedCentralGoogle Scholar
  374. 374.
    Sha L, Linden DR, Farrugia G, Szurszewski JH (2013) Hydrogen sulfide selectively potentiates central preganglionic fast nicotinic synaptic input in mouse superior mesenteric ganglion. J Neurosci 33(31):12638–12646PubMedCentralCrossRefPubMedGoogle Scholar
  375. 375.
    Sharkey KA, Lomax AEG, Bertrand PP, Furness JB (1998) Electrophysiology, shape, and chemistry of neurons that project from guinea pig colon to inferior mesenteric ganglia. Gastroenterology 115(4):909–918CrossRefPubMedPubMedCentralGoogle Scholar
  376. 376.
    Szurszewski J, Ermilov L, Miller S (2002) Prevertebral ganglia and intestinofugal afferent neurons. Gut 51(1):i6–i10PubMedCentralCrossRefPubMedGoogle Scholar
  377. 377.
    Davison JS (1972) The electrophysiology of gastrointestinal chemoreceptors. Digestion 7(5):312–317CrossRefPubMedPubMedCentralGoogle Scholar
  378. 378.
    Furness JB (2003) Intestinofugal neurons and sympathetic reflexes that bypass the central nervous system. J Comp Neurol 455(3):281–284CrossRefPubMedPubMedCentralGoogle Scholar
  379. 379.
    Purali N, Rydqvist B (1998) Action potential and sodium current in the slowly and rapidly adapting stretch receptor neurons of the crayfish (Astacus astacus). J Neurophysiol 80:2121–2132CrossRefPubMedPubMedCentralGoogle Scholar
  380. 380.
    Sur M, Wall JT, Kaas JH (1984) Modular distribution of neurons with slowly adapting and rapidly adapting responses in area 3b of somatosensory cortex in monkeys. J Neurophysiol 51(4):724–744CrossRefPubMedPubMedCentralGoogle Scholar
  381. 381.
    Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW (2014) Calcium-permeable ion channels in pain signaling. Physiol Rev 94(1):81–140CrossRefPubMedPubMedCentralGoogle Scholar
  382. 382.
    Ennes HS, Young SH, Goliger JA, Mayer EA (1999) Chemical signaling from colonic smooth muscle cells to DRG neurons in culture. Am J Physiol Cell Physiol 276(3):C602–C610CrossRefGoogle Scholar
  383. 383.
    Anastassiou CA, Perin R, Markram H, Koch C (2011) Ephaptic coupling of cortical neurons. Nat Neurosci 14:217–223CrossRefPubMedPubMedCentralGoogle Scholar
  384. 384.
    Singh AB, Harris RC (2005) Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell Signal 17(10):1183–1193CrossRefPubMedPubMedCentralGoogle Scholar
  385. 385.
    Chalazonitis A, Gershon MD, Greene LA (2012) Cell death and the developing enteric nervous system. Neurochem Int 61(6):839–847PubMedCentralCrossRefPubMedGoogle Scholar
  386. 386.
    Mayer EA, Tillisch K, Gupta A (2015) Gut/brain axis and the microbiota. J Clin Invest 125(3):926–938PubMedCentralCrossRefPubMedGoogle Scholar
  387. 387.
    Rosell S, Al-Saffar A, Thor K (1984) The role of neurotensin in gut motility. Scand J Gastroenterol 96:69–75Google Scholar
  388. 388.
    Bueno L, Fioramonti J, Fargeas MJ, Primi MP (1985) Neurotensin: a central neuromodulator of gastrointestinal motility in the dog. Am J Physiol 248(1 Pt 1):G15–G19PubMedPubMedCentralGoogle Scholar
  389. 389.
    Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K (2014) Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci 34(46):15490–15496PubMedCentralCrossRefPubMedGoogle Scholar
  390. 390.
    Chen P, Hu B, Tan Q, Liu L, Li D, Jiang C et al (2010) Role of neurocrine somatostatin on sphincter of Oddi contractility and intestinal ischemia reperfusion-induced acute pancreatitis in macaques. Neurogasteroenterol Motil 22(8):935–e240CrossRefGoogle Scholar
  391. 391.
    Stengel A, Taché Y (2009) Neuroendocrine control of the gut during stress: corticotropin-releasing factor signaling pathways in the spotlight. Annu Rev Physiol 71:219–239PubMedCentralCrossRefPubMedGoogle Scholar
  392. 392.
    Flemström G, Sjöblom M (2005) Epithelial cells and their neighbors. II. New perspectives on efferent signaling between brain, neuroendocrine cells, and gut epithelial cells. Am J Physiol Gastrointest Liver Physiol 289(3):G377–G380CrossRefPubMedPubMedCentralGoogle Scholar
  393. 393.
    Osman D, Buchon N, Chakrabarti S, Huang Y-T, Su W-C, Poidevin M et al (2012) Autocrine and paracrine unpaired signaling regulate intestinal stem cell maintenance and division. J Cell Sci 125:5944–5949CrossRefPubMedPubMedCentralGoogle Scholar
  394. 394.
    Lee B-C, Kim H-S, Shin T-H, Kang I, Lee JY, Kim J-J et al (2016) PGE2 maintains self-renewal of human adult stem cells via EP2-mediated autocrine signaling and its production is regulated by cell-to-cell contact. Sci Rep 6:26298PubMedCentralCrossRefPubMedGoogle Scholar
  395. 395.
    Kolterud Å, Grosse AS, Zacharias WJ, Walton KD, Kretovich KE, Madison B et al (2009) Paracrine Hedgehog signaling in stomach and intestine: new roles for Hedgehog in gastrointestinal patterning. Gastroenterology 137(2):618–628PubMedCentralCrossRefPubMedGoogle Scholar
  396. 396.
    Liñán-Rico A, Wunderlich JE, Grants IS, Frankel WL, Xue J, Williams KC et al (2013) Purinergic autocrine regulation of mechanosensitivity and serotonin release in a human EC model: ATP-gated P2X3 channels in EC are downregulated in ulcerative colitis. Inflamm Bowel Dis 19(11):2366–2379PubMedCentralCrossRefPubMedGoogle Scholar
  397. 397.
    Grumolato L, Aaronson SA (2013) Autocrine/paracrine. In: Maloy S, Hughes K (eds) Brenner’s encyclopedia of genetics, 2nd edn. Elsevier, San Diego, CA, USAGoogle Scholar
  398. 398.
    Osman D, Buchon N, Chakrabarti S, Huang YT, Su WC, Poidevin M et al (2012) Autocrine and paracrine unpaired signaling regulate intestinal stem cell maintenance and division. J Cell Sci 125(Pt 24):5944–5949CrossRefPubMedPubMedCentralGoogle Scholar
  399. 399.
    Galligan JJ (2008) Purinergic signaling in the gastrointestinal tract. Purinergic Signal 4(3):195–196PubMedCentralCrossRefGoogle Scholar
  400. 400.
    Roy S, Kornberg TB (2015) Paracrine signaling mediated at cell–cell contacts. BioEssays 37(1):25–33CrossRefPubMedGoogle Scholar
  401. 401.
    Krantis A (2000) GABA in the mammalian enteric nervous system. Physiology 15(6):284–290CrossRefGoogle Scholar
  402. 402.
    Anklesaria P, Teixidó J, Laiho M, Pierce JH, Greenberger JS, Massagué J (1990) Cell-cell adhesion mediated by binding of membrane-anchored transforming growth factor a to epidermal growth factor receptors promotes cell proliferation. PNAS 87:3289–3293PubMedCentralCrossRefPubMedGoogle Scholar
  403. 403.
    Massagué J (1990) Transforming growth factor-A. A model for membrane-anchored growth factors. J Biol Chem 265:21393–21396PubMedGoogle Scholar
  404. 404.
    Yaron A, Sprinzak D (2012) The cis side of juxtacrine signaling: a new role in the development of the nervous system. Trends Neurosci 35(4):230–239CrossRefPubMedGoogle Scholar
  405. 405.
    Ashton RS, Conway A, Pangarkar C, Bergen J, Lim KI, Shah P et al (2012) Astrocytes regulate adult hippocampal neurogenesis through ephrin-B signaling. Nat Neurosci 15(10):1399–1406PubMedCentralCrossRefPubMedGoogle Scholar
  406. 406.
    Lynch AC, Antony A, Dobbs BR, Frizelle FA (2001) Bowel dysfunction following spinal cord injury. Spinal Cord 39:193–203CrossRefPubMedGoogle Scholar
  407. 407.
    Sasselli V, Pachnis V, Burns AJ (2012) The enteric nervous system. Dev Biol 366(1):64–73CrossRefPubMedGoogle Scholar
  408. 408.
    Braak H, de Vos RA, Bohl J, Del Tredici K (2006) Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 396(1):67–72CrossRefPubMedGoogle Scholar
  409. 409.
    Burns AJ, Le Douarin NM (1998) The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system. Development 125:4335–4347PubMedPubMedCentralGoogle Scholar
  410. 410.
    Hara T, Hirasawa A, Ichimura A, Kimura I, Tsujimoto G (2011) Free fatty acid receptors FFAR1 and GPR120 as novel therapeutic targets for metabolic disorders. J Pharm Sci 100(9):3594–3601CrossRefPubMedGoogle Scholar
  411. 411.
    Ichimura A, Hirasawa A, Hara T, Tsujimoto G (2009) Free fatty acid receptors act as nutrient sensors to regulate energy homeostasis. Prostaglands Other Lipid Mediat 89(3–4):82–88CrossRefGoogle Scholar
  412. 412.
    Mohamed HA, Khaled DM, Mohamed HA (2014) Homology modeling and explicit membrane molecular dynamics simulation to delineate the mode of binding of thiazolidinediones into FFAR1 and the mechanism of receptor activation. Bioorg Med Chem Lett 24(22):5330–5336CrossRefGoogle Scholar
  413. 413.
    Thorens B, Mueckler M (2010) Glucose transporters in the 21st century. Am J Physiol Endocrinol Metab 298(2):E141–E145CrossRefPubMedGoogle Scholar
  414. 414.
    Mace OJ, Lister N, Morgan E, Shepherd E, Affleck J, Helliwell P et al (2009) An energy supply network of nutrient absorption coordinated by calcium and T1R taste receptors in rat small intestine. J Physiol 587:195–210PubMedCentralCrossRefPubMedGoogle Scholar
  415. 415.
    Li T, Holmstrom SR, Kir S, Umetani M, Schmidt DR, Kliewer SA, Mangelsdorf DJ (2011) The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling. Mol Endocrinol 25(6):1066–1071PubMedCentralCrossRefPubMedGoogle Scholar
  416. 416.
    Peng Y, Gillis-Smith S, Jin H, Tränkner D, Ryba NJP, Zuker CS (2015) Sweet and bitter taste in the brain of awake behaving animals. Nature 527:512–515PubMedCentralCrossRefPubMedGoogle Scholar
  417. 417.
    Oka Y, Butnaru M, von Buchholtz L, Ryba NJP, Zuker CS (2013) High salt recruits aversive taste pathways. Nature 494:472–475PubMedCentralCrossRefPubMedGoogle Scholar
  418. 418.
    Li F (2013) Taste perception: from the tongue to the testis. Mol Hum Reprod 19(6):349–360CrossRefPubMedGoogle Scholar
  419. 419.
    Greenfield JR, Chisholm DJ (2013) How sweet it is: intestinal sweet taste receptors in type 2 diabetes. Diabetes 62(10):3336–3337PubMedCentralCrossRefPubMedGoogle Scholar
  420. 420.
    Shaik FA, Singh N, Arakawa M, Duan K, Bhullar RP, Chelikani P (2016) Bitter taste receptors: extraoral roles in pathophysiology. Int J Biochem Cell Biol 77:197–204CrossRefPubMedGoogle Scholar
  421. 421.
    Christensen J, Rick GA (1987) Intrinsic nerves in the mammalian colon: confirmation of a plexus at the circular muscle-submucosal interface. J Auton Nerv Syst 21(2–3):223–231CrossRefPubMedGoogle Scholar
  422. 422.
    Fang S, Wu R, Christensen J (1993) Intramucosal nerve cells in human small intestine. J Auton Nerv Syst 44(2–3):129–136CrossRefPubMedGoogle Scholar
  423. 423.
    Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9:286–294CrossRefPubMedGoogle Scholar
  424. 424.
    Reed DE, Vanner S (2007) Mucosal stimulation activates secretomotor neurons via long myenteric pathways in guinea pig ileum. Am J Physiol Gastrointest Liver Physiol 292(2):G608–G614CrossRefPubMedGoogle Scholar
  425. 425.
    Nadorra R, Landing BH, Wells TR (1986) Intestinal plexuses in Crohn’s disease and ulcerative colitis in children: pathologic and microdissection studies. Pediatr Pathol 6(2–3):267–287CrossRefPubMedGoogle Scholar
  426. 426.
    Siemers PT, Dobbins WO 3rd (1974) The Meissner plexus in Crohn’s disease of the colon. Surg Gynecol Obstet 138(1):39–42PubMedGoogle Scholar
  427. 427.
    Santer RM, Baker DM (1988) Enteric neuron numbers and sizes in Auerbach’s plexus in the small and large intestine of adult and aged rats. J Auton Nerv Syst 25(1):59–67CrossRefPubMedGoogle Scholar
  428. 428.
    Eaker EY (1997) Neurofilament and intermediate filament immunoreactivity in human intestinal myenteric neurons. Digest Dis Sci 42(9):1926–1932CrossRefPubMedGoogle Scholar
  429. 429.
    Brehmer A, Rupprecht H, Neuhuber W (2010) Two submucosal nerve plexus in human intestines. Histochem Cell Biol 133(2):149–161CrossRefPubMedGoogle Scholar
  430. 430.
    Howard ER (2013) Joseph Lister: his contributions to early experimental physiology. Notes Rec R Soc Lond 67(3):191–198PubMedCentralCrossRefPubMedGoogle Scholar
  431. 431.
    Hoyle CHV, Burnstock G (1989) Neuronal populations in the submucous plexus of the human colon. J Anat 166:7–22PubMedCentralPubMedGoogle Scholar
  432. 432.
    Saffrey MJ, Hassall CJ, Allen TG, Burnstock G (1992) Ganglia within the gut, heart, urinary bladder, and airways: studies in tissue culture. Int Rev Cytol 136:93–144CrossRefPubMedGoogle Scholar
  433. 433.
    Goerg KJ, Roux M, Wanitschke R, Meyer zum Büschenfelde KH (1986) Significance of Meissner’s plexus for the secretory function of the colonic mucosa. Z Gastroenterol 24(3):70–8Google Scholar
  434. 434.
    Csendes A, Smok G, Braghetto I, González P, Henríquez A, Csendes P, Pizurno D (1992) Histological studies of Auerbach’s plexuses of the oesophagus, stomach, jejunum, and colon in patients with achalasia of the oesophagus: correlation with gastric acid secretion, presence of parietal cells and gastric emptying of solids. Gut 33(2):150–154PubMedCentralCrossRefPubMedGoogle Scholar
  435. 435.
    Dahm R (2010) From discovering to understanding. EMBO Rep 11(3):153–160PubMedCentralCrossRefPubMedGoogle Scholar
  436. 436.
    Inamura N, Kimura T, Tada S, Kurahashi T, Yanagida M, Yanagawa Y et al (2012) Intrinsic and extrinsic mechanisms control the termination of cortical interneuron migration. J Neurosci 32(17):6032–6042CrossRefPubMedGoogle Scholar
  437. 437.
    Costes LM, Boeckxstaens GE, de Jonge WJ, Cailotto C (2013) Neural networks in intestinal immunoregulation. Organogenesis 9(3):216–223PubMedCentralCrossRefPubMedGoogle Scholar
  438. 438.
    Mueller MH, Xue B, Glatzle J, Hahn J, Grundy D, Kreis ME (2009) Extrinsic afferent nerve sensitivity and enteric neurotransmission in murine jejunum in vitro. Am J Physiol Gastrointest Liver Physiol 297(4):G655–G662CrossRefPubMedGoogle Scholar
  439. 439.
    Uesaka T, Young HM, Pachnis V, Enomoto H (2016) Development of the intrinsic and extrinsic innervation of the gut. Dev Biol 417(2):158–167CrossRefPubMedGoogle Scholar
  440. 440.
    Benarroch EE (2014) Sympathetic system—overview. In: Aminoff MJ, Daroff RB (eds) Encyclopedia of the neurological sciences, 2nd edn. Elsevier, San DiegoGoogle Scholar
  441. 441.
    Costa M, Brookes SH, Zagorodnyuk V (2004) How many kinds of visceral afferents? Gut 53(2):ii1–4Google Scholar
  442. 442.
    Aldskogius H, Elfvin LG, Forsman CA (1986) Primary sensory afferents in the inferior mesenteric ganglion and related nerves of the guinea pig. An experimental study with anterogradely transported wheat germ agglutinin-horseradish peroxidase conjugate. J Auton Nerv Syst 15(2):179–190CrossRefPubMedGoogle Scholar
  443. 443.
    Sengupta JN (2009) Visceral pain: the neurophysiological mechanism. Handb Exp Pharmacol 194:31–74CrossRefGoogle Scholar
  444. 444.
    Bassotti G, Villanacci V, Fisogni S, Rossi E, Baronio P, Clerici C et al (2007) Enteric glial cells and their role in gastrointestinal motor abnormalities: Introducing the neuro-gliopathies. World J Gastroenterol 13(30):4035–4041PubMedCentralCrossRefPubMedGoogle Scholar
  445. 445.
    Mei F, Guo S, He YT, Zhu J, Zhou DS, Niu JQ et al (2009) Apoptosis of interstitial cells of Cajal, smooth muscle cells, and enteric neurons induced by intestinal ischemia and reperfusion injury in adult guinea pigs. Virchows Arch 454(4):401–409CrossRefPubMedGoogle Scholar
  446. 446.
    Wang XY, Sanders KM, Ward SM (1999) Intimate relationship between interstitial cells of cajal and enteric nerves in the guinea-pig small intestine. Cell Tissue Res 295(2):247–256CrossRefPubMedGoogle Scholar
  447. 447.
    Klein S, Seidler B, Kettenberger A, Sibaev A, Rohn M, Feil R et al (2013) Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nat Commun 4:1630CrossRefPubMedGoogle Scholar
  448. 448.
    Messerli B, Robinson L (2010) Neuromuscular junction disease or neuropathic disorder? Am J Phys Med Rehabil 89(10):862CrossRefPubMedGoogle Scholar
  449. 449.
    Wallace AS, Burns AJ (2005) Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract. Cell Tissue Res 319(3):367–382CrossRefPubMedGoogle Scholar
  450. 450.
    Ward SM, Sanders KM (2006) Involvement of intramuscular interstitial cells of Cajal in neuroeffector transmission in the gastrointestinal tract. J Physiol 576(Pt 3):675–682PubMedCentralCrossRefPubMedGoogle Scholar
  451. 451.
    Guo T, Li J, Li J, Kong D, Bi C, He Z et al (2017) Association between hyperpolarization-activated channel in interstitial cells of Cajal and gastrointestinal dysmotility induced by malignant ascites. Oncol Lett 13(3):1601–1608PubMedCentralCrossRefPubMedGoogle Scholar
  452. 452.
    Thiriet M (2014) Physiology and pathophysiology of arterial flow. In: Lanzer P (ed) Panvascular medicine. Springer, Heidelberg, GermanyGoogle Scholar
  453. 453.
    Krishnamurthy S, Schuffler MD (1987) Pathology of neuromuscular disorders of the small intestine and colon. Gastroenterology 93(3):610–639CrossRefPubMedGoogle Scholar
  454. 454.
    Gil V, Gallego D, Grasa L, Martín MT, Jiménez M (2010) Purinergic and nitrergic neuromuscular transmission mediates spontaneous neuronal activity in the rat colon. Am J Physiol Gastrointest Liver Physiol 299(1):G158–G169CrossRefPubMedGoogle Scholar
  455. 455.
    Wali FA (1985) Actions of polypeptides at the neuromuscular junction. Agents Actions 16(6):558–566CrossRefPubMedGoogle Scholar
  456. 456.
    Hansebout CR, Su C, Reddy K, Zhang D, Jiang C, Rathbone MP, Jiang S (2012) Enteric glia mediate neuronal outgrowth through release of neurotrophic factors. Neural Regen Res 7(28):2165–2175PubMedCentralPubMedGoogle Scholar
  457. 457.
    Korsak K, Dolatshad NF, Silva AT, Saffrey MJ (2012) Ageing of enteric neurons: oxidative stress, neurotrophic factors and antioxidant enzymes. Chem Cent J 6:80PubMedCentralCrossRefPubMedGoogle Scholar
  458. 458.
    Brookes SJ (1993) Neuronal nitric oxide in the gut. J Gastroenterol Hepatol 8(6):590–603CrossRefPubMedGoogle Scholar
  459. 459.
    Olsson C, Holmgren S (2000) PACAP and nitric oxide inhibit contractions in the proximal intestine of the atlantic cod, Gadus morhua. J Exp Biol 203(Pt 3):575–583PubMedGoogle Scholar
  460. 460.
    Grider JR, Murthy KS, Makhlouf GM (2004) Peptide neurotransmitters and smooth muscle in the gut. In: Martini L (ed) Encyclopedia of endocrine diseases. Academic Press, San DiegoGoogle Scholar
  461. 461.
    Wang YY, Park SY, Oh KH, Min Y, Lee Y-J, Lee S-Y, Sohn UD (2011) Characteristics of 5-hydroxytryptamine receptors involved in contraction of Feline Ileal longitudinal smooth muscle. Korean J Physiol Pharmacol 15(5):267–272PubMedCentralCrossRefPubMedGoogle Scholar
  462. 462.
    Gregersen H, Christensen J (2000) Gastrointestinal tone. Neurogastroenterol Motil 12(6):501–508CrossRefPubMedGoogle Scholar
  463. 463.
    Zhang CH, Wang P, Liu DH, Chen CP, Zhao W, Chen X et al (2016) The molecular basis of the genesis of basal tone in internal anal sphincter. Nat Commun 7:11358PubMedCentralCrossRefPubMedGoogle Scholar
  464. 464.
    Xue L, Camilleri M, Locke GR III, Schuurkes JAJ, Meulemans A, Coulie BJ et al (2006) Serotonergic modulation of murine fundic tone. Am J Physiol Gastrointest Liver Physiol 291(6):G1180–G1186CrossRefPubMedGoogle Scholar
  465. 465.
    Jimenez M (2017) Is the muscular tone of the internal anal sphincter a property of the syncytium? J Physiol 595(6):1853–1854PubMedCentralCrossRefPubMedGoogle Scholar
  466. 466.
    Gibbons SJ, Farrugia G (2004) The role of carbon monoxide in the gastrointestinal tract. J Physiol 556(Pt 2):325–336PubMedCentralCrossRefPubMedGoogle Scholar
  467. 467.
    Ward S (2000) Interstitial cells of Cajal in enteric neurotransmission. Gut 47(4):iv40–iv43CrossRefGoogle Scholar
  468. 468.
    Sanders KM, Salter AK, Hennig GW, Koh SD, Perrino BA, Ward SM, Baker SA (2014) Responses to enteric motor neurons in the gastric fundus of mice with reduced intramuscular interstitial cells of cajal. J Neurogastroenterol Motil 20(2):171–184PubMedCentralCrossRefPubMedGoogle Scholar
  469. 469.
    Park KS, Cho KB, Hwang IS, Park JH, Jang BI, Kim KO et al (2016) Characterization of smooth muscle, enteric nerve, interstitial cells of Cajal, and fibroblast-like cells in the gastric musculature of patients with diabetes mellitus. World J Gastroenterol 22(46):10131–10139PubMedCentralCrossRefPubMedGoogle Scholar
  470. 470.
    Beckett EA, Sanders KM, Ward SM (2017) Inhibitory responses mediated by vagal nerve stimulation are diminished in stomachs of mice with reduced intramuscular interstitial cells of Cajal. Sci Rep 7:44759PubMedCentralCrossRefPubMedGoogle Scholar
  471. 471.
    Song G, Satterfield MC, Kim J, Bazer FW, Spencer TE (2008) Gastrin-releasing peptide (GRP) in the ovine uterus: regulation by interferon tau and progesterone. Biol Reprod 79:376–386PubMedCentralCrossRefPubMedGoogle Scholar
  472. 472.
    Merali Z, McIntosh J, Anisman H (1999) Role of bombesin-related peptides in the control of food intake. Neuropeptides 33(5):376–386CrossRefPubMedGoogle Scholar
  473. 473.
    McDonald TJ, Jornvall H, Nilsson G, Vagne M, Ghatei M, Bloom SR, Mutt V (1979) Characterization of a gastrin releasing peptide from porcine non-antral gastric tissue. Biochem Biophys Res Commun 90:227–233CrossRefPubMedGoogle Scholar
  474. 474.
    McDonald TJ, Nilsson G, Vagne M, Ghatei M, Bloom SR, Mutt V (1978) A gastrin releasing peptide from the porcine nonantral gastric tissue. Gut 19:767–774PubMedCentralCrossRefPubMedGoogle Scholar
  475. 475.
    Ischia J, Patel O, Shulkes A, Baldwin GS (2009) Gastrin-releasing peptide: different forms, different functions. BioFactors 35(1):69–75CrossRefPubMedGoogle Scholar
  476. 476.
    Guan XM, Chen H, Dobbelaar PH, Dong Y, Fong TM, Gagen K et al (2010) Regulation of energy homeostasis by bombesin receptor subtype-3: selective receptor agonists for the treatment of obesity. Cell Metab 11(2):101–112CrossRefPubMedGoogle Scholar
  477. 477.
    Guan XM, Metzger JM, Yang L, Raustad KA, Wang SP, Spann SK et al (2011) Antiobesity effect of MK-5046, a novel bombesin receptor subtype-3 agonist. J Pharmacol Exp Ther 336(2):356–364CrossRefPubMedGoogle Scholar
  478. 478.
    Majumdar ID, Weber HC (2012) Biology and pharmacology of bombesin receptor subtype-3. Curr Opin Endocrinol Diabetes Obes 19(1):3–7CrossRefPubMedGoogle Scholar
  479. 479.
    Hildebrand P, Werth B, Beglinger C, Delco F, Jansen JBMJ, Lamers CBHW, Gyr K (1991) Human gastrin-releasing peptide: biological potency in humans. Regul Pept 36(3):423–433CrossRefPubMedGoogle Scholar
  480. 480.
    Naylor SL, Sakaguchi AY, Spindel E, Chin WW (1987) Human gastrin-releasing peptide gene is located on chromosome 18. Somat Cell Mol Genet 13(1):87–91CrossRefPubMedGoogle Scholar
  481. 481.
    Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science, 4th edn. McGraw-Hill, New YorkGoogle Scholar
  482. 482.
    McConalogue K, Furness JB (1994) Gastrointestinal neurotransmitters. Baillières Clin Endocrinol Metab 8(1):51–76CrossRefPubMedGoogle Scholar
  483. 483.
    Furness JB, Callaghan BP, Rivera LR, Cho H-J (2014) Microbial endocrinology: the microbiota-gut-brain axis in health and disease. In: Lyte M, Cryan JF (eds) The enteric nervous system and gastrointestinal innervation: integrated local and central control. Springer, New YorkGoogle Scholar
  484. 484.
    Corthay J, Dunant Y, Eder L, Loctin F (1985) Incorporation of acetate into acetylcholine, acetylcarnitine, and amino acids in the Torpedo electric organ. J Neurochem 45(6):1809–1819CrossRefPubMedGoogle Scholar
  485. 485.
    Albuquerque EX, Pereira EFR, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89(1):73–120PubMedCentralCrossRefPubMedGoogle Scholar
  486. 486.
    Lindstrom JM (2008) Acetylcholine receptor structure. In: Myasthenia gravis and related disorders, part of the series current clinical neurology. Humana Press, New YorkGoogle Scholar
  487. 487.
    Lindstrom J (1997) Nicotinic acetylcholine receptors in health and disease. Mol Neurobiol 15(2):193–222CrossRefPubMedGoogle Scholar
  488. 488.
    Fambrough DM (1979) Control of acetylcholine receptors in skeletal muscle. Physiol Rev 59(1):165–227CrossRefPubMedGoogle Scholar
  489. 489.
    Zwart R, Vijverberg HP (1998) Four pharmacologically distinct subtypes of alpha4beta2 nicotinic acetylcholine receptor expressed in Xenopus laevis oocytes. Mol Pharmacol 54(6):1124–1131CrossRefPubMedGoogle Scholar
  490. 490.
    Zoli M, Léna C, Picciotto MR, Changeux JP (1998) Identification of four classes of brain nicotinic receptors using beta2 mutant mice. J Neurosci 18(12):4461–4472CrossRefPubMedGoogle Scholar
  491. 491.
    Itier V, Bertrand D (2001) Neuronal nicotinic receptors: from protein structure to function. FEBS Lett 504(3):118–125CrossRefPubMedGoogle Scholar
  492. 492.
    Giniatullin R, Nistri A, Yakel JL (2005) In muscle, the acetylcholine ligand binds to two regions, one region is between the alpha and delta subunits and the other, between the alpha and gamma subunits. Desensitisation of nicotinic ACh receptors: shaping cholinergic signaling. Trends Neurosci 28(7):371–378CrossRefPubMedGoogle Scholar
  493. 493.
    Nobel Lectures (1965) Physiology or medicine 1922–1941, Elsevier Publishing Company, AmsterdamGoogle Scholar
  494. 494.
    Iino S, Nojyo Y (2006) Muscarinic M(2) acetylcholine receptor distribution in the guinea-pig gastrointestinal tract. Neuroscience 138(2):549–559CrossRefPubMedGoogle Scholar
  495. 495.
    Schneider DA, Perrone M, Galligan JJ (2000) Nicotinic acetylcholine receptors at sites of neurotransmitter release to the guinea pig intestinal circular muscle. J Pharmacol Exp Ther 294(1):363–369PubMedGoogle Scholar
  496. 496.
    Unno T, Matsuyama H, Sakamoto T, Uchiyama M, Izumi Y, Okamoto H, Yamada M, Wess J, Komori S (2005) M2 and M3 muscarinic receptor-mediated contractions in longitudinal smooth muscle of the ileum studied with receptor knockout mice. Br J Pharmacol 146(1):98–108PubMedCentralCrossRefPubMedGoogle Scholar
  497. 497.
    Feduccia AA, Chatterjee S, Bartlett SE (2012) Neuronal nicotinic acetylcholine receptors: neuroplastic changes underlying alcohol and nicotine addictions. Front Mol Neurosci 5:83PubMedCentralCrossRefPubMedGoogle Scholar
  498. 498.
    Tansey EM (2006) Henry Dale and the discovery of acetylcholine. C R Biol 329(5–6):419–425CrossRefPubMedGoogle Scholar
  499. 499.
    Garza A, Huang LZ, Son J-H, Winzer-Serhan UH (2009) Expression of nicotinic acetylcholine receptors and subunit messenger RNAs in the enteric nervous system of the neonatal rat. Neuroscience 158(4):1521–1529CrossRefPubMedGoogle Scholar
  500. 500.
    Carignano C, Pablo EB, Spitzmaul G (2016) Analysis of neuronal nicotinic acetylcholine receptor α4β2 activation at the single-channel level. BBA Biomembranes 1858(9):1964–1973CrossRefPubMedGoogle Scholar
  501. 501.
    McKay BE, Placzek AN, Dani JA (2007) Regulation of synaptic transmission and plasticity by neuronal nicotinic acetylcholine receptors. Biochem Pharmacol 74(8):1120–1133PubMedCentralCrossRefPubMedGoogle Scholar
  502. 502.
    Ishii M, Kurachi Y (2006) Muscarinic acetylcholine receptors. Curr Pharm Des 12(28):3573–3581CrossRefPubMedGoogle Scholar
  503. 503.
    Heilbronn E, Bartfai T (1978) Muscarinic acetylcholine receptor. Prog Neurobiol 11(3–4):171–188CrossRefPubMedGoogle Scholar
  504. 504.
    Alexander SP, Kelly E, Marrion NV, Peters JA, Faccenda E, Harding SD et al (2017) The concise guide to pharmacology 2017/18: overview. Br J Pharmacol 174(1):S1–S16PubMedCentralCrossRefPubMedGoogle Scholar
  505. 505.
    Noronha-Blob L, Lowe VC, Hanson RC, U’Prichard DC (1987) Heterogeneity of muscarinic receptors coupled to phosphoinositide breakdown in guinea pig brain and peripheral tissues. Life Sci 41(8):967–975CrossRefPubMedGoogle Scholar
  506. 506.
    Brown DA (2013) The other (muscarinic) acetylcholine receptors in sympathetic ganglia: actions and mechanisms. Neurophysiology 45(1):60–66CrossRefGoogle Scholar
  507. 507.
    Sorimachi M, Nishimura S (1982) Mechanism of choline-induced secretion of catecholamines from the cat adrenal medulla: involvement of nicotinic receptor. Jpn J Physiol 32(4):541–551CrossRefPubMedGoogle Scholar
  508. 508.
    Sage HJ, Smith WJ, Kirshner N (1967) Mechanism of secretion from the adrenal medulla. I. A microquantitative immunologic assay for bovine adrenal catecholamine storage vesicle protein and its application to studies of the secretory process. Mol Pharmacol 3(1):81–89PubMedGoogle Scholar
  509. 509.
    Soll AH, Walsh JH (1979) Regulation of gastric acid secretion. Annu Rev Physiol 41:35–53CrossRefPubMedGoogle Scholar
  510. 510.
    Malomouzh AI, Nikol’skii EE (2007) Non-quantal secretion of acetylcholine from motor nerve endings: Molecular mechanisms, physiological role, and regulation. Neurophysiology 39(4):307–317CrossRefGoogle Scholar
  511. 511.
    Bogatcheva PO, Ezhova EV, Balezina OP (2010) Mechanism of inhibition of acetylcholine secretion in newly formed mouse synapses involving Ca2+-dependent kinases and voltage-gated K+-channels. Bull Exp Biol Med 149(2):170–173CrossRefPubMedPubMedCentralGoogle Scholar
  512. 512.
    Eglen RM, Reddy H, Watson N, Challiss RA (1994) Muscarinic acetylcholine receptor subtypes in smooth muscle. Trends Pharmacol Sci 15(4):114–119CrossRefPubMedPubMedCentralGoogle Scholar
  513. 513.
    Nürnberg B (2000) Pertussis toxin as a pharmacological tool. bacterial protein toxins. Handb Exp Pharmacol 145:187–206Google Scholar
  514. 514.
    Carbonetti NH (2010) Pertussis toxin and adenylate cyclase toxin: key virulence factors of Bordetella pertussis and cell biology tools. Future Microbiol 5:455–469PubMedCentralCrossRefPubMedGoogle Scholar
  515. 515.
    Lee HY, Kim SD, Shim JW, Kim HJ, Yun J, Baek S-H et al (2010) A pertussis toxin sensitive G-protein-independent pathway is involved in serum amyloid A-induced formyl peptide receptor 2-mediated CCL2 production. Exp Mol Med 42:302–309PubMedCentralCrossRefPubMedGoogle Scholar
  516. 516.
    Leaney JL, Tinker A (2000) The role of members of the pertussis toxin-sensitive family of G proteins in coupling receptors to the activation of the G protein-gated inwardly rectifying potassium channel. Proc Natl Acad Sci U S A 97(10):5651–5656PubMedCentralCrossRefPubMedGoogle Scholar
  517. 517.
    Berizzi A, Gentry PR, Rueda P, den Hoedt S, Sexton PM, Langmead CJ, Christopoulos A (2016) Molecular mechanisms of action of m5 muscarinic acetylcholine receptor allosteric modulators. Mol Pharmacol 116:104182Google Scholar
  518. 518.
    Wang SZ, Lee SY, Zhu SZ, el-Fakahany EE (1996) Differential coupling of m1, m3, and m5 muscarinic receptors to activation of neuronal nitric oxide synthase. Pharmacology 53(5):271–80CrossRefPubMedGoogle Scholar
  519. 519.
    Lai J, Waite SL, Bloom JW, Yamamura HI, Roeske WR (1991) The m2 muscarinic acetylcholine receptors are coupled to multiple signaling pathways via pertussis toxin-sensitive guanine nucleotide regulatory proteins. J Pharmacol Exp Ther 258(3):938–944PubMedGoogle Scholar
  520. 520.
    Lechleiter J, Peralta E, Clapham D (1989) Diverse functions of muscarinic acetylcholine receptor subtypes. Trends Pharmacol Sci Suppl 34–38Google Scholar
  521. 521.
    Vorobiov D, Kanti AB, Keren-Raifman T, Barzilai R, Dascal N (2000) Coupling of the muscarinic m2 receptor to g protein-activated K+ channels via Gαz and a receptor-Gαz fusion protein: fusion between the receptor and Gα2 eliminates catalytic (collision) coupling. J Biol Chem 275:4166–4170CrossRefPubMedGoogle Scholar
  522. 522.
    Ostrom RS, Ehlert FJ (1998) M2 muscarinic receptors inhibit forskolin—but not isoproterenol-mediated relaxation in bovine tracheal smooth muscle. J Pharmacol Exp Ther 286(1):234–242PubMedGoogle Scholar
  523. 523.
    Ostrom RS, Ehlert FJ (1999) Comparison of functional antagonism between isoproterenol and M2 muscarinic receptors in guinea pig ileum and trachea. J Pharmacol Exp Ther 288(3):969–976PubMedGoogle Scholar
  524. 524.
    Bolton TB, Lim SP (1991) Action of acetylcholine on smooth muscle. Z Kardiol 80(7):73–77PubMedGoogle Scholar
  525. 525.
    Morel JL, Macrez N, Mironneau J (1997) Specific Gq protein involvement in muscarinic M3 receptor-induced phosphatidylinositol hydrolysis and Ca2+ release in mouse duodenal myocytes. Br J Pharmacol 121:451–458PubMedCentralCrossRefPubMedGoogle Scholar
  526. 526.
    Guo M-L, Mao L-M, Wang JQ (2010) Modulation of M4 muscarinic acetylcholine receptors by interacting proteins. Neurosci Bull 26(6):469–473PubMedCentralCrossRefPubMedGoogle Scholar
  527. 527.
    Liao CF, Schilling WP, Birnbaumer M, Birnbaumer L (1990) Cellular responses to stimulation of the M5 muscarinic acetylcholine receptor as seen in murine L cells. J Biol Chem 265:11273–11284PubMedGoogle Scholar
  528. 528.
    Reever CM, Ferrari-DiLeo G, Flynn DD (1997) The M5 (m5) receptor subtype: fact or fiction? Life Sci 60(13–14):1105–1112CrossRefPubMedGoogle Scholar
  529. 529.
    Branch A, Rafacz J, Boudreaux L (2011) Prolonged neuromuscular block in a 74-year-old patient. AANA J 79(4):317–321Google Scholar
  530. 530.
    Devi KL, Yellamma K (2013) The stimulatory effect of zinc, pyridoxine and methoprene on cholinergic system in the silkworm, Bombyx mori (L). J Entomol Zool Stud 1(6):74–84Google Scholar
  531. 531.
    Cash F, Vernon SW, Phelan P, Goodchild J, Baines RA (2016) Central cholinergic synaptic vesicle loading obeys the set-point model in Drosophila. J Neurophysiol 115(2):843–850CrossRefPubMedPubMedCentralGoogle Scholar
  532. 532.
    Liu Y, Edwards RH (1997) Differential localization of vesicular acetylcholine and monoamine transporters in PC12 cells but not CHO cells. J Cell Biol 139(4):907–916PubMedCentralCrossRefPubMedGoogle Scholar
  533. 533.
    Eiden LE, Schäfer MKH, Weihe E, Schütz B (2004) The vesicular amine transporter family (SLC18): amine/proton antiporters required for vesicular accumulation and regulated exocytotic secretion of monoamines and acetylcholine. Pflugers Arch 447(5):636–640CrossRefPubMedPubMedCentralGoogle Scholar
  534. 534.
    Prado VF, Roy A, Kolisnyk B, Gros R, Prado MAM (2013) Regulation of cholinergic activity by the vesicular acetylcholine transporter. Biochem J 450(2):265–274CrossRefPubMedPubMedCentralGoogle Scholar
  535. 535.
    Langen P, Hucho F (2008) Karl Lohmann and the discovery of ATP. Angew Chem Int Ed Engl 47(10):1824–1827CrossRefPubMedPubMedCentralGoogle Scholar
  536. 536.
    Prebble JN (2010) The discovery of oxidative phosphorylation: a conceptual off-shoot from the study of glycolysis. Stud Hist Philos Biol Biomed Sci 41(3):253–262CrossRefPubMedPubMedCentralGoogle Scholar
  537. 537.
    Lipmann F (1981) The ATP-phosphate cycle. Curr Top Cell Regul 18:301–311CrossRefPubMedPubMedCentralGoogle Scholar
  538. 538.
    Szent-Györgyi AG (2004) The early history of the biochemistry of muscle contraction. J Gen Physiol 123(6):631–641PubMedCentralCrossRefPubMedGoogle Scholar
  539. 539.
    Lohmann K (1929) Über die pyrophosphatfraktion im muskel. Naturwissenschaften 17(31):624–625Google Scholar
  540. 540.
    Lipmann F (1941) Metabolic generation and utilization of phosphate bond energy. Adv Enzymol 1:99–162Google Scholar
  541. 541.
    North RA, Verkhratsky A (2006) Purinergic transmission in the central nervous system. Pflügers Archiv 452(5):479–485CrossRefPubMedPubMedCentralGoogle Scholar
  542. 542.
    Fiske CH, SubbaRow Y (1929) Phosphorous compounds of muscle and liver. Science 70:381–382CrossRefPubMedPubMedCentralGoogle Scholar
  543. 543.
    Meier T, Faraldo-Gomez J, Börsch B (2011) ATP synthase—a paradigmatic molecular machine. In: Frank J (ed) Molecular machines in biology. Cambridge University Press, CambridgeGoogle Scholar
  544. 544.
    Paton WDM (1963) Cholinergic transmission and acetylcholine output. Can J Biochem Physiol 41:2637–2653CrossRefPubMedPubMedCentralGoogle Scholar
  545. 545.
    Paton WDM, Vane JR (1963) An analysis of the responses of the isolated stomach to electrical stimulation and to drugs. J Physiol (Lond) 165:10–46CrossRefGoogle Scholar
  546. 546.
    Keates F (2013) Papers of Sir John Robert Vane (1927–2004). Notes Rec R Soc Lond 67(2):179–183PubMedCentralCrossRefGoogle Scholar
  547. 547.
    Tubbs RS, Linganna S, Loukas M (2007) Jacobus Sylvius (1478-1555): physician, teacher, and anatomist. Clin Anat 20(8):868–870CrossRefPubMedPubMedCentralGoogle Scholar
  548. 548.
    Bylebyl JJ (1982) Boyle and Harvey on the valves in the veins. Bull Hist Med 56(3):351–367PubMedPubMedCentralGoogle Scholar
  549. 549.
    Aird WC (2011) Discovery of the cardiovascular system: from Galen to William Harvey. J Thromb Haemost 9(1):118–129CrossRefPubMedPubMedCentralGoogle Scholar
  550. 550.
    Kresge N, Simoni RD, Hill RL (2006) The prostaglandins, Sune Bergström and Bengt Samuelsson. J Biol Chem 281:e9CrossRefGoogle Scholar
  551. 551.
    Harding A (2004) Sir John Robert Vane. Lancet 364(9451):2090CrossRefPubMedPubMedCentralGoogle Scholar
  552. 552.
    Oates JA (1982) The 1982 nobel prize in physiology or medicine. Science 218(4574):765–768CrossRefPubMedPubMedCentralGoogle Scholar
  553. 553.
    Brading AF (2006) Smooth muscle research: from Edith Bülbring onwards. Trends Pharmacol Sci 27(3):158–165CrossRefPubMedPubMedCentralGoogle Scholar
  554. 554.
    Bolton TB, Brading AF (1992) Edith Bülbring. 27 December 1903—5 July 1990. Biogr Mem Fellows R Soc 38:68–95Google Scholar
  555. 555.
    Born GV (1985) Edith Bülbring. Experientia 41(7):839–840CrossRefPubMedPubMedCentralGoogle Scholar
  556. 556.
    King BF (2001) Reflections on the purinergic hypothesis: the Burnstock Festschrift in the millennial year. Auton Neurosci 87(2–3):173–177CrossRefPubMedPubMedCentralGoogle Scholar
  557. 557.
    Burnstock G (2011) Purinergic signaling in the gastrointestinal tract. World J Gastrointest Pathophysiol 2(2):31–34PubMedCentralCrossRefPubMedGoogle Scholar
  558. 558.
    Burnstock G (2009) Purinergic cotransmission. Experiment Physiol 94(1):20–24CrossRefGoogle Scholar
  559. 559.
    Burnstock G (2014) Purinergic signalling: from discovery to current developments. Exp Physiol 99(1):16–34CrossRefPubMedPubMedCentralGoogle Scholar
  560. 560.
    Burnstock G (2004) Geoffrey Burnstock: most highly cited scientist. Mol Interv 4(4):192–195CrossRefPubMedPubMedCentralGoogle Scholar
  561. 561.
    Burnstock G (1996) P2 purinoceptors: historical perspective and classification. Ciba Found Symp 198:1–34PubMedPubMedCentralGoogle Scholar
  562. 562.
    Edwards FA, Gibb AJ (1993) ATP - a fast neurotransmitter. FEBS Lett 325(1–2):86–89CrossRefPubMedPubMedCentralGoogle Scholar
  563. 563.
    Zimmermann H (2008) ATP and acetylcholine, equal brethren. Neurochem Int 52(4–5):634–648CrossRefPubMedPubMedCentralGoogle Scholar
  564. 564.
    Oury C, Lecut C, Hego A, Wéra O, Delierneux C (2015) Purinergic control of inflammation and thrombosis: role of P2X1 receptors. Comput Struct Biotechnol J 13:106–110CrossRefPubMedPubMedCentralGoogle Scholar
  565. 565.
    Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483CrossRefPubMedPubMedCentralGoogle Scholar
  566. 566.
    Verkhratsky A, Krishtal O (2009) Adenosine triphosphate (ATP) as a neurotransmitter. In: Squire LR (ed) Encyclopedia of neuroscience. Academic Press, San Diego, CA, USAGoogle Scholar
  567. 567.
    Kennedy C (2015) ATP as a cotransmitter in the autonomic nervous system. Auton Neurosci 191:2–15CrossRefPubMedPubMedCentralGoogle Scholar
  568. 568.
    Rummery NM, Brock JA, Pakdeechote P, Ralevic V, Dunn WR (2007) ATP is the predominant sympathetic neurotransmitter in rat mesenteric arteries at high pressure. J Physiol 582(2):745–754PubMedCentralCrossRefPubMedGoogle Scholar
  569. 569.
    Gershon MD, Tack J (2007) The serotonin signaling system: from basic understanding to drug development for functional gi disorders. Gastroenterology 132(1):397–414CrossRefPubMedPubMedCentralGoogle Scholar
  570. 570.
    Kim D-Y, Camilleri M (2000) Serotonin: a mediator of the brain–gut connection. Am J Gastroenterol 95:2698–2709PubMedPubMedCentralGoogle Scholar
  571. 571.
    Li Z, Chalazonitis A, Huang Y-Y, Mann JJ, Gross KM, Yang QM et al (2011) Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons. J Neurosci 31(24):8998–9009PubMedCentralCrossRefPubMedGoogle Scholar
  572. 572.
    Frick A, Åhs F, Engman J, Jonasson M, Alaie I, Björkstrand J et al (2015) Serotonin synthesis and reuptake in social anxiety disorder: a positron emission tomography study. JAMA Psychiatry 72(8):794–802CrossRefPubMedPubMedCentralGoogle Scholar
  573. 573.
    Gershon MD (2013) 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20(1):14–21PubMedCentralCrossRefPubMedGoogle Scholar
  574. 574.
    Gershon MD (2012) Serotonin is a sword and a shield of the bowel: serotonin plays offense and defense. Trans Am Clin Climatol Assoc 123:268–280PubMedCentralPubMedGoogle Scholar
  575. 575.
    Mawe GM, Hoffman JM (2013) Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol 10:473–486PubMedCentralCrossRefPubMedGoogle Scholar
  576. 576.
    Ruddell RG, Mann DA, Ramm GA (2008) The function of serotonin within the liver. J Hepatol 48(4):666–675CrossRefPubMedPubMedCentralGoogle Scholar
  577. 577.
    Erspamer V (1937) Experimental research on the biological significance of enterochromaffin cells. Arch Fisiol 37:156–169Google Scholar
  578. 578.
    Erspamer V (1953) Concerning the 5-hydroxytryptamine (enteramine) content of the gastrointestinal tract lining. Naturwissenschaften 40:318–319CrossRefGoogle Scholar
  579. 579.
    Page IH (1976) The discovery of serotonin. Perspect Biol Med 20:1–8CrossRefPubMedPubMedCentralGoogle Scholar
  580. 580.
    Bülbring E, Lin RCY, Schofield G (1958) An investigation of the peristaltic reflex in relation to anatomical observations. Q J Exp Physiol 43:26–37CrossRefPubMedPubMedCentralGoogle Scholar
  581. 581.
    Bülbring E, Lin RCY (1958) The effect of intraluminal application of 5-hydroxytryptamine and 5-hydroxytryptophan on peristalsis, the local production of 5-hydroxytryptamine and its release in relation to intraluminal pressure and propulsive activity. J Physiol (Lond) 140:381–407Google Scholar
  582. 582.
    Bülbring E, Crema A (1958) Observations concerning the action of 5-hydroxytryptamine on the peristaltic reflex. Br J Pharmacol 13:444–457Google Scholar
  583. 583.
    Grundy D (2006) Serotonin and sensory signalling from the gastrointestinal lumen. J Physiol 575(1):1–2PubMedCentralCrossRefPubMedGoogle Scholar
  584. 584.
    Jennifer H, Mariana P, Karyn B (2017) Serotonin syndrome from 5-hydroxytryptophan supplement ingestion in a 9-month-old labrador retriever. J Med Toxicol 13(2):183–186PubMedCentralCrossRefPubMedGoogle Scholar
  585. 585.
    Turner EH, Loftis JM, Blackwell AD (2006) Serotonin a la carte: supplementation with the serotonin precursor 5-hydroxytryptophan. Pharmacol Ther 109(3):325–338CrossRefPubMedPubMedCentralGoogle Scholar
  586. 586.
    Del Pino J, Moyano P, Ruiz M, Anadón MJ, Díaz MJ, García JM, Labajo-González E, Frejo MT (2017) Amitraz changes NE, DA and 5-HT biosynthesis and metabolism mediated by alterations in estradiol content in CNS of male rats. Chemosphere 181:518–529CrossRefPubMedPubMedCentralGoogle Scholar
  587. 587.
    Nakamura K, Hasegawa H (2009) Roles of 5-HTP, a precursor of serotonin. Int J Tryptophan Res 2:37–43PubMedCentralCrossRefPubMedGoogle Scholar
  588. 588.
    Kim HS (2009) 5-Hydroxytryptamine4 receptor agonists and colonic motility. J Smooth Muscle Res 45(1):25–29CrossRefPubMedPubMedCentralGoogle Scholar
  589. 589.
    Tuladhar BR, Kaisar M, Naylor RJ (1997) Evidence for a 5-HT3 receptor involvement in the facilitation of peristalsis on mucosal application of 5-HT in the guinea pig isolated ileum. Br J Pharmacol 122(6):1174–1178PubMedCentralCrossRefPubMedGoogle Scholar
  590. 590.
    Tuladhar BR, Costall B, Naylor RJ (1996) 5-HT3 and 5-HT4 receptor-mediated facilitation of the emptying phase of the peristaltic reflex in the marmoset isolated ileum. Br J Pharmacol 117(8):1679–1684PubMedCentralCrossRefPubMedGoogle Scholar
  591. 591.
    Spencer NJ (2015) Constitutively active 5-HT receptors: an explanation of how 5-HT antagonists inhibit gut motility in species where 5-HT is not an enteric neurotransmitter? Front Cell Neurosci 9:487PubMedCentralCrossRefPubMedGoogle Scholar
  592. 592.
    Tuladhar BR, Ge L, Naylor RJ (2003) 5-HT7 receptors mediate the inhibitory effect of 5-HT on peristalsis in the isolated guinea-pig ileum. Br J Pharmacol 138:1210–1214PubMedCentralCrossRefPubMedGoogle Scholar
  593. 593.
    Kindt S, Tack JB (2007) Mechanisms of serotonergic agents for treatment of gastrointestinal motility and functional bowel disorders. Neurogastroenterol Motil 19(2):32–39CrossRefPubMedPubMedCentralGoogle Scholar
  594. 594.
    Gaman A, Bucur MC, Kuo B (2009) Therapeutic advances in functional gastrointestinal disease: irritable bowel syndrome. Therap Adv Gastroenterol 2(3):169–181PubMedCentralCrossRefPubMedGoogle Scholar
  595. 595.
    Manocha M, Khan WI (2012) Serotonin and GI disorders: an update on clinical and experimental studies. Clin Transl Gastroenterol 3(4):e13PubMedCentralCrossRefPubMedGoogle Scholar
  596. 596.
    Karantanos T, Markoutsaki T, Gazouli M, Anagnou NP, Karamanolis DG (2010) Current insights into the pathophysiology of Irritable Bowel Syndrome. Gut Pathogens 2:3PubMedCentralCrossRefPubMedGoogle Scholar
  597. 597.
    Jones MP, Dilley JB, Drossman D, Crowell MD (2006) Brain–gut connections in functional GI disorders: anatomic and physiologic relationships. Neurogastroenterol Motil 18(2):91–103CrossRefPubMedPubMedCentralGoogle Scholar
  598. 598.
    Böttner M, Barrenschee M, Hellwig I, Harde J, Egberts JH, Becker T et al (2013) The enteric serotonergic system is altered in patients with diverticular disease. Gut 62(12):1753–1762CrossRefPubMedPubMedCentralGoogle Scholar
  599. 599.
    Dong Y, Yang C, Wang Z, Qin Z, Cao J, Chen Y (2016) The injury of serotonin on intestinal epithelium cell renewal of weaned diarrhoea mice. Eur J Histochem 60(4):2689PubMedCentralCrossRefPubMedGoogle Scholar
  600. 600.
    Willets JM, Taylor AH, Shaw H, Konje JC, Challiss RA (2008) Selective regulation of H1 histamine receptor signaling by G protein-coupled receptor kinase 2 in uterine smooth muscle cells. Mol Endocrinol 22(8):1893–1907PubMedCentralCrossRefPubMedGoogle Scholar
  601. 601.
    Tsunada S, Fujimoto K, Gotoh Y, Sakai T, Kang M, Sakata T et al (1994) Role of histamine receptors in intestinal repair after ischemia-reperfusion in rats. Gastroenterology 107(5):1297–1304CrossRefPubMedGoogle Scholar
  602. 602.
    Smolinska S, Jutel M, Crameri R, O’Mahony L (2014) Histamine and gut mucosal immune regulation. Allergy 69(3):273–281CrossRefPubMedGoogle Scholar
  603. 603.
    Schwittlick U, Junginger J, Hahn K, Habierski A, Hewicker-Trautwein M (2017) Histamine receptor expression in the gastrointestinal tract of dogs. Anat Histol Embryol 46(1):33–42CrossRefPubMedGoogle Scholar
  604. 604.
    Konturek SJ (2003) Gastric secretion—from Pavlov’s nervism to Popielski’s histamine as direct secretagogue of oxyntic glands. J Physiol Pharmacol 54(S3):43–68PubMedCentralPubMedGoogle Scholar
  605. 605.
    Grandi D, Shenton FC, Chazot PL, Morini G (2008) Immunolocalization of histamine H3 receptors on endocrine cells in the rat gastrointestinal tract. Histol Histopathol 23(7):789–798PubMedGoogle Scholar
  606. 606.
    Henriksen JH, de Muckadell OB (2000) Secretin, its discovery, and the introduction of the hormone concept. Scand J Clin Lab Invest 60(6):463–472PubMedCentralCrossRefPubMedGoogle Scholar
  607. 607.
    Dale HH, Laidlaw PP (1910) The physiological action of β-iminazolylethylamine. J Physiol (Lond) 41(5):318–344CrossRefGoogle Scholar
  608. 608.
    Masini E, Mannaioni PF (1994) Effect of histamine on smooth muscle. Handb Exp Pharmacol 111:193–225CrossRefGoogle Scholar
  609. 609.
    Barger G, Dale HH (1911) Beta-Iminazolylethylamine a depressor constituent of intestinal mucosa. J Physiol 41(6):499–503PubMedCentralCrossRefPubMedGoogle Scholar
  610. 610.
    Parsons ME, Ganellin CR (2006) Histamine and its receptors. Br J Pharmacol 147(1):S127–S135PubMedCentralPubMedGoogle Scholar
  611. 611.
    Criado PR, Criado RF, Maruta CW, Machado Filho Cd (2010) Histamine, histamine receptors and antihistamines: new concepts. An Bras Dermatol 85(2):195–210CrossRefPubMedGoogle Scholar
  612. 612.
    Beermann S, Bernhardt G, Seifert R, Buschauer A, Neumann D (2015) Histamine H1- and H4-receptor signaling cooperatively regulate MAPK activation. Biochem Pharmacol 98(3):432–439CrossRefPubMedGoogle Scholar
  613. 613.
    Lim HD, van Rijn RM, Ling P, Bakker RA, Thurmond RL, Leurs R (2005) Evaluation of histamine H1-, H2-, and H3-receptor ligands at the human histamine H4 receptor: identification of 4-methylhistamine as the first potent and selective H4 receptor agonist. J Pharmacol Exp Ther 314(3):1310–1321CrossRefPubMedGoogle Scholar
  614. 614.
    Hegyesi H, Darvas Z, Thurmond RL, Falus A (2005) Histamine receptors and signaling. In: Damjanovich S (ed) Biophysical aspects of transmembrane signaling. Springer, HeidelbergGoogle Scholar
  615. 615.
    Hill SJ (1990) Distribution, properties, and functional characteristics of three classes of histamine receptor. Pharmacol Rev 42(1):45–83PubMedGoogle Scholar
  616. 616.
    Panula P, Chazot PL, Cowart M, Gutzmer R, Leurs R, Liu WL et al (2015) International union of basic and clinical pharmacology. XCVIII. Histamine receptors. Pharmacol Rev 67(3):601–655PubMedGoogle Scholar
  617. 617.
    Delvalle J, Wang L, Gantz I, Yamada T (1992) Characterization of H2 histamine receptor: linkage to both adenylate cyclase and [Ca2+]i signaling systems. Am J Physiol Gastrointest Liver Physiol 263(6):G967–G972CrossRefGoogle Scholar
  618. 618.
    Lehmann F, Hildebrand P, Beglinger C (2003) New molecular targets for treatment of peptic ulcer disease. Drugs 63(17):1785–1797PubMedCentralCrossRefPubMedGoogle Scholar
  619. 619.
    Carlos D, Spiller F, Souto FO, Trevelin SC, Borges VF, de Freitas A et al (2013) Histamine H2 receptor signaling in the pathogenesis of sepsis: studies in a murine diabetes model. J Immunol 191(3):1373–1382CrossRefPubMedGoogle Scholar
  620. 620.
    Church DS, Church MK (2011) Pharmacology of antihistamines. World Allergy Organ J 4(3):S22–S27PubMedCentralCrossRefPubMedGoogle Scholar
  621. 621.
    Beghdadi W, Porcherie A, Schneider BS, Morisset S, Dubayle D, Peronet R et al (2009) Histamine H(3) receptor-mediated signaling protects mice from cerebral malaria. PLoS ONE 4(6):e6004PubMedCentralCrossRefPubMedGoogle Scholar
  622. 622.
    Leurs R, Smit MJ, Timmerman H (1995) Molecular pharmacological aspects of histamine receptors. Pharmacol Ther 66(3):413–463CrossRefPubMedGoogle Scholar
  623. 623.
    Zampeli E, Tiligada E (2009) The role of histamine H4 receptor in immune and inflammatory disorders. Br J Pharmacol 157(1):24–33PubMedCentralCrossRefPubMedGoogle Scholar
  624. 624.
    Walter M, Kottke T, Stark H (2011) The histamine H4 receptor: targeting inflammatory disorders. Eur J Pharmacol 668(1–2):1–5CrossRefPubMedGoogle Scholar
  625. 625.
    Nakamura T, Itadani H, Hidaka Y, Ohta M, Tanaka K (2000) Molecular cloning and characterization of a new human histamine receptor, HH4R. Biochem Biophys Res Commun 279(2):615–620CrossRefPubMedGoogle Scholar
  626. 626.
    Barcik W, Pugin B, Westermann P, Perez NR, Ferstl R, Wawrzyniak M et al (2016) Histamine-secreting microbes are increased in the gut of adult asthma patients. J Allergy Clin Immunol 138(5):1491–1494CrossRefPubMedGoogle Scholar
  627. 627.
    Di Giovanni G, Svob Strac D, Sole M, Unzeta M, Tipton KF, Mück-Šeler D et al (2016) Monoaminergic and histaminergic strategies and treatments in brain diseases. Front Neurosci 10:541PubMedCentralCrossRefPubMedGoogle Scholar
  628. 628.
    Provensi G, Fabbri R, Munari L, Costa A, Baldi E, Bucherelli C et al (2017) Histaminergic neurotransmission as a gateway for the cognitive effect of oleoylethanolamide in contextual fear conditioning. Int J Neuropsychopharmacol 20(5):392–399PubMedCentralCrossRefPubMedGoogle Scholar
  629. 629.
    Roberts E, Frankel S (1950) Gamma-aminobutyric acid in brain: its formation from glutamic acid. J Biol Chem 187:55–63PubMedGoogle Scholar
  630. 630.
    Awapara J, Landua A, Fuerst R, Seale B (1950) Free gamma-aminobutyric acid in brain. J Biol Chem 187:35–39PubMedGoogle Scholar
  631. 631.
    Bowery NG, Smart TG (2006) GABA and glycine as neurotransmitters: a brief history. Br J Pharmacol 147(1):S109–S119PubMedCentralCrossRefPubMedGoogle Scholar
  632. 632.
    Froestl W (2011) An historical perspective on GABAergic drugs. Future Med Chem 3(2):163–175CrossRefPubMedGoogle Scholar
  633. 633.
    Jessen KR, Hills JM, Dennison ME, Mirsky R (1983) Aminobutyrate as an autonomic neurotransmitter: release and uptake of [3H]γγ-aminobutyrate in guinea-pig large intestine and cultured enteric neurons using physiological methods and electron microscopic autoradiography. Neuroscience 10:1427–1442CrossRefPubMedGoogle Scholar
  634. 634.
    Jessen KR, Hills JM, Saffrey MJ (1986) Immunohistochemical demonstration of GABAergic neurons in the enteric nervous system. J Neurosci 6:1628–1634CrossRefPubMedGoogle Scholar
  635. 635.
    Jessen KR (1981) GABA and the enteric nervous system. Dev Mol Cell Biochem 1:69–76CrossRefGoogle Scholar
  636. 636.
    Kerr DIB, Ong J (1984) GABA and GABA-receptors in the enteric nervous system. Neuropharmacology 23(7):835–836CrossRefGoogle Scholar
  637. 637.
    Baetge G, Gershon MD (1986) GABA in the PNS: demonstration in enteric neurons. Brain Res Bull 16(3):421–424CrossRefPubMedGoogle Scholar
  638. 638.
    Jessen KR, Hills JM, Limbrick AR (1988) GABA immunoreactivity and 3H-GABA uptake in mucosal epithelial cells of the rat stomach. Gut 29:1549–1556PubMedCentralCrossRefPubMedGoogle Scholar
  639. 639.
    Krantis A, Kerr DIB, Dennis BJ (1986) Autoradiographic study of the distribution of [3H]γ-aminobutyrate-accumulating neural elements in guinea-pig intestine: evidence for a transmitter function of γ-aminobutyrate. Neuroscience 17:1243–1255CrossRefPubMedGoogle Scholar
  640. 640.
    Jessen KR, Mirsky R, Hills JM (1987) GABA as an autonomic neurotransmitter: studies on intrinsic GABAergic neurons in the myenteric plexus of the gut. Trends Neurosci 10:255–262CrossRefGoogle Scholar
  641. 641.
    Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98(3):641–653CrossRefPubMedGoogle Scholar
  642. 642.
    Figiel M, Engele J (2000) Pituitary adenylate cyclase-activating polypeptide (PACAP), a neuron-derived peptide regulating glial glutamate transport and metabolism. J Neurosci 20(10):3596–3605CrossRefPubMedGoogle Scholar
  643. 643.
    Auteri M, Zizzo MG, Serio R (2015) GABA and GABA receptors in the gastrointestinal tract: from motility to inflammation. Pharmacol Res 93:11–21CrossRefPubMedGoogle Scholar
  644. 644.
    Geiman EJ, Zheng W, Fritschy JM, Alvarez FJ (2002) Glycine and GABA(A) receptor subunits on Renshaw cells: relationship with presynaptic neurotransmitters and postsynaptic gephyrin clusters. J Comp Neurol 444(3):275–289CrossRefPubMedGoogle Scholar
  645. 645.
    Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. PNAS 108(38):16050–16055PubMedCentralCrossRefPubMedGoogle Scholar
  646. 646.
    Bormann J, Feigenspan A (2001) GABAC receptors: structure, function and pharmacology. In: Möhler H (ed) Pharmacology of GABA and glycine neurotransmission. Springer, HeidelbergGoogle Scholar
  647. 647.
    Johnston GAR (1996) GABAC receptors: relatively simple transmitter-gated ion channels? Trends Pharmacol Sci 17(9):319–323CrossRefPubMedGoogle Scholar
  648. 648.
    Cherubini E, Strata F (1997) GABAC receptors: a novel receptor family with unusual pharmacology. News Physiol Sci 12(3):136–141Google Scholar
  649. 649.
    Sigel E, Steinmann ME (2012) Structure, function, and modulation of GABAA receptors. J Biol Chem 287:40224–40231PubMedCentralCrossRefPubMedGoogle Scholar
  650. 650.
    Bormann J (2000) The ‘ABC’ of GABA receptors. Trends Pharmacol Sci 21(1):16–19CrossRefPubMedGoogle Scholar
  651. 651.
    Seifi M, Brown JF, Mills J, Bhandari P, Belelli D, Lambert JJ et al (2014) Molecular and functional diversity of GABA-a receptors in the enteric nervous system of the mouse Colon. J Neurosci 34(31):10361–10378PubMedCentralCrossRefPubMedGoogle Scholar
  652. 652.
    Tonini M, De Petris G, Onori L, Manzo L, Rizzi CA, Crema A (1989) The role of GABAA receptor function in peristaltic activity of the guinea-pig ileum: a comparative study with bicuculline, SR 95531 and picrotoxinin. Br J Pharmacol 97:556–562PubMedCentralCrossRefPubMedGoogle Scholar
  653. 653.
    Tonini M, Crema A, Frigo GM, Rizzi CA, Manzo L, Candura SM, Onori L (1989) An in vitro study of the relationship between GABA receptor function and propulsive motility in the distal colon of the rabbit. Br J Pharmacol 98:1109–1118PubMedCentralCrossRefPubMedGoogle Scholar
  654. 654.
    Lecci A, Altamura M, Capriati A, Maggi CA (2008) Tachykinin receptors and gastrointestinal motility: focus on humans. Eur Rev Med Pharmacol Sci 12(1):69–80PubMedGoogle Scholar
  655. 655.
    Maggio JE (1988) Tachykinins. Annu Rev Neurosci 11:13–28CrossRefPubMedGoogle Scholar
  656. 656.
    Sternini C, Anderson K, Frantz G, Krause JE, Brecha N (1989) Expression of substance P/neurokinin A-encoding preprotachykinin messenger ribonucleic acids in the rat enteric nervous system. Gastroenterology 97(2):348–356CrossRefPubMedGoogle Scholar
  657. 657.
    Carter MS, Krause JE (1990) Structure, expression, and some regulatory mechanisms of the rat preprotachykinin gene encoding substance P, neurokinin A, neuropeptide K, and neuropeptide gamma. J Neurosci 10(7):2203–2214CrossRefPubMedGoogle Scholar
  658. 658.
    Pennefather JN, Lecci A, Candenas ML, Patak E, Pinto FM, Maggi CA (2004) Tachykinins and tachykinin receptors: a growing family. Life Sci 74(12):1445–1463CrossRefPubMedGoogle Scholar
  659. 659.
    Christofi FL, McDonald TJ, Cook MA (1990) Neuropeptide release from isolated myenteric nerve endings derived from the guinea pig myenteric plexus. Regul Pept 30(2):165–177CrossRefPubMedGoogle Scholar
  660. 660.
    Arai H, Emson PC (1986) Regional distribution of neuropeptide K and other tachykinins (neurokinin A, neurokinin B and substance P) in rat central nervous system. Brain Res 399(2):240–249CrossRefPubMedGoogle Scholar
  661. 661.
    Patacchini R, Maggi CA, Holzer P (2000) Tachykinin autoreceptors in the gut. Trends Pharmacol Sci 21(5):166CrossRefPubMedGoogle Scholar
  662. 662.
    Erspamer V (1981) The tachykinin peptide family. Trends Neurosci 4:267–269CrossRefGoogle Scholar
  663. 663.
    Erspamer V, Ronzoni G, Falconieri Erspamer G (1981) Effects of active peptides on the isolated muscle of the human urinary bladder. Invest Urol 18(4):302–304PubMedGoogle Scholar
  664. 664.
    Pinto FM, Ravina CG, Subiran N, Cejudo-Román A, Fernández-Sánchez M, Irazusta J et al (2010) Autocrine regulation of human sperm motility by tachykinins. Reprod Biol Endocrinol 8:104PubMedCentralCrossRefPubMedGoogle Scholar
  665. 665.
    Patacchini R, Maggi CA (2004) The nomenclature of tachykinin receptors. In: Holzer P (ed) Tachykinins volume 164 of the series handbook of experimental pharmacology. Springer, Heidelberg, GermanyGoogle Scholar
  666. 666.
    Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW (2014) Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 94(1):265–301PubMedCentralCrossRefPubMedGoogle Scholar
  667. 667.
    Holzer-Petsche U (1995) Tachykinin receptors in gastrointestinal motility. Regul Pept 57(1):19–42CrossRefPubMedGoogle Scholar
  668. 668.
    Torrens Y, Saffroy M, Glowinski J, Beaujouan JC (1997) Substance P(6–11) and natural tachykinins interact with septide-sensitive tachykinin receptors coupled to a phospholipase C in the rat urinary bladder. Neuropeptides 31(3):243–251CrossRefPubMedGoogle Scholar
  669. 669.
    Grider JR, Langdon LE (2003) Physiological role of neuropeptide Y in the regulation of the ascending phase of the peristaltic reflex. Am J Physiol Gastrointest Liver Physiol 285(6):G1139–G1146CrossRefPubMedGoogle Scholar
  670. 670.
    Montaño LM, Carbajal V, Arreola JL, Barajas-López C, Flores-Soto E, Vargas MH (2003) Acetylcholine and tachykinins involvement in the caffeine-induced biphasic change in intracellular Ca2+ in bovine airway smooth muscle. Br J Pharmacol 139:1203–1211PubMedCentralCrossRefPubMedGoogle Scholar
  671. 671.
    Chang MM, Leeman SE (1970) Isolation of a sialogogic peptide from bovine hypothalamic tissue and its characterization as substance P. J Biol Chem 245(18):4784–4790PubMedGoogle Scholar
  672. 672.
    Chang MM, Leeman SE, Niall HD (1971) Amino-acid sequence of substance P. Nature New Biol 232:86–87CrossRefPubMedGoogle Scholar
  673. 673.
    Harrison S, Geppetti P (2001) Substance P. Int J Biochem Cell Biol 33(6):555–576CrossRefPubMedGoogle Scholar
  674. 674.
    von Euler US, Gaddum JH (1931) An unidentified depressor substance in certain tissue extracts. J Physiol 72(1):74–87CrossRefGoogle Scholar
  675. 675.
    Hanley MR, Iversen LL (1980) Substance P receptors. In: Enna SJ, Yamamura HI (eds) Neurotransmitter receptors: part 1 amino acids, peptides and benzodiazepines. Chapman and Hall, New YorkGoogle Scholar
  676. 676.
    Muñoz M, Coveñas R (2010) Neurokinin-1 receptor: a new promising target in the treatment of cancer. Discov Med 10(53):305–313PubMedGoogle Scholar
  677. 677.
    Aziz F (2012) Neurokinin-1 receptor antagonists for chemotherapy-induced nausea and vomiting. Ann Palliat Med 1(2):130–136PubMedGoogle Scholar
  678. 678.
    Andrews PLR, Okada F, Woods AJ, Hagiwara H, Kakaimoto S, Toyoda M, Matsuki N (2000) The emetic and anti-emetic effects of the capsaicin analogue resiniferatoxin in Suncus murinus, the house musk shrew. Br J Pharmacol 130(6):1247–1254PubMedCentralCrossRefPubMedGoogle Scholar
  679. 679.
    Amin AH, Crawford TBB, Gaddum JH (1954) The distribution of substance P and 5-hydroxytryptamine in the central nervous system of the dog. J Physiol 126(3):596–618PubMedCentralCrossRefPubMedGoogle Scholar
  680. 680.
    Aapro MS (2007) Palonosetron as an anti-emetic and anti-nausea agent in oncology. Ther Clin Risk Manag 3(6):1009–1020PubMedCentralPubMedGoogle Scholar
  681. 681.
    Becker DE (2010) Nausea, vomiting, and hiccups: a review of mechanisms and treatment. Anesth Prog 57(4):150–157PubMedCentralCrossRefPubMedGoogle Scholar
  682. 682.
    Koga T, Fukuda H (1992) Neurons in the nucleus of the solitary tract mediating inputs from emetic vagal afferents and the area postrema to the pattern generator for the emetic act in dogs. Neurosci Res 14(3):166–179CrossRefPubMedGoogle Scholar
  683. 683.
    Horn CC (2016) The physiology of vomiting. In: Koch KL, Hasler WL (eds) Nausea and vomiting. Springer International Publishing, ChamGoogle Scholar
  684. 684.
    Pleuvry BJ (2012) Physiology and pharmacology of nausea and vomiting. Anaesth Intens Care Med 13(12):598–602CrossRefGoogle Scholar
  685. 685.
    McKeen MJ, Quraishi SA (2013) Clinical review of intravenous opioids in acute care. J Anesthesiol Clin Sci 2:1CrossRefGoogle Scholar
  686. 686.
    Schechter MD (1980) Different dopaminergic mechanisms for amfonelic acid, amphetamine and apomorphine. Pharmacol Biochem Behav 13(4):497–500CrossRefPubMedGoogle Scholar
  687. 687.
    Smith HS, Laufer A (2014) Opioid induced nausea and vomiting. Eur J Pharmacol 722:67–78CrossRefPubMedGoogle Scholar
  688. 688.
    Mercadante S, Sapio M, Serretta R (1998) Ondansetron in nausea and vomiting induced by spinal morphine. JPSM 16(4):259–262Google Scholar
  689. 689.
    Horn CC, Kimball BA, Wang H, Kaus J, Dienel S, Nagy A et al (2013) Why can’t rodents vomit? A comparative behavioral, anatomical, and physiological study. PLoS ONE 8(4):e60537PubMedCentralCrossRefPubMedGoogle Scholar
  690. 690.
    Manoguerra AS, Cobaugh DJ (2005) Guidelines for the management of poisoning consensus panel. Guideline on the use of ipecac syrup in the out-of-hospital management of ingested poisons. Clin Toxicol (Phila) 43(1):1–10CrossRefPubMedGoogle Scholar
  691. 691.
    Minton N, Swift R, Lawlor C, Mant T, Henry J (1993) Ipecacuanha-induced emesis: a human model for testing antiemetic drug activity. Clin Pharmacol Ther 54(1):53–57CrossRefPubMedGoogle Scholar
  692. 692.
    Andrews PLR, Horn CC (2006) Signals for nausea and emesis: implications for models of upper gastrointestinal diseases. Auton Neurosci 125(1–2):100–115PubMedCentralCrossRefPubMedGoogle Scholar
  693. 693.
    Herrstedt J (2008) Antiemetics: an update and the MASCC guidelines applied in clinical practice. Nat Clin Pract Oncol 5:32–43CrossRefPubMedGoogle Scholar
  694. 694.
    Hogan CM, Grant M (1997) Physiologic mechanisms of nausea and vomiting in patients with cancer. Oncol Nurs Forum 24(Suppl 7):8–12PubMedGoogle Scholar
  695. 695.
    Kangawa H, Kangawa K, Minamino N, Fukuda A, Matsuo H (1983) Neuromedin K: a novel mammalian tachykinin identified in porcine spinal cord. Biochem Biophys Res Commun 114:533–540CrossRefPubMedGoogle Scholar
  696. 696.
    Kimura S, Okado M, Sugita Y, Kanazawa I, Munekata E (1983) Novel neuropeptides, neurokinin A and B isolated from porcine spinal cord. Proc Jpn Acad 59B:101–104CrossRefGoogle Scholar
  697. 697.
    Wang JM, De Ridder EFMM, De Potter WP, Weyns ALM (1994) Localization of neurokinin A and chromogranin A immunoreactivity in the developing porcine adrenal medulla. Histochem J 26(5):431–436CrossRefPubMedGoogle Scholar
  698. 698.
    Regoli D, Rhaleb NE, Dion S, Tousignant C, Rouissi N, Jukic D, Drapeau G (1990) Neurokinin A. A pharmacological study. Pharmacol Res 22(1):1–14CrossRefPubMedGoogle Scholar
  699. 699.
    Rovero P, Pestellini V, Rhaleb N-E, Dion S, Rouissi N, Tousignant C et al (1989) Structure-activity studies of neurokinin A. Neuropeptides 13(4):263–270CrossRefPubMedGoogle Scholar
  700. 700.
    Joos GF, Vincken W, Louis R, Schelfhout VJ, Wang JH, Shaw MJ et al (2004) Dual tachykinin NK1/NK2 antagonist DNK333 inhibits neurokinin A-induced bronchoconstriction in asthma patients. ERJ 23(1):76–81CrossRefGoogle Scholar
  701. 701.
    Eriksson B, Oberg K, Stridsberg M (2000) Tumor markers in neuroendocrine tumors. Digestion 62(1):33–38CrossRefPubMedGoogle Scholar
  702. 702.
    Halfdanarson TR, Howe JR, Haraldsdottir S, O’Dorisio TM (2015) Circulating tumor markers in patients with neuroendocrine tumors—a clinical perspective. Int J Endocr Oncol 2(1):89–99CrossRefGoogle Scholar
  703. 703.
    Turner GB, Johnston BT, Mccance DR, McGinty A, Watson RGP, Patterson CC, Ardill JES (2006) Circulating markers of prognosis and response to treatment in patients with midgut carcinoid tumours. Gut 55(11):1586–1591PubMedCentralCrossRefPubMedGoogle Scholar
  704. 704.
    Diebold AE, Boudreaux JP, Wang YZ, Anthony LB, Uhlhorn AP, Ryan P et al (2012) Neurokinin A levels predict survival in patients with stage IV well differentiated small bowel neuroendocrine neoplasms. Surgery 152(6):1172–1176CrossRefPubMedGoogle Scholar
  705. 705.
    Malendowicz LK, Warchol JB, Nussdorfer GG, Nowak M, Filipiak K (1995) Effects of neurokinin-A on the rat hypothalamo-pituitary-adrenal axis. Endocr Res 21(4):757–767CrossRefPubMedGoogle Scholar
  706. 706.
    Malendowicz LK, Warchol JB, Nussdorfer GG, Nowak M, Filipiak K (1995) Effects of neurokinin-A on the rat hypothalamo-pituitary-adrenal axis. Endocr Res 21(4):757–767CrossRefPubMedGoogle Scholar
  707. 707.
    De Laurentiis A, Candolfi M, Pisera D, Seilicovich A (2003) Effects of lipopolysaccharide on neurokinin A content and release in the hypothalamic-pituitary axis. Regul Pept 111(1–3):91–95CrossRefPubMedGoogle Scholar
  708. 708.
    Tuxen C, Jensen K, Kjeldsen M, Edvinsson L, Jansen I, Olesen J (1989) Effect of neurokinin A on human temporal muscle blood flow. Peptides 10(5):921–924CrossRefPubMedGoogle Scholar
  709. 709.
    Takaya T (1996) Discovery of neurokinin antagonists. Pure Appl Chem 68(4):875–880CrossRefGoogle Scholar
  710. 710.
    Navarro VM (2013) Interactions between kisspeptins and neurokinin B. Adv Exp Med Biol 784:325–347CrossRefPubMedGoogle Scholar
  711. 711.
    Page NM, Woods RJ, Lowry PJ (2001) A regulatory role for neurokinin B in placental physiology and pre-eclampsia. Regul Pept 98(3):97–104CrossRefPubMedGoogle Scholar
  712. 712.
    Sakamoto R, Osada H, Litsuka Y, Masuda K, Kaku K, Seki K, Sekiya S (2003) Profile of neurokinin B concentrations in maternal and cord blood in normal pregnancy. Clin Endocrinol 58(5):597–600CrossRefGoogle Scholar
  713. 713.
    Hofmann HA (2006) Gonadotropin-releasing hormone signaling in behavioral plasticity. Curr Opin Neurobiol 16(3):343–350CrossRefPubMedGoogle Scholar
  714. 714.
    Bliss SP, Navratil AM, Xie J, Roberson MS (2010) GnRH signaling, the gonadotrope and endocrine control of fertility. Front Neuroendocrinol 31(3):322–340PubMedCentralCrossRefPubMedGoogle Scholar
  715. 715.
    Santoro N, Filicori M, Spratt D, Crowley WF Jr (1986) Gonadotropin-releasing hormone (GnRH) physiology in men and women. Acta Med Hung 43(2):201–221PubMedGoogle Scholar
  716. 716.
    Kumasaka T, Masaoka K, Watanabe H, Mori T, Ohya H, Tadokoro N (1986) Neuroendocrine regulation of LHRH and gonadotropin. Adv Contracept Deliv Syst 2(2–3):176–181PubMedGoogle Scholar
  717. 717.
    Millar RP, King JA (1988) Evolution of gonadotropin-releasing hormone: multiple usage of a peptide. Physiology 3(2):49–53CrossRefGoogle Scholar
  718. 718.
    Rance NE, Dacks PA, Mittelman-Smith MA, Romanovsky AA, Krajewski-Hall SJ (2013) Modulation of body temperature and LH secretion by hypothalamic KNDy (kisspeptin, neurokinin B and dynorphin) neurons: a novel hypothesis on the mechanism of hot flushes. Front Neuroendocrinol 34(3):211–227CrossRefPubMedGoogle Scholar
  719. 719.
    Kage R, McGregor GP, Thim L, Conlon JM (1988) Neuropeptide-gamma: a peptide isolated from rabbit intestine that is derived from gamma-preprotachykinin. J Neurochem 50(5):1412–1417CrossRefPubMedGoogle Scholar
  720. 720.
    Lee K, Lee S, Kim Y, Park NG (2003) Structures of neuropeptide γ from goldfish and mammalian neuropeptide γ, as determined by 1H NMR spectroscopy. J Pept Res 61(5):274–285CrossRefPubMedGoogle Scholar
  721. 721.
    Burcher E, Alouan LA, Johnson PRA, Black JL (1991) Neuropeptide gamma, the most potent contractile tachykinin in human isolated bronchus, acts via a ‘non-classical’ NK2 receptor. Neuropeptides 20(2):79–82CrossRefPubMedGoogle Scholar
  722. 722.
    Poulat P, de Champlain J, Couture R (1996) Cardiovascular responses to intrathecal neuropeptide gamma in conscious rats: receptor characterization and mechanism of action. Br J Pharmacol 117(2):250–257PubMedCentralCrossRefPubMedGoogle Scholar
  723. 723.
    Chandrashekar IR, Dike A, Cowsik SM (2004) Membrane-induced structure of the mammalian tachykinin Neuropeptide gamma. J Struct Biol 148(3):315–325CrossRefPubMedGoogle Scholar
  724. 724.
    Picard P, Couture R (1996) Intracerebroventricular responses to neuropeptide gamma in the conscious rat: characterization of its receptor with selective antagonists. Br J Pharmacol 117(2):241–249PubMedCentralCrossRefPubMedGoogle Scholar
  725. 725.
    Fernstrom JD, Fernstrom MH (2007) Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr 137(6):1539S–1547SCrossRefPubMedGoogle Scholar
  726. 726.
    Hornykiewicz O (2002) L-DOPA: from a biologically inactive amino acid to a successful therapeutic agent. Amino Acids 23(1–3):65–70CrossRefPubMedGoogle Scholar
  727. 727.
    Raper HS (1927) The tyrosinase-tyrosine reaction: production from tyrosine of 5: 6-dihydroxyindole and 5: 6-dihydroxyindole-2-carboxylic acid–the precursors of melanin. Biochem J 21(1):89–96PubMedCentralCrossRefPubMedGoogle Scholar
  728. 728.
    Raper HS (1926) The tyrosinase-tyrosine reaction: production of l-3.4-dihydroxyphenylalanine from tyrosine. Biochem J 20(4):735–742PubMedCentralCrossRefPubMedGoogle Scholar
  729. 729.
    Dulière WL, Raper HS (1930) The tyrosinase-tyrosine reaction: the action of tyrosinase on certain substances related to tyrosine. Biochem J 24(2):239–249PubMedCentralCrossRefPubMedGoogle Scholar
  730. 730.
    Sneader W (2001) The discovery and synthesis of epinephrine. Drug News Perspect 14(8):491–494CrossRefPubMedGoogle Scholar
  731. 731.
    Hornykiewicz O (2010) A brief history of levodopa. J Neurol 257(2):249–252CrossRefGoogle Scholar
  732. 732.
    Lanska DJ (2014) Kühne, Wilhelm (Willy) Friedrich. In: Daroff R, Aminoff MJ (eds) Encyclopedia of the neurological sciences, 2nd edn. Academic Press, San DiegoCrossRefGoogle Scholar
  733. 733.
    Dogrul A, Coskun I, Uzbay T (2006) The contribution of alpha-1 and alpha-2 adrenoceptors in peripheral imidazoline and adrenoceptor agonist-induced nociception. Anesth Analg 103(2):471–477CrossRefPubMedGoogle Scholar
  734. 734.
    Galitzky J, Carpéné C, Bousquet-Mélou A, Berlan M, Lafontan M (1995) Differential activation of beta 1-, beta 2- and beta 3-adrenoceptors by catecholamines in white and brown adipocytes. Fundam Clin Pharmacol 9(4):324–331CrossRefPubMedGoogle Scholar
  735. 735.
    Martin DJ (1999) Preclinical pharmacology of alpha1-adrenoceptor antagonists. Eur Urol 36(1):35–41; discussion 65Google Scholar
  736. 736.
    Muramatsu I, Taniguchi T, Okada K (1998) Tamsulosin: alpha1-adrenoceptor subtype-selectivity and comparison with terazosin. Jpn J Pharmacol 78(3):331–335CrossRefPubMedGoogle Scholar
  737. 737.
    Jun JY, Choi S, Yeum CH, Chang IY, Park CK, Kim MY et al (2004) Noradrenaline inhibits pacemaker currents through stimulation of beta 1-adrenoceptors in cultured interstitial cells of Cajal from murine small intestine. Br J Pharmacol 141(4):670–677PubMedCentralCrossRefPubMedGoogle Scholar
  738. 738.
    von Euler US (1946) A specific sympathomimetic ergone in adrenergic nerve fibres (sympathin) and its relations to adrenaline and nor-adrenaline. Acta Physiol Scand 12:73–97CrossRefGoogle Scholar
  739. 739.
    Furst J, Kurra S (2015) Adrenal physiology. In: Pasieka JL, Lee JA (eds) Surgical endocrinopathies. Springer International Publishing, Cham, SwitzerlandGoogle Scholar
  740. 740.
    Luckensmeyer GB, Keast JR (1998) Activation of α- and β-adrenoceptors by sympathetic nerve stimulation in the large intestine of the rat. J Physiol 510 (Pt 2)(2):549–561PubMedCentralCrossRefPubMedGoogle Scholar
  741. 741.
    Angelos MG, Butke RL, Panchal AR, Torres CA, Blumberg A, Schneider JE, Aune SE (2008) Cardiovascular response to epinephrine varies with increasing duration of cardiac arrest. Resuscitation 77(1):101–110CrossRefPubMedGoogle Scholar
  742. 742.
    Callaway CW (2012) Questioning the use of epinephrine to treat cardiac arrest. JAMA 307(11):1198–1200CrossRefPubMedGoogle Scholar
  743. 743.
    McLean-Tooke APC, Bethune CA, Fay AC, Spickett GP (2003) Adrenaline in the treatment of anaphylaxis: what is the evidence? BMJ 327(7427):1332–1335PubMedCentralCrossRefPubMedGoogle Scholar
  744. 744.
    Burrage WS, Irwin JW, Gallemore JI, Wang DMK (1954) Effects of histamine and epinephrine on the small pulmonary blood vessels of living rabbits. J Allergy Clin Immunol 25(4):293–301Google Scholar
  745. 745.
    William BH (1896) The use of extract of suprarenal capsule in the eye. N Y M J 647–650Google Scholar
  746. 746.
    Bennett MR (1999) One hundred years of adrenaline: the discovery of autoreceptors. Clin Auton Res 9(3):145–159CrossRefPubMedGoogle Scholar
  747. 747.
    Abel JJ (1899) Ueber den blutdruckerregendes Bestandtheil des Nebenniere, das Epinephrin. Hoppe-Seylers Z Physiol Chem 28:318–362CrossRefGoogle Scholar
  748. 748.
    Koehler PJ, Stahnisch FW (2014) Three twentieth-century multiauthored neurological handbooks—a historical analysis and bibliometric comparison. J Hist Neurosci Basic Clin Perspect 23(1):1–30CrossRefGoogle Scholar
  749. 749.
    Widacki J (2015) Professor Ivan Tarchanoff. Przegl Lek 72(1):45–48PubMedGoogle Scholar
  750. 750.
    Smith JE (1920) Max Lewandowsky. J Nerv Ment Dis 51(4):404CrossRefGoogle Scholar
  751. 751.
    Bilski R, Kaulbersz J (1987) Napoleon Cybulski, 1854–1919. Acta Physiol Pol 38(2):74–90PubMe