Advertisement

Gastrointestinal Motor Function

  • Menizibeya Osain Welcome
Chapter

Abstract

One of the major functions of the gastrointestinal (GI) tract is to carry out some types of movement that allows the aborally directed flow of luminal contents. This function is referred to as GI motor function or motility. GI motor function is the result of the activities of muscles located in different layers of the tract. The muscles of the digestive apparatus function to ensure proper chewing in the mouth, swallowing, and movement of luminal contents through the digestive tract and removal of undigested residues from the body. The functions of muscles of the gut are to a large extent determined by the influences from the surrounding environment. However, the gut at certain locations maintains a basal level of motility, which, in part, is due to the functional pacemaker activity of the intestine. The discovery of GI motility (mechanical activity or mechanistic functions of the gut) and the basis of its functionality provided important information on future research directions, which now form the basis of our understanding of GI motility. This chapter aims to identify the course and key milestones in GI motility research. The basis and regulation of gut motility are also discussed. The chapter lays down basic concepts and principles of motility of different regions of the gut and their relationship to the maintenance of the functioning of digestion.

Keywords

Gut motility GI motility Gut motorics Gut motor function Intestinal cells Pacemaker activity Migrating motor complex Migrating myoelectrical activity Mechanistic theory of gut GI stretch receptors Migrating motor complex History of GI motility Chewing Mastication GI housekeeping Peristalsis Smooth muscle contraction Excitation Excitation-contraction coupling Contraction-relaxation cycling Motor unit Dysphagia Achalasia Hirschsprung’s disease Congenital colonic aganglionosis Gastroparesis CD34-positive PDGFRα-positive cells Interstitial Cajal cells Action potential Negative Schwankung Electrogastrography Ileal brake effect Hunger Pang Alessandro Volta Alex Bortoff Alexander von Humboldt Aloysio Luigi Galvani Bennett MR Bülbring E Burnstock G Carlo Matteucci Clifford Ladd Prosser Crema A Edith Bülbring Edward Banfield Emil Bozler Emil Heinrich du Bois-Reymond Ernest Starling Ewald Georg von Kleist Forbes Alexander Gaston R. Vantrappen Giuseppe Moruzzi Hans Christian Oersted Herbert Spencer Gasser Hermann von Helmholtz Hodgkin Huxley Holman ME Hoskins RG Edgar S. Hunter Ivan Pavlov James Christensen Johann Joosten van Musschenbroek Johann Schweigger Johannes Peter Müller John Walsh Joseph Erlanger Joseph H. Szurszewski Julius Bernstein Kenton M. Sander Lars Thunberg Leopoldo Nobili Leyden jar Lucille J. Mahoney Luigi Galvani Paul Trendelenburg Pieter (Petrus) van Musschenbroek Prosser von Humboldt Walter B. Cannon Walter C. Alvarez Willem Einthoven William Bayliss William Beaumont 

Abbreviations

ADF

Actin-depolymerizing factor

Ang II

Angiotensin II

Arp2/3

Actin-related protein-2 and -3

BK

Large conductance calcium-activated potassium channel

CaMKII

Ca2+/calmodulin(CaM)-dependent kinase type II

CD34

Cluster of differentiation-34

CGRP

Calcitonin gene-related peptide

CPI-17

Protein kinase C-potentiated inhibitor protein or C-kinase potentiated protein phosphatase-1 inhibitor, molecular weight 17 kDa

cpm

Cycle per minute

CREB

cAMP-responsive element-binding protein

DAG

Diacylglycerol

EDHF

Endothelial-derived hyperpolarizing factor

ER

Endoplasmic reticulum

ERK

Extracellular signal-regulated kinase type

ERK

Extracellular signal responsive kinase

FC

Fast closing

FO

Fast opening

GI

Gastrointestinal

GIP

Gastric inhibitory peptide

GPCR

G protein-coupled receptor

GRP

Gastrin-releasing peptide

ICCs

Interstitial Cajal cells

ILK

Integrin-linked kinase

iNOS

Inducible nitric oxide synthase

IP2

Phosphatidylinositol 4,5-bisphosphate

IP3

Inositol 1,4,5-trisphosphate

IP3R

IP3 receptor

MAPK

Mitogen-activated protein kinase

MEK

Mitogen-activated protein kinase kinase (also known as MAPK kinase or MAPKK or MKK)

MHC

Myosin heavy chain

MLC

Myosin light chain

MLCK

Myosin light-chain kinase

MLCP

MLC phosphatase

MMC

Migrating motor complex or migrating myoelectrical activity

MyBP-C

Myosin-binding protein C

MYPT1

Myosin-binding regulatory subunit-1 of MLC phosphatase

NO

Nitric oxide

OTT

Oral transit time

PACAP

Pituitary adenylate cyclase-activating polypeptide

PDE

Phosphodiesterase

PDGFRα

Platelet-derived growth factor receptor alpha

PGI2

Prostacyclin, prostaglandin

PI3K

Phosphoinositide 3-kinase

PKC

Protein kinase C

PLCβ

Phospholipase C isozyme β

PTT

Pharyngeal transit time

RMP

Resting membrane potential

ROCK

Rho-associated coiled-coil kinase

RyR

Ryanodine receptor

SC

Slow closing

SER

Sarcoendoplasmic reticulum

SIP

Smooth muscle cell, ICC cell, PDGFRα+ cell

SK

Small-conductance calcium-activated potassium channel

SO

Slow opening

SR

Sarcoplasmic reticulum

VASP

Vasodilator-stimulated phosphoprotein

VEGF

Vascular endothelial growth factor

VIP

Vasoactive intestinal peptide

WASP

Wiskott–Aldrich syndrome protein

ZIPK

Zipper interacting protein kinase

Bibliography

  1. 1.
    Gartner LP, Hiatt JL, Strum JM (2003) Board review series. Cell biology and histology, 4th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  2. 2.
    Sanders KM, Don Koh S, Ward SM (2012) Organization and electrophysiology of interstitial cells of Cajal and smooth muscle cells in the gastrointestinal tract. In: Johnson L, Ghishan F, Kaunitz J, Merchant J, Said H, Wood J (eds) Physiology of the gastrointestinal tract. Elsevier, San DiegoGoogle Scholar
  3. 3.
    Mittal RK (ed) (2011) Motor function of the pharynx, esophagus, and its sphincters. Integrated systems physiology: from molecule to function to disease. Morgan & Claypool Life Sciences, San RafaelGoogle Scholar
  4. 4.
    Sundler F (2004) GI tract, general anatomy (cells). In: Martini Luciano (ed) Encyclopedia of endocrine diseases. Elsevier, San DiegoGoogle Scholar
  5. 5.
    Piccolino M, Bresadola M (2002) Drawing a spark from darkness: John Walsh and electric fish. Endeavour 26(1):19–26PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Delbourgo J (2006) A most amazing scene of wonders: electricity and enlightenment in early America. Harvard University Press, CambridgeGoogle Scholar
  7. 7.
    Plumb C (2010) The ‘electric stroke’ and the ‘electric spark’: anatomists and eroticism at George Baker’s electric eel exhibition in 1776 and 1777. Endeavour 34(3):87–94PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Carlyle EI (2004) Walsh, John (1726–1795). In: Harrison BH, Matthew HCG (eds) Oxford dictionary of national biography. Oxford University Press, New YorkGoogle Scholar
  9. 9.
    Piccolino M, Biologies CR (2006) Luigi Galvani’s path to animal electricity. CR Biol 329(5–6):303–318CrossRefGoogle Scholar
  10. 10.
    Kettenmann H (1997) Alexander von Humboldt and the concept of animal electricity. Trends Neurosci 20(6):239–242PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Hopkinson J (1875) The residual charge of the leyden jar. Proc R Soc Lond 24:407–408CrossRefGoogle Scholar
  12. 12.
    Elliott P (2008) “More subtle than the electric aura”: georgian medical electricity, the spirit of animation and the development of Erasmus Darwin’s psychophysiology. Med Hist 52(2):195–220PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Verkhratsky A, Krishtal OA, Petersen OH (2006) From Galvani to patch clamp: the development of electrophysiology. Pflugers Arch 453(3):233–247PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Al-Khalili J (2015) The birth of the electric machines: a commentary on Faraday (1832) ‘Experimental researches in electricity’. Philos Trans A Math Phys Eng Sci 373(2039):20140208CrossRefGoogle Scholar
  15. 15.
    McWhirter L, Carson A, Stone J (2015) The body electric: a long view of electrical therapy for functional neurological disorders. Brain 138(Pt 4):1113–1120PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Steinberg H (2011) Electrotherapeutic disputes: the ‘Frankfurt Council’ of 1891. Brain 134(4):1229–1243PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Goldensohn ES (1998) Animal electricity from Bologna to Boston. Electroencephalogr Clin Neurophysiol 106(2):94–100PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Alvarez WC (1922) New methods of studying gastric peristalsis. J Am Med Assoc 22:1281–1284CrossRefGoogle Scholar
  19. 19.
    Rivera-Ruiz M, Cajavilca C, Varon J (2008) Einthoven’s string galvanometer—the first electrocardiograph. Tex Heart Inst J 35(2):174–178PubMedPubMedCentralGoogle Scholar
  20. 20.
    Verkhratsky A, Parpura V (2014) History of electrophysiology and the patch clamp. Methods Mol Biol 1183:1–19CrossRefPubMedGoogle Scholar
  21. 21.
    Moruzzi G (1996) The electrophysiological work of Carlo Matteucci. 1964. Brain Res Bull 40(2):69–91PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Gryglewski RW (2015) The origins of electrocardiography in Poland. Kardiochir Torakochirurgia Pol 12(2):184–189PubMedPubMedCentralGoogle Scholar
  23. 23.
    Ahmed OJ, Cash SS (2013) Finding synchrony in the desynchronized EEG: the history and interpretation of gamma rhythms. Front Integr Neurosci 7:58PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Longair M (2015) ‘…a paper …I hold to be great guns’: a commentary on Maxwell (1865) ‘A dynamical theory of the electromagnetic field’. Philos Trans A Math Phys Eng Sci 373(2039):20140473PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Berridge MJ (2008) Smooth muscle cell calcium activation mechanisms. J Physiol 586(Pt 21):5047–5061PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    O’Grady G (2012) Gastrointestinal extracellular electrical recordings: fact or artifact? Neurogastroenterol Motil 24(1):1–6PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Hara Y, Kubota M, Szurszewski JH (1986) Electrophysiology of smooth muscle of the small intestine of some mammals. J Physiol 372:501–520PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Huizinga JD (1991) Action potentials in gastrointestinal smooth muscle. Can J Physiol Pharmacol 69(8):1133–1142PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Du P, O’Grady G, Davidson JB, Cheng LK, Pullan AJ (2010) Multiscale modeling of gastrointestinal electrophysiology and experimental validation. Crit Rev Biomed Eng 38(3):225–254PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Piccolino M (2011) Electric fishes research in the nineteenth century, following the steps of Carlo Matteucci and Giuseppe Moruzzi. Arch Ital Biol 149(Suppl.):77–85Google Scholar
  31. 31.
    Finkelstein G (2011) Matteucci and du Bois-Reymond: a bitter rivalry. Arch Ital Biol 149(4):29–37Google Scholar
  32. 32.
    Waclawik AJ (2014) du Bois-Reymond, Emil. In: Aminoff MJ, Daroff RB (eds) Encyclopedia of the neurological sciences. Elsevier, San DiegoGoogle Scholar
  33. 33.
    Pearce JMS (2001) Emil Heinrich Du Bois-Reymond (1818–96). J Neurol Neurosurg Psychiatry 71:620.  https://doi.org/10.1136/jnnp.71.5.620CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Finger S, Piccolino M, Stahnisch FW (2013) Alexander von Humboldt: galvanism, animal electricity, and self-experimentation part 2: the electric eel, animal electricity, and later years. J Hist Neurosci 22(4):327–352PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Ian G (2010) Elegance in science. Oxford University Press, OxfordGoogle Scholar
  36. 36.
    Marasco DD (2011) The great era of english electrophysiology: from Francis Gotch to Hodgkin and Huxley. Arch Ital Biol 149(Suppl.):77–85Google Scholar
  37. 37.
    Seyfarth E-A (2006) Julius Bernstein (1839–1917): pioneer neurobiologist and biophysicist. Biol Cybernet 94(1):2–8CrossRefGoogle Scholar
  38. 38.
    Finkelstein G (2015) Mechanical neuroscience: Emil du Bois-Reymond’s innovations in theory and practice. Front Syst Neurosci 9:133PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Frank RG Jr, Goetzl JH (1978) The J. H. B. Archive report the Alexander Forbes papers. J Hist Biol 11(2):387–393PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Davis H (1970) Joseph Erlanger (1874–1965). National Academy of Sciences, Washington DCGoogle Scholar
  41. 41.
    Kosenko PM, Vavrinchuk SA (2013) Electrogastroenterography in clinical practice. Rus Open Med J 2:0203CrossRefGoogle Scholar
  42. 42.
    Szurszewski JH (1998) A 100-year perspective on gastrointestinal motility. Am J Physiol Gastrointest Liver Physiol 274(37):G447–G453CrossRefGoogle Scholar
  43. 43.
    Beaumont W (1833) Experiments and observations on the gastric juice and the physiology of digestion. FP Allen, PlattsburghGoogle Scholar
  44. 44.
    Mai FM (1988) Beaumont’s contribution to gastric psychophysiology: a reappraisal. Can J Psychiatr 33(7):650–653CrossRefGoogle Scholar
  45. 45.
    Dubois A, Johnson LF (1985) William Beaumont: frontier physician and founding father of gastric physiology. J Clin Gastroenterol 7(6):472–474PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Cannon WB (1898) The movements of the stomach studied by means of the Roentgen rays. Am J Physiol 1:359–382Google Scholar
  47. 47.
    Cannon WB (1902) The movements of the intestines studied by means of the Roentgen rays. Am J Physiol 6:251–277Google Scholar
  48. 48.
    Cannon WB (1904) The passage of different food-stuffs from the stomach and through the small intestine. Am J Physiol 12:387–418Google Scholar
  49. 49.
    Cannon WB, Mosher A (1898) The movements of the food in the esophagus. Am J Physiol 1:435–444Google Scholar
  50. 50.
    Trendelenburg P (2006) Physiological and pharmacological investigations of small intestinal peristalsis. Naunyn Schmiedebergs Arch Pharmacol 373(2):101–133. Translation of the article “Trendelenburg P (1917) Physiologische und pharmakologische Versuche über die Dünndarmperistaltik. Arch Exp Pathol Pharmakol 81:55–129”Google Scholar
  51. 51.
    Feldberg W, Lin RCY (1949) The action of local anaesthetics and d-tubocurarine on the isolated intestine of the rabbit and guinea-pig. Br J Pharmacol 4:33–44Google Scholar
  52. 52.
    Bennett MR, Burnstock G, Holman ME (1966) Transmission from intramural inhibitory nerves to the smooth muscle of the guinea-pig taenia coli. J Physiol (Lond) 182:541–558CrossRefGoogle Scholar
  53. 53.
    Bülbring E, Crema A (1958) Observations concerning the action of 5-hydroxytryptamine on the peristaltic reflex. Br J Pharmacol 13:444–457Google Scholar
  54. 54.
    Alvarez WC (1914) Functional variations in contractions of different parts of the small intestine. Am J Physiol 35:177–193Google Scholar
  55. 55.
    Alvarez WC, Mahoney LJ (1922) Action currents in stomach and intestine. Am J Physiol 58:476–493Google Scholar
  56. 56.
    Alvarez WC, Mahoney LJ (1924) Peristaltic rush as depicted in the electroenterogram. Am J Physiol 69:226–228Google Scholar
  57. 57.
    Bozler E (1938) Electric stimulation and conduction of excitation in smooth muscle. Am J Physiol 122:614–623Google Scholar
  58. 58.
    Bozler E (1942) The activity of the pacemaker previous to the discharge of a muscular impulse. Am J Physiol 136:543–552Google Scholar
  59. 59.
    Bozler E (1945) The action potentials of the stomach. Am J Physiol 144:693–700Google Scholar
  60. 60.
    Tumpeer IH, Blitzsten PW (1926) Registration of peristalsis by the Einthoven galvonometer. Am J Dis Child 21:454–455Google Scholar
  61. 61.
    Chang FY (2005) Electrogastrography: basic knowledge, recording, processing and its clinical applications. J Gastroenterol Hepatol 20(4):502–516PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Matsuura Y, Yamamoto T, Takada M, Shiozawa T, Takada H (2011) Application of electrogastrography to public health. Nihon Eiseigaku Zasshi 66(1):54–63PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Yin J, Chen JD (2013) Electrogastrography: methodology, validation and applications. J Neurogastroenterol Motil 19(1):5–17PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Rebrov VG (1981) Registration of stomach and intestine potentials in clinical conditions. Ter archive 9:24–30Google Scholar
  65. 65.
    Koenig JB, Martin CE, Dobson H, Mintchev MP (2009) Use of multichannel electrogastrography for noninvasive assessment of gastric myoelectrical activity in dogs. Am J Vet Res 70(1):11–55PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Lebedev NN, Trusov AN, Popova YuP (1991) Broadband multichannel electrogastrography and periodical motorics of gastrointestinal tract. Fiziol Chelov 17(4):54–66Google Scholar
  67. 67.
    Burduli NM, Gutnova SK (2010) Peripheral computer electrogastroentherography in the diagnostics of motor disorders in chronic pancreatitis. Rus J Gastroenterol Hepatol Coloproctol 20(5):59Google Scholar
  68. 68.
    Hamilton JW, Bellahsene BE, Reichelderfer M, Webster JG, Bass P (1986) Human electrogastrograms. Comparison of surface and mucosal recordings. Dig Dis Sci 31(1):33–39PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Sanders KM, Don Koh S, Ward SM (2006) Interstitial cells of cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol 68:307–343PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Sanders KM, Ward SM (2006) Interstitial cells of Cajal: a new perspective on smooth muscle function. J Physiol 576(Pt 3):721–726PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Sanders KM, Ward SM, Don Koh S (2014) Interstitial cells: regulators of smooth muscle function. Physiol Rev 94(3):859–907PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Sanders KM, Don Koh S, Ro S, Ward SM (2012) Regulation of gastrointestinal motility—Insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol 9(11):633–645PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Deloose E, Janssen P, Depoortere I, Tack J (2012) The migrating motor complex: control mechanisms and its role in health and disease. Nat Rev Gastroenterol Hepatol 9:271–285PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Nucera G, Gabrielli M, Lupascu A, Lauritano EC, Santoliquido A, Cremonini F et al (2005) Abnormal breath tests to lactose, fructose and sorbitol in irritable bowel syndrome may be explained by small intestinal bacterial overgrowth. Aliment Pharmacol Ther 21(11):1391–1395PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Shea-Donohue T, Notari L, Sun R, Zhao A (2012) Mechansims of smooth muscle responses to inflammation. Neurogastroenterol Motil 24(9):802–811PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Fiorenza V, Yee YS, Zfass AM (1987) Small intestinal motility: normal and abnormal function. Am J Gastroenterol 82(11):1111–1114PubMedPubMedCentralGoogle Scholar
  77. 77.
    Luiking YC, van der Reijden AC, van Berge Henegouwen GP, Akkermans LMA (1998) Migrating motor complex cycle duration is determined by gastric or duodenal origin of phase III. Am J Physiol Gastrointest Liver Physiol 275(6):G1246–G1251CrossRefGoogle Scholar
  78. 78.
    Kim TW, Koh SD, Ordög T, Ward SM, Sanders KM (2003) Muscarinic regulation of pacemaker frequency in murine gastric interstitial cells of Cajal. J Physiol 546(Pt 2):415–425PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Forrest AS, Hennig GW, Jokela-Willis S, Park CD, Sanders KM (2009) Prostaglandin regulation of gastric slow waves and peristalsis. Am J Physiol Gastrointest Liver Physiol 296(6):G1180–G1190PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Bortoff A (1965) Electrical transmission of slow waves from longitudinal to circular intestinal muscle. Am J Physiol 209:1254–1260PubMedPubMedCentralGoogle Scholar
  81. 81.
    Prosser CL, Burnstock G, Kahn J (1960) Conduction in smooth muscle: comparative structural properties. Am J Physiol 199:545–552PubMedPubMedCentralGoogle Scholar
  82. 82.
    Prosser CL, Sperelakis N (1956) Transmission in ganglion free circular muscle from the cat intestine. Am J Physiol 187:536–545PubMedPubMedCentralGoogle Scholar
  83. 83.
    Nagai T, Prosser CL (1963) Electrical parameters of smooth muscle cells. Am J Physiol 204:915–924PubMedPubMedCentralGoogle Scholar
  84. 84.
    Nagai T, Prosser CL (1963) Patterns of conduction in smooth muscle. Am J Physiol 204:910–914PubMedPubMedCentralGoogle Scholar
  85. 85.
    Papasova MP, Nagai T, Prosser CL (1968) Two-component slow waves in smooth muscle of cat stomach. Am J Physiol 214:695–702PubMedPubMedCentralGoogle Scholar
  86. 86.
    Diamant NE, Bortoff A (1969) Nature of the intestinal slow wave frequency gradient. Am J Physiol 216:301–307PubMedPubMedCentralGoogle Scholar
  87. 87.
    Diamant NE, Bortoff A (1969) Effects of transection on the intestinal slow-wave frequency gradient. Am J Physiol 216:734–743PubMedPubMedCentralGoogle Scholar
  88. 88.
    Connor C, Mangel AW, Prosser CL (1979) Propagation and entrainment of slow waves in cat small intestine. Am J Physiol Cell Physiol 237(6):C237–C246CrossRefGoogle Scholar
  89. 89.
    Connor C, Prosser CL (1974) Comparison of ionic effects on longitudinal and circular muscle of cat jejunum. Am J Physiol 226:1212–1218PubMedPubMedCentralGoogle Scholar
  90. 90.
    Suzuki N, Prosser CL, Dahms V (1986) Boundary cells between longitudinal and circular layers: essential for electrical slow waves in cat intestine. Am J Physiol Gastrointest Liver Physiol 250(13):G287–G294CrossRefGoogle Scholar
  91. 91.
    Christensen J, Caprilli R, Lund GF (1969) Electric slow waves in circular muscle of cat colon. Am J Physiol 217:771–776PubMedPubMedCentralGoogle Scholar
  92. 92.
    Christensen J, Hauser RL (1971) Circumferential coupling of electric slow waves in circular muscle of cat colon. Am J Physiol 221:1033–1037PubMedPubMedCentralGoogle Scholar
  93. 93.
    Christensen J, Hauser RL (1971) Longitudinal axial coupling of slow waves in proximal cat colon. Am J Physiol 221:246–250PubMedPubMedCentralGoogle Scholar
  94. 94.
    Christensen J, Rasmus SC (1972) Colon slow waves: size of oscillators and rates of spread. Am J Physiol 223:1330–1333PubMedPubMedCentralGoogle Scholar
  95. 95.
    Szurszewski JH (1969) A migrating electric complex of canine small intestine. Am J Physiol 217:1757–1763PubMedPubMedCentralGoogle Scholar
  96. 96.
    Vantrappen G, Janssens J, Hellemans J, Ghoos Y (1977) The interdigestive motor complex of normal subjects and patients with bacterial overgrowth of the small intestine. J Clin Invest 59:1158–1166PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Konturek PC, Konturek SJ (2003) The history of gastrointestinal hormones and the polish contribution to elucidation of their biology and relation to nervous system. J Physiol Pharmacol 54(S3):83–98PubMedPubMedCentralGoogle Scholar
  98. 98.
    Thuneberg L (1982) Interstitial cells of Cajal: intestinal pacemaker cells? Adv Anat Embryol Cell Biol 71:1–130PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Thomson L, Robinson TL, Lee JCF, Farraway LA, Hughes MJG, Andrews DW, Huizinga JD (1998) Interstitial cells of Cajal generate a rhythmic pacemaker current. Nat Med 4:848–851CrossRefGoogle Scholar
  100. 100.
    Sanders KM, Hwang SJ, Ward SM (2010) Neuroeffector apparatus in gastrointestinal smooth muscle organs. J Physiol 588(23):4621–4639PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Huizinga JD (1999) Gastrointestinal peristalsis: joint action of enteric nerves, smooth muscle, and interstitial cells of Cajal. Microsc Res Tech 47(4):239–247PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Bauer AJ, Publicover NG, Sanders KM (1985) Origin and spread of slow waves in canine gastric antral circular muscle. Am J Physiol Gastrointest Liver Physiol 249(12):G800–G806CrossRefGoogle Scholar
  103. 103.
    Smith TK, Reed JB, Sanders KM (1987) Interaction of two electrical pacemakers in the muscularis of the canine proximal colon. Am J Physiol Cell Physiol 252(21):C290–C299CrossRefGoogle Scholar
  104. 104.
    Smith TK, Reed JB, Sanders KM (1987) Origin and propagation of electrical slow waves in circular muscle of the canine proximal colon. Am J Physiol Cell Physiol 252(21):C215–C224CrossRefGoogle Scholar
  105. 105.
    Hirst GD, Edwards FR (2006) Electrical events underlying organized myogenic contractions of the guinea pig stomach. J Physiol 576(Pt 3):659–665PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Sanders KM, Koh SD, Ro S, Ward SM (2012) Regulation of gastrointestinal motility-insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol 9:633–645PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Bitar KN (2003) Function of gastrointestinal smooth muscle: from signaling to contractile proteins. Am J Med 115(Suppl 3A):15S–23SPubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Suzuki H, Hirst GDS (1999) Regenerative potentials evoked in circular smooth muscle of the antral region of guinea-pig stomach. J Physiol 517(Pt 2):563–573PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Mustafa SM, Thulesius O (2001) Cooling-induced gastrointestinal smooth muscle contractions in the rat. Fundam Clin Pharmacol 15(5):349–354PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Suzuki H (2000) Cellular mechanisms of myogenic activity in gastric smooth muscle. Jpn J Physiol 50(3):289–301PubMedCrossRefGoogle Scholar
  111. 111.
    Edwards FR, Hirst GD (2005) An electrical description of the generation of slow waves in the antrum of the guinea-pig. J Physiol 564(Pt 1):213–232PubMedCrossRefGoogle Scholar
  112. 112.
    Rhee PL, Lee JY, Son HJ, Kim JJ, Rhee JC, Kim S et al (2011) Analysis of pacemaker activity in the human stomach. J Physiol 589(Pt 24):6105–6118PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Wang ZS, Elsenbruch S, Orr WC, Chen JDZ (2003) Detection of gastric slow wave uncoupling from multi-channel electrogastrogram: validations and applications. Neurogastroenterol Motil 15(5):457–465PubMedCrossRefGoogle Scholar
  114. 114.
    Yokoyama S, Ozaki T (1990) Contractions of the longitudinal and circular muscle of the small intestine. Prog Clin Biol Res 327:483–492PubMedGoogle Scholar
  115. 115.
    Kachlik D, Baca V, Stingl J (2010) The spatial arrangement of the human large intestinal wall blood circulation. J Anat 216:335–343PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Phillips RJ, Powley TL (2007) Innervation of the gastrointestinal tract: patterns of aging. Auton Neurosci 136(1–2):1–19PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Bitar KN, Raghavan S, Zakhem E (2014) Tissue engineering in the gut: developments in neuromusculature. Gastroenterology 146(7):1614–1624PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Rao JN, Wang JY (2010) Regulation of gastrointestinal mucosal growth. Morgan & Claypool Life Sciences, San RafaelGoogle Scholar
  119. 119.
    Webb CR (2003) Smooth muscle contraction and relaxation. Adv Physiol Educ 27(4):201–206PubMedCrossRefGoogle Scholar
  120. 120.
    Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG (2016) Mechanisms of vascular smooth muscle contraction and the basis for pharmacologic treatment of smooth muscle disorders. Pharmacol Rev 68(2):476–532PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Herrera AM, McParland BE, Bienkowska A, Tait R, Paré PD, Seow CY (2005) ‘Sarcomeres’ of smooth muscle: functional characteristics and ultrastructural evidence. J Cell Sci 118:2381–2392PubMedCrossRefGoogle Scholar
  122. 122.
    Koeppen B, Stanton B (2010) Berne & Levy physiology, 6th edn. Mosby, St. LouisGoogle Scholar
  123. 123.
    Andersson K-E, Arner A (2004) Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev 84(3):935–986PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Fisher SA (2010) Vascular smooth muscle phenotypic diversity and function. Physiol Genomics 42A(3):169–187PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Eddinger TJ, Meer DP (2007) Myosin II isoforms in smooth muscle: heterogeneity and function. Am J Physiol Cell Physiol 293(2):C493–C508PubMedCrossRefGoogle Scholar
  126. 126.
    Dodge JT, Bevan RD, Bevan JA (1994) Comparison of density of sympathetic varicosities and their closeness to smooth muscle cells in rabbit middle cerebral and ear arteries and their branches. Circ Res 75:916–925PubMedCrossRefGoogle Scholar
  127. 127.
    Bennett MR (1998) Transmission at sympathetic varicosities. Physiology 13(2):79–84CrossRefGoogle Scholar
  128. 128.
    Huizinga JD, Liu LWC, Fitzpatrick A, White E, Gill S, Wang X-Y et al (2008) Deficiency of intramuscular ICC increases fundic muscle excitability but does not impede nitrergic innervation. Am J Physiol Gastrointest Liver Physiol 294(2):G589–G594PubMedCrossRefGoogle Scholar
  129. 129.
    Krizsan-Agbas D, Zhang R, Marzban F, Smith PG (1998) Presynaptic adrenergic facilitation of parasympathetic neurotransmission in sympathectomized rat smooth muscle. J Physiol 512(3):841–849PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Kuo K-H, Seow CY (2004) Contractile filament architecture and force transmission in swine airway smooth muscle. J Cell Sci 117:1503–1511PubMedCrossRefGoogle Scholar
  131. 131.
    Diep HK, Vigmond EJ, Segal SS, Welsh DG (2005) Defining electrical communication in skeletal muscle resistance arteries: a computational approach. J Physiol 568(Pt 1):267–281PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Song KS, Scherer PE, Tang Z, Okamoto T, Li S, Chafel M et al (1996) Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem 271(25):15160–15165PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    North AJ, Galazkiewicz B, Byers TJ, Glenney JR, Small JV (1993) Complementary distributions of vinculin and dystrophin define two distinct sarcolemma domains in smooth muscle. J Cell Biol 120(5):1159–1167PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Aickin CC (1990) Chloride transport across the sarcolemma of vertebrate smooth and skeletal muscle. In: Alvarez-Leefmans FJ, Russell JM (eds) Chloride channels and carriers in nerve, muscle, and glial cells. Springer, New YorkGoogle Scholar
  135. 135.
    Kidwai AM (1985) Biochemistry of the sarcolemma. Subcell Biochem 11:181–193PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    de Groat WC, Wickens C (2013) Organization of the neural switching circuitry underlying reflex micturition. Acta Physiol (Oxf) 207(1):66–84CrossRefGoogle Scholar
  137. 137.
    Zhu JX, Wu XY, Owyang C, Li Y (2001) Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat. J Physiol 530(3):431–442PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Liu LW, Thuneberg L, Huizinga JD (1995) Cyclopiazonic acid, inhibiting the endoplasmic reticulum calcium pump, reduces the canine colonic pacemaker frequency. J Pharmacol Exp Ther 275(2):1058–1068PubMedPubMedCentralGoogle Scholar
  139. 139.
    Wuytack F, Raeymaekers L, Verbist J, Jones LR, Casteels R (1987) Smooth-muscle endoplasmic reticulum contains a cardiac-like form of calsequestrin. Biochim Biophys Acta 899(2):151–158PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Milner RE, Baksh S, Shemanko C, Carpenter MR, Smillie L, Vance JE et al (1991) Calreticulin, and not calsequestrin, is the major calcium binding protein of smooth muscle sarcoplasmic reticulum and liver endoplasmic reticulum. J Biol Chem 266(11):7155–7165PubMedPubMedCentralGoogle Scholar
  141. 141.
    Volpe P, Martini A, Furlan S, Meldolesi J (1994) Calsequestrin is a component of smooth muscles: the skeletal- and cardiac-muscle isoforms are both present, although in highly variable amounts and ratios. Biochem J 301(Pt 2):465–469PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Tang DD (2008) Intermediate filaments in smooth muscle. Am J Physiol Cell Physiol 294(4):C869–C878PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Matsuoka R, Yoshida MC, Furutani Y, Imamura S, Kanda N, Yanagisawa M et al (1993) Human smooth muscle myosin heavy chain gene mapped to chromosomal region 16q12. Am J Med Genet 46(1):61–67PubMedCrossRefGoogle Scholar
  144. 144.
    Alkahtani R, Mahavadi S, Al-Shboul O, Alsharari S, Grider JR, Murthy KS (2013) Changes in the expression of smooth muscle contractile proteins in TNBS- and DSS-induced colitis in mice. Inflammation 36(6):1304–1315PubMedCrossRefGoogle Scholar
  145. 145.
    Perrin BJ, Ervasti JM (2010) The actin gene family: function follows isoform. Cytoskeleton (Hoboken) 67(10):630–634CrossRefGoogle Scholar
  146. 146.
    Löfgren M, Ekblad E, Morano I, Arner A (2003) Nonmuscle myosin motor of smooth muscle. J Gen Physiol 121(4):301–310PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Xu JQ, Harder BA, Uman P, Craig R (1996) Myosin filament structure in vertebrate smooth muscle. J Cell Biol 134(1):53–66PubMedCrossRefGoogle Scholar
  148. 148.
    Craig R, Woodhead JL (2006) Structure and function of myosin filaments. Curr Opin Struct Biol 16(2):204–212PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Kim HR, Appel S, Vetterkind S, Gangopadhyay SS, Morgan KG (2008) Smooth muscle signalling pathways in health and disease. J Cell Mol Med 12(6a):2165–2180PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Drew JS, Murphy RA (1997) Actin isoform expression, cellular heterogeneity, and contractile function in smooth muscle. Can J Physiol Pharmacol 75(7):869–877PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Lehman W, Morgan KG (2012) Structure and dynamics of the actin-based smooth muscle contractile and cytoskeletal apparatus. J Muscle Res Cell Motil 33(6):461–469PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Miwa T, Manabe Y, Kurokawa K, Kamada S, Kanda N, Bruns G et al (1991) Structure, chromosome location, and expression of the human smooth muscle (enteric type) gamma-actin gene: evolution of six human actin genes. Mol Cell Biol 11(6):3296–3306PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Bond M, Somlyo AV (1982) Dense bodies and actin polarity in vertebrate smooth muscle. J Cell Biol 95(2 Pt 1):403–413PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Peter AK, Cheng H, Ross RS, Knowlton KU, Chen J (2011) The costamere bridges sarcomeres to the sarcolemma in striated muscle. Prog Pediatr Cardiol 31(2):83–88PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Bloch RJ, Reed P, O’Neill A, Strong J, Williams M, Porter N, González-Serratos H (2004) Costameres mediate force transduction in healthy skeletal muscle and are altered in muscular dystrophies. J Muscle Res Cell Motil 25(8):590–592PubMedPubMedCentralGoogle Scholar
  156. 156.
    Jaka O, Casas-Fraile L, López de Munain A, Sáenz A (2015) Costamere proteins and their involvement in myopathic processes. Expert Rev Mol Med 17:e12CrossRefPubMedGoogle Scholar
  157. 157.
    Knöll R, Buyandelger B, Lab M (2011) The sarcomeric Z-disc and Z-discopathies. J Biomed Biotechnol 2011:569628PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Bloch RJ, Capetanaki Y, O’Neill A, Reed P, Williams MW, Resneck WG et al (2002) Costameres: repeating structures at the sarcolemma of skeletal muscle. Clin Orthop Relat Res 403:S203–S210CrossRefGoogle Scholar
  159. 159.
    Walsh MP (1994) Calmodulin and the regulation of smooth muscle contraction. Mol Cell Biochem 135(1):21–41PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Bernstein BW, Bamburg JR (2010) ADF/cofilin: a functional node in cell biology. Trends Cell Biol 20(4):187–195PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Li X(E), Tobacman LS, Mun JY, Craig R, Fischer S, Lehman W (2011) Tropomyosin position on F-actin revealed by EM reconstruction and computational chemistry. Biophys J 100(4):1005–1013PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Bing W, Razzaq A, Sparrow J, Marston S (1998) Tropomyosin and troponin regulation of wild type and E93K mutant actin filaments from drosophila flight muscle: charge reversal on actin changes actin-tropomyosin from on to off state. J Biol Chem 273(24):15016–15021PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Barua B (2013) Periodicities designed in the tropomyosin sequence and structure define its functions. Bioarchitecture 3(3):51–56PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Landis CA, Bobkova A, Homsher E, Tobacman LS (1997) The active state of the thin filament is destabilized by an internal deletion in tropomyosin. J Biol Chem 272:14051–14056PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Rao JN, Rivera-Santiago R, Li XE, Lehman W, Dominguez R (2012) Structural analysis of smooth muscle tropomyosin α and β isoforms. J Biol Chem 287(5):3165–3174PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Schmidt WM, Lehman W, Moore JR (2015) Direct observation of tropomyosin binding to actin filaments. Cytoskeleton (Hoboken) 72(6):292–303CrossRefGoogle Scholar
  167. 167.
    Fischer S, Rynkiewicz MJ, Moore JR, Lehman W (2016) Tropomyosin diffusion over actin subunits facilitates thin filament assembly. Struct Dyn 3(1):012002PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Moran CM, Garriock RJ, Miller MK, Heimark RL, Mudry RE, Gregorio CC, Krieg PA (2008) Expression of the fast twitch troponin complex, fTnT, fTnI and fTnC, in vascular smooth muscle. Cell Motil Cytoskelet 65(8):652–661CrossRefGoogle Scholar
  169. 169.
    Gomes AV, Potter JD, Szczesna-Cordary D (2002) The role of troponins in muscle contraction. IUBMB Life 54:323–333PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Galińska-Rakoczy A, Engel P, Xu C, Jung HS, Craig R, Tobacman LS, Lehman W (2008) Structural basis for the regulation of muscle contraction by troponin and tropomyosin. J Mol Biol 379(5):929–935PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Matthew JD, Khromov AS, McDuffie MJ, Somlyo AV, Somlyo AP, Taniguchi S, Takahashi K (2000) Contractile properties and proteins of smooth muscles of a calponin knockout mouse. J Physiol 529(Pt 3):811–824PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Chen M, Li AY (1994) Caldesmon, calponin and contractile regulation of the vertebrate smooth muscle. Sheng Li Ke Xue Jin Zhan 25(4):314–318PubMedPubMedCentralGoogle Scholar
  173. 173.
    Gerthoffer WT, Pohl J (1994) Caldesmon and calponin phosphorylation in regulation of smooth muscle contraction. Can J Physiol Pharmacol 72(11):1410–1414PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Ulrich C, Quillici DR, Schegg K, Woolsey R, Nordmeier A, Buxton ILO (2012) Uterine smooth muscle S-nitrosylproteome in pregnancy. Mol Pharmacol 81(2):143–153PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Chokhavatia S, Anuras S (1991) Neuromuscular disease of the gastrointestinal tract. Am J Med Sci 301(3):201–214PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Duan D (2006) Challenges and opportunities in dystrophin-deficient cardiomyopathy gene therapy. Hum Mol Genet 15(2):R253–R261PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Harvey PA, Leinwand LA (2011) Cellular mechanisms of cardiomyopathy. J Cell Biol 194(3):355–365PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Ali F, Paré PD, Seow CY (2005) Models of contractile units and their assembly in smooth muscle. Can J Physiol Pharmacol 83(10):825–831PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Auerbach D, Bantle S, Keller S, Hinderling V, Leu M, Ehler E, Perriard J-C (1999) Different domains of the M-band protein myomesin are involved in myosin binding and M-band targeting. Mol Biol Cell 10(5):1297–1308PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Kargacin GJ, Cooke PH, Abramson SB, Fay FS (1989) Periodic organization of the contractile apparatus in smooth muscle revealed by the motion of dense bodies in single cells. J Cell Biol 108:1465–1475PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Agarkova I, Perriard JC (2005) The M-band: an elastic web that crosslinks thick filaments in the center of the sarcomere. Trends Cell Biol 15(9):477–485PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Maruyama K (1994) Connectin, an elastic protein of striated muscle. Biophys Chem 50(1–2):73–85PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Tskhovrebova L, Trinick J (2017) Titin and nebulin in thick and thin filament length regulation. Subcell Biochem 82:285–318PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Granzier H, Labeit S (2007) Structure-function relations of the giant elastic protein titin in striated and smooth muscle cells. Muscle Nerve 36(6):740–755PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Trinick J (1992) Understanding the functions of titin and nebulin. FEBS Lett 307(1):44–48PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Kuo K-H, Wang L, Paré PD, Ford LE, Seow CY (2001) Myosin thick filament lability induced by mechanical strain in airway smooth muscle. J Appl Physiol 90(5):1811–1816PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Heasley LE (2001) Autocrine and paracrine signaling through neuropeptide receptors in human cancer. Oncogene 20(13):1563–1569PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Plaisancié P, Barcelo A, Moro F, Claustre J, Chayvialle J-A, Cuber J-C (1998) Effects of neurotransmitters, gut hormones, and inflammatory mediators on mucus discharge in rat colon. Am J Physiol Gastrointest Liver Physiol 275(5):G1073–G1084CrossRefGoogle Scholar
  189. 189.
    Tognini P (2017) Gut microbiota: a potential regulator of neurodevelopment. Front Cell Neurosci 11:25PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Kotlikoff ML, Wang YX, Xin HB, Ji G (2002) Calcium release by ryanodine receptors in smooth muscle. Novartis Found Symp 246(108–24):221–227Google Scholar
  191. 191.
    Somlyo AP, Somlyo AV (1994) Signal transduction and regulation in smooth muscle. Nature 372:231–236PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Borysova L, Shabir S, Walsh MP, Burdyga T (2011) The importance of Rho-associated kinase-induced Ca2+ sensitization as a component of electromechanical and pharmacomechanical coupling in rat ureteric smooth muscle. Cell Calcium 50(4):393–405PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Bonnevier J, Malmqvist U, Sonntag D, Schroeter M, Nilsson H, Pfitzer G, Arner A (2002) Sustained norepinephrine contraction in the rat portal vein is lost when Ca2+ is replaced with Sr2+. Am J Physiol Cell Physiol 282(4):C845–C852PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    McCorry LK (2007) Physiology of the autonomic nervous system. Am J Pharm Educ 71(4):78PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Browning KN, Travagli RA (2014) Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol 4(4):1339–1368PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Gershon MD (1967) Inhibition of gastrointestinal movement by sympathetic nerve stimulation: the site of action. J Physiol 189(2):317–327PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Modlin IM, Champaneria MC, Bornschein J, Kidd M (2006) Evolution of the diffuse neuroendocrine system—clear cells and cloudy origins. Neuroendocrinology 84(2):69–82PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Keith A (1915) A new theory of the causation of enterostasis. Lancet 2(4799):371–375CrossRefGoogle Scholar
  199. 199.
    Maeda H, Yamagata A, Nishikawa S, Yoshinaga K, Kobayashi S, Nishi K, Nishikawa S (1992) Requirement of c-Kit for development of intestinal pacemaker system. Development 116:369–375PubMedPubMedCentralGoogle Scholar
  200. 200.
    Rolle U, Piotrowska AP, Nemeth L, Puri P (2002) Altered distribution of interstitial cells of Cajal in Hirschsprung disease. Arch Pathol Lab Med 126:928–933PubMedPubMedCentralGoogle Scholar
  201. 201.
    Huizinga JD, Thuneberg L, Klüppel M, Malysz J, Mikkelsen HB, Bernstein A (1995) W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373:347–349PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Chen Y, Shamu T, Chen H, Besmer P, Sawyers CL, Chi P (2011) Visualization of the interstitial cells of Cajal (ICC) network in mice. J Vis Exp 53:e2802Google Scholar
  203. 203.
    Al-Sajee D, Huizinga JD (2012) Interstitial cells of Cajal: pathology, injury and repair. Sultan Qaboos Univ Med J 12(4):411–421PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Rühl A (2009) Enteric nervous system: glial cells and interstitial cells of Cajal. In: Squire LR (ed) Encyclopedia of neuroscience. Academic Press, OxfordGoogle Scholar
  205. 205.
    Vannucchi M-G, Traini C, Manetti M, Ibba-Manneschi L, Faussone-Pellegrini M-S (2013) Telocytes express PDGFRα in the human gastrointestinal tract. J Cell Mol Med 17(9):1099–1108PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Aoyama M, Yamada A, Wang J, Ohya S, Furuzono S, Goto T et al (2004) Requirement of ryanodine receptors for pacemaker Ca2+ activity in ICC and HEK293 cells. J Cell Sci 117:2813–2825PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Gregersen H, Christensen J (2000) Gastrointestinal tone. Neurogastroenterol Mot 12:501–508CrossRefGoogle Scholar
  208. 208.
    Montgomery LEA, Tansey EA, Johnson CD, Roe SM, Quinn JG (2016) Autonomic modification of intestinal smooth muscle contractility. Adv Physiol Educ 40(1):104–109PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Donnerer J, Liebmann I, Holzer-Petsche U (2014) Hexamethonium-induced augmentation of the electrical twitch response in the guinea-pig ileum longitudinal muscle-myenteric plexus strip. Neurosci Lett 577:34–37PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Every-Palmer S, Lentle RG, Reynolds G, Hulls C, Chambers P, Dunn H, Ellis PM (2017) Spatiotemporal mapping techniques show clozapine impairs neurogenic and myogenic patterns of activity in the colon of the rabbit in a dose-dependent manner. Front Pharmacol 8:209PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Costa M, Dodds KN, Wiklendt L, Spencer NJ, Brookes SJ, Dinning PG (2013) Neurogenic and myogenic motor activity in the colon of the guinea pig, mouse, rabbit, and rat. Am J Physiol Gastrointest Liver Physiol 305(10):G749–G759PubMedCrossRefGoogle Scholar
  212. 212.
    Dinning PG, Costa M, Brookes SJ, Spencer NJ (2012) Neurogenic and myogenic motor patterns of rabbit proximal, mid, and distal colon. Am J Physiol Gastrointest Liver Physiol 303(1):G83–G92PubMedCrossRefGoogle Scholar
  213. 213.
    Lentle RG, Reynolds GW, Janssen PW (2013) Gastrointestinal tone; its genesis and contribution to the physical processes of digestion. Neurogastroenterol Motil 25(12):931–942PubMedCrossRefGoogle Scholar
  214. 214.
    Huxley H, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173(4412):973–976PubMedCrossRefGoogle Scholar
  215. 215.
    Huxley AF, Niedergerke R (1954) Structural changes in muscle during contraction: interference microscopy of living muscle fibres. Nature 173(4412):971–973PubMedCrossRefGoogle Scholar
  216. 216.
    Horowits R, Podolsky RJ (1987) The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments. J Cell Biol 105(5):2217–2223PubMedCrossRefGoogle Scholar
  217. 217.
    Petkov GV, Boev KK (1996) The role of sarcoplasmic reticulum and sarcoplasmic reticulum Ca2+-ATPase in the smooth muscle tone of the cat gastric fundus. Pflugers Arch 431(6):928–935PubMedCrossRefGoogle Scholar
  218. 218.
    Wray S, Burdyga T, Noble K (2005) Calcium signalling in smooth muscle. Cell Calcium 38(3–4):397–407PubMedCrossRefGoogle Scholar
  219. 219.
    Grasa L, Rebollar E, Arruebo MP, Plaza MA, Murillo MD (2004) The role of Ca2+ in the contractility of rabbit small intestine in vitro. J Physiol Pharmacol 55:639–650PubMedGoogle Scholar
  220. 220.
    Bolton TB (2006) Calcium events in smooth muscles and their interstitial cells; physiological roles of sparks. J Physiol 570(Pt 1):5–11PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Smith JB (1996) Calcium homeostasis in smooth muscle cells. New Horiz 4(1):2–18PubMedPubMedCentralGoogle Scholar
  222. 222.
    Guerrero-Hernández A, Gómez-Viquez L, Guerrero-Serna G, Rueda A (2002) Ryanodine receptors in smooth muscle. Front Biosci 7:d1676–d1688PubMedCrossRefPubMedCentralGoogle Scholar
  223. 223.
    Van Petegem F (2012) Ryanodine receptors: structure and function. J Biol Chem 287(38):31624–31632PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Meissner G (1986) Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. J Biol Chem 261(14):6300–6306PubMedPubMedCentralGoogle Scholar
  225. 225.
    Lesh RE, Nixon GF, Fleischer S, Airey JA, Somlyo AP, Somlyo AV (1998) Localization of ryanodine receptors in smooth muscle. Circ Res 82:175–185PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    Ugalde-Silva P, Gonzalez-Lugo O, Navarro-Garcia F (2016) Tight junction disruption induced by type 3 secretion system effectors injected by enteropathogenic and enterohemorrhagic Escherichia coli. Front Cell Infect Microbiol 6:87PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    He WQ, Qiao YN, Peng YJ, Zha JM, Zhang CH, Chen C, et al (2013) Altered contractile phenotypes of intestinal smooth muscle in mice deficient in myosin phosphatase target subunit 1. Gastroenterology 144(7):1456–1465CrossRefPubMedCentralGoogle Scholar
  228. 228.
    Abrams J, Davuluri G, Seiler C, Pack M (2012) Smooth muscle caldesmon modulates peristalsis in the wild type and non-innervated zebrafish intestine. Neurogastroenterol Motil 24(3):288–299PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Murthy KS (2006) Signaling for contraction and relaxation in smooth muscle of the gut. Annu Rev Physiol 68:345–374PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Jaaro H, Rubinfeld H, Hanoch T, Seger R (1997) Nuclear translocation of mitogen-activated protein kinase kinase (MEK1) in response to mitogenic stimulation. Proc Natl Acad Sci U S A 94(8):3742–3747PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Schaeffer HJ, Weber MJ (1999) Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19(4):2435–2444PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Magnier C, Papp B, Corvazier E, Bredoux R, Wuytack F, Eggermont J et al (1992) Regulation of sarco-endoplasmic reticulum Ca(2+)-ATPases during platelet-derived growth factor-induced smooth muscle cell proliferation. J Biol Chem 267(22):15808–15815PubMedGoogle Scholar
  233. 233.
    Raeymaekers L, Jones LR (1986) Evidence for the presence of phospholamban in the endoplasmic reticulum of smooth muscle. Biochim Biophys Acta 882(2):258–265PubMedCrossRefGoogle Scholar
  234. 234.
    Ferguson DG, Young EF, Raeymaekers L, Kranias EG (1988) Localization of phospholamban in smooth muscle using immunogold electron microscopy. J Cell Biol 107(2):555–562PubMedCrossRefGoogle Scholar
  235. 235.
    Paul RJ (1998) The role of phospholamban and SERCA3 in regulation of smooth muscle-endothelial cell signalling mechanisms: evidence from gene-ablated mice. Acta Physiol Scand 164(4):589–597PubMedCrossRefGoogle Scholar
  236. 236.
    Chen W, Lah M, Robinson PJ, Kemp BE (1994) Phosphorylation of phospholamban in aortic smooth muscle cells and heart by calcium/calmodulin-dependent protein kinase II. Cell Signal 6(6):617–630PubMedCrossRefGoogle Scholar
  237. 237.
    Eto M, Ohmori T, Suzuki M, Furuya K, Morita F (1995) A novel protein phosphatase-1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization. J Biochem 118(6):1104–1107PubMedCrossRefGoogle Scholar
  238. 238.
    Perrino BA (2016) Calcium sensitization mechanisms in gastrointestinal smooth muscles. J Neurogastroenterol Motil 22(2):213–225PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Zhang Y, Hermanson ME, Eddinger TJ (2013) Tonic and phasic smooth muscle contraction is not regulated by the PKCα—CPI-17 pathway in swine stomach antrum and fundus. PLoS ONE 8(9):e74608PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Mizuno Y, Isotani E, Huang J, Ding H, Stull JT, Kamm KE (2008) Myosin light chain kinase activation and calcium sensitization in smooth muscle in vivo. Am J Physiol Cell Physiol 295(2):C358–C364PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T et al (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389(6654):990–994PubMedCrossRefGoogle Scholar
  242. 242.
    Hitchcock-DeGregori SE, Irving TC (2014) Hugh E. Huxley: the compleat biophysicist. Biophys J 107(7):1493–1501PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Huxley HE (2008) Memories of early work on muscle contraction and regulation in the 1950’s and 1960’s. Biochem Biophys Res Commun 369:34–42PubMedCrossRefGoogle Scholar
  244. 244.
    Maruyama K (1995) Birth of the sliding filament concept in muscle contraction. J Biochem 117(1):1–6PubMedCrossRefGoogle Scholar
  245. 245.
    Squire JM (2016) Muscle contraction: sliding filament history, sarcomere dynamics and the two Huxleys. Global Cardiol Sci Pract 11:1–23Google Scholar
  246. 246.
    Rall JA (2014) Mechanism of muscular contraction, perspectives in physiology. Birth of the sliding filament model of muscular contraction: proposal. Springer, New YorkGoogle Scholar
  247. 247.
    Huxley HE (2004) Fifty years of muscle and the sliding filament hypothesis. Eur J Biochem 271:1403–1415PubMedCrossRefGoogle Scholar
  248. 248.
    Haeberle JR (1994) Calponin decreases the rate of cross-bridge cycling and increases maximum force production by smooth muscle myosin in an in vitro motility assay. J Biol Chem 269(17):12424–12431PubMedGoogle Scholar
  249. 249.
    Arner A, Malmqvist U (1998) Cross-bridge cycling in smooth muscle: a short review. Acta Physiol Scand 164(4):363–372PubMedCrossRefGoogle Scholar
  250. 250.
    Preller M, Holmes KC (2013) The myosin start-of-power stroke state and how actin binding drives the power stroke. Cytoskeleton (Hoboken) 70(10):651–660CrossRefGoogle Scholar
  251. 251.
    Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology, 4th edn. WH Freeman, New YorkGoogle Scholar
  252. 252.
    Marcucci L, Truskinovsky L (2010) Mechanics of the power stroke in myosin II. Phys Rev E Stat Nonlin Soft Matter Phys 81(5 Pt 1):051915PubMedCrossRefPubMedCentralGoogle Scholar
  253. 253.
    Chen B, Gao H (2011) Motor force homeostasis in skeletal muscle contraction. Biophys J 101(2):396–403PubMedPubMedCentralCrossRefGoogle Scholar
  254. 254.
    Tyska MJ, Dupuis DE, Guilford WH, Patlak JB, Waller GS, Trybus KM et al (1999) Two heads of myosin are better than one for generating force and motion. Proc Natl Acad Sci U S A 96(8):4402–4407PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Greenberg MJ, Lin T, Shuman H, Ostap EM (2015) Mechanochemical tuning of myosin-I by the N-terminal region. PNAS 112(26):E3337–E3344PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Hai C-M, Kim HR (2005) An expanded latch-bridge model of protein kinase C-mediated smooth muscle contraction. J Appl Physiol 98:1356–1365PubMedCrossRefPubMedCentralGoogle Scholar
  257. 257.
    Han S, Speich JE, Eddinger TJ, Berg KM, Miner AS, Call C, Ratz PH (2006) Evidence for absence of latch-bridge formation in muscular saphenous arteries. Am J Physiol Heart Circ Physiol 291(1):H138–H146PubMedCrossRefPubMedCentralGoogle Scholar
  258. 258.
    Stull JT, Gallagher PJ, Herring BP, Kamm KE (1991) Vascular smooth muscle contractile elements. Hypertension 17(6 Pt 1):723–732PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Murphy RA, Rembold CM (2005) The latch-bridge hypothesis of smooth muscle contraction. Can J Physiol Pharmacol 83(10):857–864PubMedPubMedCentralCrossRefGoogle Scholar
  260. 260.
    Harris DE, Warshaw DM (1991) Length vs. active force relationship in single isolated smooth muscle cells. Am J Physiol 260(5 Pt 1):C1104–C1112CrossRefGoogle Scholar
  261. 261.
    Stephens NL, Van Niekerk W (1977) Isometric and isotonic contractions in airway smooth muscle. Can J Physiol Pharmacol 55(4):833–838PubMedCrossRefPubMedCentralGoogle Scholar
  262. 262.
    Oishi K, Itoh Y, Isshiki Y, Kai C, Takeda Y, Yamaura K et al (2000) Agonist-induced isometric contraction of smooth muscle cell-populated collagen gel fiber. Am J Physiol Cell Physiol 279(5):C1432–C1442PubMedCrossRefPubMedCentralGoogle Scholar
  263. 263.
    Faulkner JA (1985) Terminology for contractions of muscles during shortening, while isometric, and during lengthening. J Appl Physiol 95(2):455–459CrossRefGoogle Scholar
  264. 264.
    Faulkner JA (2003) Terminology for contractions of muscles during shortening, while isometric, and during lengthening. J Appl Physiol 95(2):455–459PubMedCrossRefGoogle Scholar
  265. 265.
    Colliander EB, Tesch PA (1990) Effects of eccentric and concentric muscle actions in resistance training. Acta Physiol Scand 140(1):31–39PubMedCrossRefGoogle Scholar
  266. 266.
    Alfredson H, Pietilä T, Jonsson P, Lorentzon R (1998) Heavy-load eccentric calf muscle training for the treatment of chronic Achilles tendinosis. Am J Sports Med 26(3):360–366PubMedCrossRefGoogle Scholar
  267. 267.
    Satyendra L, Byl N (2006) Effectiveness of physical therapy for Achilles tendinopathy: an evidence based review of eccentric exercises. Isokinet Exerc Sci 14(1):71–80Google Scholar
  268. 268.
    Jonathan MN, Nathan C, Chris H, Van Dusseldorp T, Kravitz L, Kerksick CM (2017) The effects of eccentric contraction duration on muscle strength, power production, vertical jump, and soreness. J Strength Cond Res 31(3):773–786CrossRefGoogle Scholar
  269. 269.
    Behrens M, Mau-Moeller A, Weippert M, Fuhrmann J, Wegner K, Skripitz R et al (2015) Caffeine-induced increase in voluntary activation and strength of the quadriceps muscle during isometric, concentric and eccentric contractions. Sci Rep 5:10209PubMedPubMedCentralCrossRefGoogle Scholar
  270. 270.
    Ulrich G, Parstorfer M (2016) Effects of plyometric vs. concentric and eccentric conditioning contractions on upper body postactivation potentiation. Int J Sports Physiol Perform 13:1–21Google Scholar
  271. 271.
    Duthie HL, Kirk D (1978) Electrical activity of human colonic smooth muscle in vitro. J Physiol 283:319–330PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Yensen C, Matar W, Renaud J-M (2002) K+-induced twitch potentiation is not due to longer action potential. Am J Physiol Cell Physiol 283(1):C169–C177PubMedCrossRefPubMedCentralGoogle Scholar
  273. 273.
    Petit J, Filippi GM, Gioux M, Hunt CC, Laporte Y (1990) Effects of tetanic contraction of motor units of similar type on the initial stiffness to ramp stretch of the cat peroneus longus muscle. J Neurophysiol 64(6):1724–1732PubMedCrossRefPubMedCentralGoogle Scholar
  274. 274.
    Renaud JM, Comtois A (1994) The effect of K+ on the recovery of the twitch and tetanic force following fatigue in the sartorius muscle of the frog, Rana pipiens. J Muscle Res Cell Motil 15(4):420–431PubMedCrossRefPubMedCentralGoogle Scholar
  275. 275.
    Alipour-Haghighi F, Titze IR, Perlman AL (1989) Tetanic contraction in vocal fold muscle. J Speech Hear Res 32(2):226–231PubMedCrossRefPubMedCentralGoogle Scholar
  276. 276.
    Hood DA, Gorski J, Terjung RL (1986) Oxygen cost of twitch and tetanic isometric contractions of rat skeletal muscle. Am J Physiol 250(4 Pt 1):E449–E456PubMedPubMedCentralGoogle Scholar
  277. 277.
    Zemlickova E, Johannes F-J, Aitken A, Dubois T (2004) Association of CPI-17 with protein kinase C and casein kinase I. Biochem Biophys Res Commun 316(1):39–47PubMedCrossRefPubMedCentralGoogle Scholar
  278. 278.
    Rattan S (2017) Ca2+/calmodulin/MLCK pathway initiates, and RhoA/ROCK maintains, the internal anal sphincter smooth muscle tone. Am J Physiol Gastrointest Liver Physiol 312(1):G63–G66PubMedCrossRefPubMedCentralGoogle Scholar
  279. 279.
    Ringvold HC, Khalil RA (2017) Protein kinase C as regulator of vascular smooth muscle function and potential target in vascular disorders. Adv Pharmacol 78:203–301PubMedCrossRefPubMedCentralGoogle Scholar
  280. 280.
    Huang J, Mahavadi S, Sriwai W, Hu W, Murthy KS (2006) Gi-coupled receptors mediate phosphorylation of CPI-17 and MLC20 via preferential activation of the PI3K/ILK pathway. Biochem J 396(1):193–200PubMedPubMedCentralCrossRefGoogle Scholar
  281. 281.
    Luksha L, Agewall S, Kublickiene K (2009) Endothelium-derived hyperpolarizing factor in vascular physiology and cardiovascular disease. Atherosclerosis 202(2):330–344PubMedCrossRefPubMedCentralGoogle Scholar
  282. 282.
    Ozkor MA, Quyyumi AA (2011) Endothelium-derived hyperpolarizing factor and vascular function. Cardiol Res Pract 2011:156146PubMedPubMedCentralCrossRefGoogle Scholar
  283. 283.
    Williams SP, Dorn GW 2nd, Rapoport RM (1994) Prostaglandin I2 mediates contraction and relaxation of vascular smooth muscle. Am J Physiol 267(2 Pt 2):H796–H803PubMedGoogle Scholar
  284. 284.
    Roger EM, Keir PG (2013) The motor unit and muscle action. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (eds) Principles of neural science, 5th ed. McGraw-Hill Medical, New YorkGoogle Scholar
  285. 285.
    Kaya RD, Hoffman RL, Clark BC (2014) Reliability of a Modified Motor Unit Number Index (MUNIX) technique. J Electromyogr Kinesiol 24(1):18–24PubMedCrossRefPubMedCentralGoogle Scholar
  286. 286.
    Monti RJ, Roy RR, Edgerton VR (2001) Role of motor unit structure in defining function. Muscle Nerve 24(7):848–866PubMedCrossRefPubMedCentralGoogle Scholar
  287. 287.
    Song NN, Xu WX (2016) Physiological and pathophysiological meanings of gastrointestinal smooth muscle motor unit SIP syncytium. Sheng Li Xue Bao 68(5):621–627PubMedPubMedCentralGoogle Scholar
  288. 288.
    Koh SD, Ward SM, Sanders KM (2012) Ionic conductances regulating the excitability of colonic smooth muscles. Neurogastroenterol Motil 24:705–718PubMedPubMedCentralCrossRefGoogle Scholar
  289. 289.
    Bogaerts M, Deggoujf N, Huart C, Hupin C, Laureyns G, Lemkens P et al (2012) Physiology of the mouth and pharynx, Waldeyer’s ring, taste and smell. B-ENT 8(19):13–20PubMedPubMedCentralGoogle Scholar
  290. 290.
    Donner MW, Bosnia JF, Robertson DL (1985) Anatomy and physiology of the pharynx. Gastrointest Radiol 10(1):197–212CrossRefGoogle Scholar
  291. 291.
    Salsench J, Martínez-Gomis J, Torrent J, Bizar J, Samsó J, Peraire M (2005) Relationship between duration of unilateral masticatory cycles and the type of lateral dental guidance: a preliminary study. Int J Prosthodont 18(4):339–346PubMedPubMedCentralGoogle Scholar
  292. 292.
    Palmer JB, Rudin NJ, Lara G, Crompton AW (1992) Coordination of mastication and swallowing. Dysphagia 7(4):187–200PubMedCrossRefPubMedCentralGoogle Scholar
  293. 293.
    Gerstner G, Madhavan S, Crane E (2011) Mammalian oral rhythms and motor control. In: Klika V (ed) Biomechanics in applications. InTech, CroatiaGoogle Scholar
  294. 294.
    Hedegård B, Lundberg M, Wictorin L (1970) Masticatory function—a cineradiographic study. IV. Duration of the masticatory cycle. Acta Odontol Scand 28(6):859–865PubMedCrossRefPubMedCentralGoogle Scholar
  295. 295.
    Bates JF, Stafford GD, Harrison A (1975) Masticatory function—a review of the literature. 1. The form of the masticatory cycle. J Oral Rehabil 2(3):281–301PubMedCrossRefPubMedCentralGoogle Scholar
  296. 296.
    Langenbach GEJ, Zhang F, Herring SW, Hannam AG (2002) Modelling the masticatory biomechanics of a pig. J Anat 201(5):383–393PubMedPubMedCentralCrossRefGoogle Scholar
  297. 297.
    Rowlands JA (1984) Videofluorography: the role of temporal averaging. Med Phys 11(2):129–136PubMedCrossRefPubMedCentralGoogle Scholar
  298. 298.
    Martin-Harris B, Jones B (2008) The videofluorographic swallowing study. Phys Med Rehabil Clin N Am 19(4):769–785PubMedPubMedCentralCrossRefGoogle Scholar
  299. 299.
    Shigezumi M, Shibata T, Arisue M, Hattori M, Ishijima T, Hirai T (2000) A case of habitual temporomandibular dislocation treated with eminoplasty using T-shaped titanium miniplate and its evaluation of mandibular movement. J Jpn Soc TMJ 12(1):62–67Google Scholar
  300. 300.
    Gedrange T, Walter B, Tetzlaff I, Kasper M, Schubert H, Harzer W, Bauer R (2003) Regional alterations in fiber type distribution, capillary density, and blood flow after lower jaw sagittal advancement in pig masticatory muscles. J Dent Res 82(7):570–574PubMedCrossRefPubMedCentralGoogle Scholar
  301. 301.
    Landes CA, Sterz M (2003) Evaluation of condylar translation by sonography versus axiography in orthognathic surgery patients. J Oral Maxillofac Surg 61(12):1410–1417PubMedCrossRefPubMedCentralGoogle Scholar
  302. 302.
    Minami I, Oogai K, Nemoto T, Nakamura T, Igarashi Y, Wakabayashi N (2010) Measurement of jerk-cost using a triaxial piezoelectric accelerometer for the evaluation of jaw movement smoothness. J Oral Rehabil 37(8):590–595PubMedPubMedCentralGoogle Scholar
  303. 303.
    Chambers ES, Bridge MW, Jones DA (2009) Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J Physiol 587(8):1779–1794PubMedPubMedCentralCrossRefGoogle Scholar
  304. 304.
    Steele CM, Miller AJ (2010) Sensory input pathways and mechanisms in swallowing: a review. Dysphagia 25(4):323–333PubMedPubMedCentralCrossRefGoogle Scholar
  305. 305.
    Rudenga K, Green B, Nachtigal D, Small DM (2010) Evidence for an integrated oral sensory module in the human anterior ventral insula. Chem Senses 35(8):693–703PubMedPubMedCentralCrossRefGoogle Scholar
  306. 306.
    Bu’Lock F, Woolridge MW, Bairn JD (1990) Development of coordination of sucking, swallowing, and breathing: ultrasound study of term and preterm infants. Dev Med Child Neurol 32:669–678CrossRefGoogle Scholar
  307. 307.
    Gewolb IH, Vice FL, Schweitzer-Kenney EL, Taciak VL, Bosma JF (2001) Developmental patterns of rhythmic suck and swallow in preterm infants. Dev Med Child Neurol 43:22–27PubMedCrossRefPubMedCentralGoogle Scholar
  308. 308.
    Matsuo K, Palmer JB (2008) Anatomy and physiology of feeding and swallowing—normal and abnormal. Phys Med Rehabil Clin N Am 19(4):691–707PubMedPubMedCentralCrossRefGoogle Scholar
  309. 309.
    Cassiani RA, Santos CM, Parreira LC, Dantas RO (2011) The relationship between the oral and pharyngeal phases of swallowing. Clinics (Sao Paulo) 66(8):1385–1388CrossRefGoogle Scholar
  310. 310.
    Jaffer NM, Edmund NG, Au FW-F, Steele CM (2015) Fluoroscopic evaluation of oro-pharyngeal dysphagia: anatomy, technique, and common etiologies. AJR Am J Roentgenol 204(1):49–58PubMedPubMedCentralCrossRefGoogle Scholar
  311. 311.
    Robbins JA, Bridges AD, Taylor A (2006) Oral, pharyngeal and esophageal motor function in aging. PART 1 Oral cavity, pharynx and esophagus. GI Motil. Online  https://doi.org/10.1038/gimo39
  312. 312.
    Soares TJ, Moraes DP, de Medeiros GC, Sassi FC, Zilberstein B, de Andrade CR (2015) Oral transit time: a critical review of the literature. Arq Bras Cir Dig 28(2):144–147PubMedPubMedCentralCrossRefGoogle Scholar
  313. 313.
    Thompson TZ, Obeidin F, Davidoff AA, Hightower CL, Johnson CZ, Rice SL, Sokolove R-L, Taylor BK, Tuck JM, Pearson WG Jr (2014) Coordinate mapping of hyolaryngeal mechanics in swallowing. J Vis Exp 87:51476Google Scholar
  314. 314.
    Hendrix TR (1993) Coordination of peristalsis in pharynx and esophagus. Dysphagia 8(2):74–78PubMedCrossRefPubMedCentralGoogle Scholar
  315. 315.
    Bredenoord AJ (2015) Minor disorders of esophageal peristalsis: highly prevalent, minimally relevant? Clin Gastroenterol Hepatol 13(8):1424–1425PubMedCrossRefPubMedCentralGoogle Scholar
  316. 316.
    Fleshler B, Hendrix TR, Kramer P, Ingelfinger FJ (1959) The characteristics and similarity of primary and secondary peristalsis in the esophagus. J Clin Invest 38(1 Pt 1-2):110–116PubMedPubMedCentralCrossRefGoogle Scholar
  317. 317.
    Liao D, Krarup AL, Lundager FH, Drewes AM, Gregersen H (2014) Quantitative differences between primary and secondary peristaltic contractions of the esophagus. Dig Dis Sci 59(8):1810–1816PubMedCrossRefPubMedCentralGoogle Scholar
  318. 318.
    Christensen J (1997) Mechanisms of secondary esophageal peristalsis. Am J Med 103(5):44S–46SPubMedCrossRefPubMedCentralGoogle Scholar
  319. 319.
    Schoeman MN, Holloway RH (1995) Integrity and characteristics of secondary oesophageal peristalsis in patients with gastro-oesophageal reflux disease. Gut 36(4):499–504PubMedPubMedCentralCrossRefGoogle Scholar
  320. 320.
    Bardan E, Xie P, Aslam M, Kern M, Shaker R (2000) Disruption of primary and secondary esophageal peristalsis by afferent stimulation. Am J Physiol Gastrointest Liver Physiol 279(2):G255–G261PubMedCrossRefPubMedCentralGoogle Scholar
  321. 321.
    Horgan PG (2005) Supportive and treatment measures for patients with postoperative ileus. Semin Colon Rectal Surg 16(4):211–214CrossRefGoogle Scholar
  322. 322.
    Hübner M, Scott M, Champagne B (2015) Postoperative ileus: prevention and treatment. In: Feldman LS, Delaney CP, Ljungqvist O, Carli F (eds) The SAGES/ERAS® society manual of enhanced recovery programs for gastrointestinal surgery. Springer International Publishing, ChamGoogle Scholar
  323. 323.
    Ballantyne GH (1984) The meaning of ileus. Its changing definition over three millennia. Am J Surg 148(2):252–256PubMedCrossRefPubMedCentralGoogle Scholar
  324. 324.
    Choi PW (2017) Strangulated small bowel obstruction caused by broad ligament hernia: report of a case and review of literature. Am J Med Case Rep 5(2):38–40Google Scholar
  325. 325.
    Takahashi R, Akagi Y, Tanaka T, Kaibara A, Kajiwara S, Shima I et al (2014) Clinicopathological evaluation of anoxic mucosal injury in strangulation ileus. BMC Surg 14:79PubMedPubMedCentralCrossRefGoogle Scholar
  326. 326.
    Kimura H, Earashi M, Konishi K, Tsuneda A, Tazawa K, Inoue T et al (1996) Strangulation ileus resulting from encasement of a loop of the small intestine by the great omentum, caused by abnormal adhesion. J Gastroenterol 31(5):714–716PubMedCrossRefPubMedCentralGoogle Scholar
  327. 327.
    Athanasakis E, Kafetzakis A, Hatzakis G, Daskalogiannaki M, Chalkiadakis G, Georgopoulos D (2002) Internal herniation and strangulation of the ileus through a post-traumatic defect of the mesentery in an intensive care unit patient. A case report. Intensive Care Med 28(4):523PubMedCrossRefPubMedCentralGoogle Scholar
  328. 328.
    Katis PG, Dias SM (2004) Volvulus: a rare twist on small-bowel obstruction. CMAJ 171(7):728PubMedPubMedCentralCrossRefGoogle Scholar
  329. 329.
    Atamanalp SS (2013) Sigmoid volvulus: diagnosis in 938 patients over 45.5 years. Tech Coloproctol 17(4):419–424PubMedCrossRefPubMedCentralGoogle Scholar
  330. 330.
    Meyers MA (1988) Internal abdominal hernias. In: Dynamic radiology of the abdomen. Springer, New YorkCrossRefGoogle Scholar
  331. 331.
    Ueda J, Yoshida H, Makino H, Yokoyama T, Maruyama H, Hirakata A et al (2012) Transmesocolic hernia of the ascending colon with intestinal obstruction. Case Rep Gastroenterol 6(2):344–349PubMedPubMedCentralCrossRefGoogle Scholar
  332. 332.
    Matsuo K, Palmer JB (2009) Coordination of mastication, swallowing and breathing. Jpn Dent Sci Rev 45(1):31–40PubMedPubMedCentralCrossRefGoogle Scholar
  333. 333.
    Martin-Harris B (2006) Coordination of respiration and swallowing. GI Motil. Online  https://doi.org/10.1038/gimo10
  334. 334.
    Wilson SL, Thach BT, Brouillette RT, Abu-Osba YK (1981) Coordination of breathing and swallowing in human infants. J Appl Physiol Respir Environ Exerc Physiol 50(4):851–858PubMedGoogle Scholar
  335. 335.
    Erasmus CE, van Hulst K, Rotteveel JJ, Willemsen MAAP, Jongerius PH (2012) Clinical practice—swallowing problems in cerebral palsy. Eur J Pediatr 171(3):409–414PubMedCrossRefGoogle Scholar
  336. 336.
    Nishino T (2012) The swallowing reflex and its significance as an airway defensive reflex. Front Physiol 3:489PubMedGoogle Scholar
  337. 337.
    Ertekin C, Aydogdu I (2003) Neurophysiology of swallowing. Clin Neurophysiol 114(12):2226–2244PubMedCrossRefPubMedCentralGoogle Scholar
  338. 338.
    Roman C (1986) Neural control of deglutition and esophageal motility in mammals. J Physiol (Paris) 81(2):118–131Google Scholar
  339. 339.
    Ludlow CL (2015) Central nervous system control of voice and swallowing. J Clin Neurophysiol 32(4):294–303PubMedPubMedCentralCrossRefGoogle Scholar
  340. 340.
    Meltzer SJ (1899) On the causes of the orderly progress of the peristaltic movement in the esophagus. Am J Physiol 2:266–272Google Scholar
  341. 341.
    Meltzer SJ (1907) Deglutition through an esophagus partly deprived of its muscularis, with demonstration. Proc Soc Exp Biol Med 4:40–43CrossRefGoogle Scholar
  342. 342.
    Lang IM (2009) Brain stem control of the phases of swallowing. Dysphagia 24(3):333–348PubMedCrossRefPubMedCentralGoogle Scholar
  343. 343.
    Amri M, Car A, Jean A (1984) Medullary control of the pontine swallowing neurones in sheep. Exp Brain Res 55(1):105–110PubMedCrossRefPubMedCentralGoogle Scholar
  344. 344.
    Jean A (2001) Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev 81(2):929–969PubMedCrossRefPubMedCentralGoogle Scholar
  345. 345.
    Car A, Jean A, Roman C (1998) Deglutition: physiologic and neurophysiologic aspects. Rev Laryngol Otol Rhinol (Bord) 119(4):219–225Google Scholar
  346. 346.
    Enomoto S, Schwartz G, Lund JP (1987) The effects of cortical ablation on mastication in the rabbit. Neurosci Lett 82(2):162–166PubMedCrossRefPubMedCentralGoogle Scholar
  347. 347.
    Dantas RO, Kern MK, Massey BT, Dodds WJ, Kahrilas PJ, Brasseur JG et al (1990) Effect of swallowed bolus variables on oral and pharyngeal phases of swallowing. Am J Physiol 258(5 Pt 1):G675–G681PubMedPubMedCentralGoogle Scholar
  348. 348.
    Conklin JL (2013) Evaluation of esophageal motor function with high-resolution manometry. J Neurogastroenterol Motil 19(3):281–294PubMedPubMedCentralCrossRefGoogle Scholar
  349. 349.
    Cook IJ (2008) Diagnostic evaluation of dysphagia. Nat Clin Pract Gastroenterol Hepatol 5:393–403PubMedCrossRefPubMedCentralGoogle Scholar
  350. 350.
    Khan A, Carmona R, Traube M (2014) Dysphagia in the elderly. Clin Geriatr Med 30(1):43–53PubMedCrossRefGoogle Scholar
  351. 351.
    Baijens LWJ, Speyer R (2009) Effects of therapy for dysphagia in Parkinson’s disease: systematic review. Dysphagia 24(1):91–102PubMedCrossRefPubMedCentralGoogle Scholar
  352. 352.
    Restivo DA, Casabona A, Nicotra A, Zappia M, Elia M, Romano MC et al (2013) ALS dysphagia pathophysiology—differential botulinum toxin response. Neurology 80(7):616–620PubMedCrossRefGoogle Scholar
  353. 353.
    King SN, Dunlap NE, Tennant PA, Pitts T (2016) Pathophysiology of radiation-induced dysphagia in head and neck cancer. Dysphagia 31(3):339–351PubMedPubMedCentralCrossRefGoogle Scholar
  354. 354.
    Marshall JB (1985) Dysphagia. Pathophysiology, causes, and evaluation. Postgrad Med 77(5):58–63, 67–68PubMedCrossRefGoogle Scholar
  355. 355.
    Kuo P, Holloway RH, Nguyen NQ (2012) Current and future techniques in the evaluation of dysphagia. J Gastroenterol Hepatol 27(5):873–881PubMedCrossRefGoogle Scholar
  356. 356.
    Richter JE (2010) Achalasia—an update. J Neurogastroenterol Motil 16(3):232–242PubMedPubMedCentralCrossRefGoogle Scholar
  357. 357.
    Zendehdel K, Nyrén O, Edberg A, Ye W (2011) Risk of esophageal adenocarcinoma in achalasia patients, a retrospective cohort study in Sweden. Am J Gastroenterol 106:57–61PubMedCrossRefGoogle Scholar
  358. 358.
    Perkin GD, Murray-Lyon I (1998) Neurology and the gastrointestinal system. J Neurol Neurosurg Psychiatry 65:291–300PubMedPubMedCentralCrossRefGoogle Scholar
  359. 359.
    Farrokhi F, Vaezi MF (2007) Idiopathic (primary) achalasia. Orphanet J Rare Dis 2:38PubMedPubMedCentralCrossRefGoogle Scholar
  360. 360.
    Agrusa A, Romano G, Frazzetta G, De Vita G, Chianetta D, Di Buono G et al (2014) Achalasia secondary to submucosal invasion by poorly differentiated adenocarcinoma of the cardia, Siewert II: consideration on preoperative workup. Case Rep Surg 2014:654917PubMedPubMedCentralGoogle Scholar
  361. 361.
    Stavropoulos SN, Friedel D, Modayil R, Parkman HP (2016) Diagnosis and management of esophageal achalasia. BMJ 354:i2785PubMedCrossRefGoogle Scholar
  362. 362.
    Swaney JM, Smith YM, Sachai W (2016) Primary achalasia: practice implications. JNP 12(7):473–478Google Scholar
  363. 363.
    Pandolfino JE, Gawron AJ (2015) Achalasia—a systematic review. JAMA 313(18):1841–1852PubMedCrossRefGoogle Scholar
  364. 364.
    Kaths MJ, Foltys DB, Scheuermann U, Strempel M, Niebisch S, Ebert M et al (2015) Achalasia with megaesophagus and tracheal compression in a young patient: a case report. Int J Surg Case Rep 14:16–18PubMedPubMedCentralCrossRefGoogle Scholar
  365. 365.
    Soybel DI (2005) Anatomy and physiology of the stomach. Surg Clin 85(5):875–894CrossRefGoogle Scholar
  366. 366.
    Daniels IR, Allum WH (2005) The anatomy and physiology of the stomach. In: Fielding JWL, Hallissey MT (eds) Upper gastrointestinal surgery. Springer, LondonGoogle Scholar
  367. 367.
    Waseem S, Moshiree B, Draganov PV (2009) Gastroparesis: current diagnostic challenges and management considerations. World J Gastroenterol 15(1):25–37PubMedPubMedCentralCrossRefGoogle Scholar
  368. 368.
    Wilmer A, Van Cutsem E, Andrioli A, Tack J, Coremans G, Janssens J (1998) Ambulatory gastrojejunal manometry in severe motility-like dyspepsia: lack of correlation between dysmotility, symptoms, and gastric emptying. Gut 42:235–242PubMedPubMedCentralCrossRefGoogle Scholar
  369. 369.
    Thumshirn M (2002) Pathophysiology of functional dyspepsia. Gut 51(Suppl I):i63–i66PubMedPubMedCentralCrossRefGoogle Scholar
  370. 370.
    Shoji T, Fukudo S, Nomura T, Satake M, Endo Y, Karahashi K et al (2001) Gastric hyposensitivity and large gastric capacity in patients with bulimia nervosa, but not in patients with anorexia nervosa. Gastroenterology 120(5):A462CrossRefGoogle Scholar
  371. 371.
    Ziessman HA, O’Malley JP, Thrall JH (2014) Gastrointestinal system. In: Thrall J (ed) Nuclear medicine: the requisites, 4th edn. Saunders, PhiladelphiaGoogle Scholar
  372. 372.
    O’Grady G, Wang TH-H, Du P, Angeli T, Lammers WJEP, Cheng LK (2014) Recent progress in gastric arrhythmia: pathophysiology, clinical significance and future horizons. Exp Pharmacol Physiol 41(10):854–862CrossRefGoogle Scholar
  373. 373.
    Koch KL (2014) Gastric dysrhythmias: a potential objective measure of nausea. Exp Brain Res 232(8):2553–2561PubMedCrossRefPubMedCentralGoogle Scholar
  374. 374.
    Mcnearney TA, Sallam HS, Hunnicutt SE, Doshi D, Wollaston DE, Mayes MD, Chen JDZ (2009) Gastric slow waves, gastrointestinal symptoms and peptides in systemic sclerosis patients. Neurogastroenterol Motil 21(12):1269PubMedPubMedCentralCrossRefGoogle Scholar
  375. 375.
    Ray K (2012) Motility: mapping gastric dysrhythmias in gastroparesis—a slow wave of electrical activity. Nat Rev Gastroenterol Hepatol 9:363PubMedCrossRefPubMedCentralGoogle Scholar
  376. 376.
    Koch KL (2003) Diagnosis and treatment of neuromuscular disorders of the stomach. Curr Gastroenterol Rep 5(4):323–330PubMedCrossRefPubMedCentralGoogle Scholar
  377. 377.
    Angeli TR, Du P, Midgley D, Paskaranandavadivel N, Sathar S, Lahr C et al (2016) Acute slow wave responses to high-frequency gastric electrical stimulation in patients with gastroparesis defined by high-resolution mapping. Neuromodulation 19(8):864–871PubMedPubMedCentralCrossRefGoogle Scholar
  378. 378.
    Scorza K, Williams A, Phillips JD, Shaw J (2007) Evaluation of nausea and vomiting. Am Fam Physician 76(1):76–84PubMedPubMedCentralGoogle Scholar
  379. 379.
    Zhao J-B, Chen P-M, Gregersen H (2013) Changes of phasic and tonic smooth muscle function of jejunum in type 2 diabetic Goto-Kakizaki rats. World J Diabetes 4(6):339–348PubMedPubMedCentralCrossRefGoogle Scholar
  380. 380.
    Sanders KM, Berry RG (1985) Effects of ethyl alcohol on phasic and tonic contractions of the proximal stomach. J Pharmacol Exp Ther 235(3):858–863PubMedPubMedCentralGoogle Scholar
  381. 381.
    Thornbury KD (1999) Tonic and phasic activity in smooth muscle. Ir J Med Sci 168(3):201–207PubMedPubMedCentralCrossRefGoogle Scholar
  382. 382.
    Golenhofen K, Mandrek K (1991) Phasic and tonic contraction processes in the gastrointestinal tract. Dig Dis 9(6):341–346PubMedPubMedCentralCrossRefGoogle Scholar
  383. 383.
    Sanjeevi A (2007) Gastric motility. Curr Opin Gastroenterol 23(6):625–630PubMedCrossRefPubMedCentralGoogle Scholar
  384. 384.
    Bredenoord AJ, Chial HJ, Camilleri M, Mullan BP, Murray JA (2003) Gastric accommodation and emptying in evaluation of patients with upper gastrointestinal symptoms. Clin Gastroenterol Hepatol 1(4):264–272PubMedCrossRefGoogle Scholar
  385. 385.
    Schwizer W, Steingötter A, Fox M, Zur T, Thumshirn M, Bösiger P, Fried M (2002) Non-invasive measurement of gastric accommodation in humans. Gut 51(Suppl I):i59–i62PubMedPubMedCentralCrossRefGoogle Scholar
  386. 386.
    Xiao A, Wang H, Lu X, Zhu J, Huang D, Xu T et al (2015) H2S, a novel gasotransmitter, involves in gastric accommodation. Sci Rep 5:16086PubMedPubMedCentralCrossRefGoogle Scholar
  387. 387.
    Talley NJ (2011) Rumination syndrome. Gastroenterol Hepatol (NY) 7(2):117–118Google Scholar
  388. 388.
    Brun R, Kuo B (2010) Functional dyspepsia. Therap Adv Gastroenterol 3(3):145–164PubMedPubMedCentralCrossRefGoogle Scholar
  389. 389.
    Lacy BE, Everhart K, Crowell MD (2011) Functional dyspepsia is associated with sleep disorders. Clin Gastroenterol Hepatol 9(5):410–414PubMedCrossRefGoogle Scholar
  390. 390.
    Talley NJ, Ford AC (2015) Functional dyspepsia. N Engl J Med 373:1853–1863PubMedCrossRefPubMedCentralGoogle Scholar
  391. 391.
    Papadopoulos V, Mimidis K (2007) The rumination syndrome in adults: a review of the pathophysiology, diagnosis and treatment. J Postgrad Med 53:203–206PubMedCrossRefPubMedCentralGoogle Scholar
  392. 392.
    Cunningham CL, Banez GA (2006) Rumination and cyclic vomiting syndrome -biopsychosocial assessment and treatment. Pediatric gastrointestinal disorders. Springer, BostonGoogle Scholar
  393. 393.
    Indrio F, Riezzo G, Raimondi F, Cavallo L, Francavilla R (2009) Regurgitation in healthy and non healthy infants. Ital J Pediatr 35:39PubMedPubMedCentralCrossRefGoogle Scholar
  394. 394.
    Arts-Rodas D, Benoit D (1998) Feeding problems in infancy and early childhood: identification and management. Paediatr Child Health 3(1):21–27PubMedPubMedCentralCrossRefGoogle Scholar
  395. 395.
    Başal Y, Akcan AB, Polat YD, Günel C, Eryilmaz A, Başak S (2016) Rarely seen nasal congenital problems causing neonatal upper respiratory obstruction: a case series. Pediatr Rep 8(1):6456PubMedPubMedCentralCrossRefGoogle Scholar
  396. 396.
    Scott M, Gelhot AR (1999) Gastroesophageal reflux disease: diagnosis. Am Fam Physician 59(5):1161–1169PubMedPubMedCentralGoogle Scholar
  397. 397.
    Bredenoord AJ, Pandolfino JE, Smout AJPM (2013) Gastro-oesophageal reflux disease. Lancet 381(9881):1933–1942PubMedCrossRefPubMedCentralGoogle Scholar
  398. 398.
    Tesfaye S, Boulton AJM, Dyck PJ, Freeman R, Horowitz M, Kempler P et al (2010) Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 33:2285–2293PubMedPubMedCentralCrossRefGoogle Scholar
  399. 399.
    Vinik AI (1999) Diabetic neuropathy: pathogenesis and therapy. Am J Med 107(2):17–26CrossRefGoogle Scholar
  400. 400.
    Kanatsuka A, Osegawa M, An T, Suzuki T, Hashimoto N, Makino H (1984) Augmented gastrin responses in diabetic patients with vagal neuropathy. Diabetologia 26(6):449–452PubMedCrossRefPubMedCentralGoogle Scholar
  401. 401.
    Szarka LA, Camilleri M (2009) Methods for measurement of gastric motility. Am J Physiol Gastrointest Liver Physiol 296(3):G461–G475PubMedCrossRefPubMedCentralGoogle Scholar
  402. 402.
    Yokrattanasak J, De Gaetano A, Panunzi S, Satiracoo P, Lawton WM, Lenbury Y (2016) A simple, realistic stochastic model of gastric emptying. PLoS ONE 11(4):e0153297PubMedPubMedCentralCrossRefGoogle Scholar
  403. 403.
    Park MI, Camilleri M (2005) Gastric motor and sensory functions in obesity. Obes Res 13(3):491–500PubMedCrossRefPubMedCentralGoogle Scholar
  404. 404.
    Thumshirn M, Camilleri M, Choi MG, Zinsmeister AR (1999) Modulation of gastric sensory and motor functions by nitrergic and α2-adrenergic agents in humans. Gastroenterology 116(3):573–585PubMedCrossRefPubMedCentralGoogle Scholar
  405. 405.
    Wisén O, Hellström PM (1995) Gastrointestinal motility in obesity. J Intern Med 237(4):411–418PubMedCrossRefPubMedCentralGoogle Scholar
  406. 406.
    Maev IV, Samsonov AA, Vorob’ev LP, Salova LM, Zandanov AO, Dronova OB (2000) Motor and secretion function of stomach and duodenum, duodenogastric reflux in patients with duodenal ulcer. Klin Med (Mosk) 78(6):39–42Google Scholar
  407. 407.
    Drummond JC (1995) Elastance versus compliance. Anesthesiology 82(5):1309–1310PubMedCrossRefPubMedCentralGoogle Scholar
  408. 408.
    Römer M, Painsipp E, Schwetz I, Holzer P (2005) Facilitation of gastric compliance and cardiovascular reaction by repeated isobaric distension of the rat stomach. Neurogastroenterol Motil 17(3):399–409PubMedPubMedCentralCrossRefGoogle Scholar
  409. 409.
    Parkman HP, Jones MP (2009) Tests of gastric neuromuscular function. Gastroenterology 136(5):1526–1543PubMedCrossRefPubMedCentralGoogle Scholar
  410. 410.
    De Schepper HU, Cremonini F, Chitkara D, Camilleri M (2004) Assessment of gastric accommodation: overview and evaluation of current methods. Neurogastroenterol Motil 16(3):275–285PubMedCrossRefPubMedCentralGoogle Scholar
  411. 411.
    Penagini R, Hebbard G, Horowitz M, Dent J, Bermingham H, Jones K, Holloway RH (1998) Motor function of the proximal stomach and visceral perception in gastro-oesophageal reflux disease. Gut 42(2):251–257PubMedPubMedCentralCrossRefGoogle Scholar
  412. 412.
    Tack J (2009) Gastric motor and sensory function. Curr Opin Gastroenterol 25(6):557–565PubMedCrossRefPubMedCentralGoogle Scholar
  413. 413.
    Tack J, Janssen P (2010) Gastroduodenal motility. Curr Opin Gastroenterol 26(6):647–655PubMedCrossRefPubMedCentralGoogle Scholar
  414. 414.
    Smith PM, Ferguson AV (2008) Neurophysiology of hunger and satiety. Dev Disabil Res Rev 14(2):96–104PubMedCrossRefPubMedCentralGoogle Scholar
  415. 415.
    Mattes RD (2010) Hunger and thirst: issues in measurement and prediction of eating and drinking. Physiol Behav 100(1):22–32PubMedPubMedCentralCrossRefGoogle Scholar
  416. 416.
    Sanger GJ, Hellström PM, Näslund E (2010) The hungry stomach: physiology, disease, and drug development opportunities. Front Pharmacol 1:145PubMedCrossRefPubMedCentralGoogle Scholar
  417. 417.
    Mathes WF, Brownley KA, Mo X, Bulik CM (2009) The biology of binge eating. Appetite 52(3):545–553PubMedPubMedCentralCrossRefGoogle Scholar
  418. 418.
    Umberg EN, Shader RI, Hsu LK, Greenblatt DJ (2012) From disordered eating to addiction: the “food drug” in bulimia nervosa. J Clin Psychopharmacol 32(3):376–389PubMedCrossRefPubMedCentralGoogle Scholar
  419. 419.
    Cronin RE (1987) Psychogenic polydipsia with hyponatremia: report of eleven cases. Am J Kidney Dis 9(5):410–416PubMedCrossRefPubMedCentralGoogle Scholar
  420. 420.
    McKiernan F, Hollis JH, McCabe GP, Mattes RD (2009) Thirst-drinking, hunger-eating; tight coupling? J Am Diet Assoc 109(3):486–490PubMedPubMedCentralCrossRefGoogle Scholar
  421. 421.
    Ciampolini M, Lovell-Smith HD, Kenealy T, Bianchi R (2013) Hunger can be taught: hunger recognition regulates eating and improves energy balance. Int J Gen Med 6:465–478PubMedPubMedCentralCrossRefGoogle Scholar
  422. 422.
    Laplace JP (1984) Motility of the small intestine: organization, regulation and functions. 15 years’ research on migrating complexes. Reprod Nutr Dev 24(5B):707–765PubMedCrossRefPubMedCentralGoogle Scholar
  423. 423.
    Gwynne RM, Thomas EA, Goh SM, Sjovall H, Bornstein JC (2004) Segmentation induced by intraluminal fatty acid in isolated guinea-pig duodenum and jejunum. J Physiol 556(2):557–569PubMedPubMedCentralCrossRefGoogle Scholar
  424. 424.
    Connell AM (1961) The motility of the small intestine. Postgrad Med J 37(434):703–716PubMedPubMedCentralCrossRefGoogle Scholar
  425. 425.
    Deloose E, Tack J (2016) Redefining the functional roles of the gastrointestinal migrating motor complex and motilin in small bacterial overgrowth and hunger signaling. Am J Physiol Gastrointest Liver Physiol 310(4):G228–G233PubMedCrossRefPubMedCentralGoogle Scholar
  426. 426.
    Takahashi T (2012) Mechanism of interdigestive migrating motor complex. J Neurogastroenterol Motil 18(3):246–257PubMedPubMedCentralCrossRefGoogle Scholar
  427. 427.
    von Arnim U (2015) Gastroparesis: definition, diagnostics, and therapy. Internist (Berl) 56(6):625–630CrossRefGoogle Scholar
  428. 428.
    Siegle ML, Bühner S, Schemann M, Schmid HR, Ehrlein HJ (1990) Propagation velocities and frequencies of contractions along canine small intestine. Am J Physiol 258(5 Pt 1):G738–G744PubMedPubMedCentralGoogle Scholar
  429. 429.
    Lenz H, Blömer A, Düx A (1971) Analysis of the propulsive movements of the small intestine. Am J Digest Dis 16(12):1107–1115PubMedCrossRefPubMedCentralGoogle Scholar
  430. 430.
    Sarna SK, Otterson MF (1989) Small intestinal physiology and pathophysiology. Gastroenterol Clin North Am 18(2):375–404PubMedPubMedCentralGoogle Scholar
  431. 431.
    Huizinga JD, Chen J-H, Zhu YF, Pawelka A, McGinn RJ, Bardakjian BL et al (2014) The origin of segmentation motor activity in the intestine. Nat Commun 5:3326PubMedPubMedCentralCrossRefGoogle Scholar
  432. 432.
    Hennig GW, Gregory S, Brookes SJ, Costa M (2010) Non-peristaltic patterns of motor activity in the guinea-pig proximal colon. Neurogastroenterol Motil 22(6):e207–e217PubMedCrossRefPubMedCentralGoogle Scholar
  433. 433.
    Chambers JD, Bornstein JC, Thomas EA (2008) Insights into mechanisms of intestinal segmentation in guinea pigs: a combined computational modeling and in vitro study. Am J Physiol Gastrointest Liver Physiol 295(3):G534–G541PubMedCrossRefPubMedCentralGoogle Scholar
  434. 434.
    Gwynne RM, Bornstein JC (2007) Mechanisms underlying nutrient-induced segmentation in isolated guinea pig small intestine. Am J Physiol Gastrointest Liver Physiol 292(4):G1162–G1172PubMedCrossRefPubMedCentralGoogle Scholar
  435. 435.
    Huizinga JD, Parsons SP, Chen J-H, Pawelka A, Pistilli M, Li Chunpei et al (2015) Motor patterns of the small intestine explained by phase-amplitude coupling of two pacemaker activities: the critical importance of propagation velocity. Am J Physiol Cell Physiol 309(6):C403–C414PubMedPubMedCentralCrossRefGoogle Scholar
  436. 436.
    Huizinga JD, Lammers WJEP (2008) Gut peristalsis is governed by a multitude of cooperating mechanisms. Am J Physiol Gastrointest Liver Physiol 296(1):G1–G8PubMedCrossRefPubMedCentralGoogle Scholar
  437. 437.
    Huizinga JD, McKay CM, White EJ (2006) The many facets of intestinal peristalsis. Am J Physiol Gastrointest Liver Physiol 290(6):G1347–G1349PubMedCrossRefPubMedCentralGoogle Scholar
  438. 438.
    Quigley EMM (1996) Gastric and small intestinal motility in health and disease. Gastroenterol Clin 25(1):113–145CrossRefGoogle Scholar
  439. 439.
    Sternini C, Anselmi L, Guerrini S, Cervio E, Pham T, Balestra B et al (2004) Role of galanin receptor 1 in peristaltic activity in the guinea pig ileum. Neuroscience 125(1):103–112PubMedCrossRefPubMedCentralGoogle Scholar
  440. 440.
    Meltzer SJ, Auer J (1907) Peristaltic rush. Am J Physiol 20:259–281Google Scholar
  441. 441.
    Gershon MD (2004) Serotonin receptors and transporters—roles in normal and abnormal gastrointestinal motility. Aliment Pharmacol Ther 20(Suppl 7):3–14PubMedCrossRefPubMedCentralGoogle Scholar
  442. 442.
    Nezami BG, Srinivasan S (2010) Enteric nervous system in the small intestine: pathophysiology and clinical implications. Curr Gastroenterol Rep 12(5):358–365PubMedPubMedCentralCrossRefGoogle Scholar
  443. 443.
    Stukan M, Kruszewski JW, Dudziak M, Kopiejć A, Preis K (2013) Intestinal obstruction during pregnancy. Ginekol Pol 84(2):137–141PubMedPubMedCentralGoogle Scholar
  444. 444.
    von der Ohe MR, Camilleri M, Kvols LK, Thomforde GM (1993) Motor dysfunction of the small bowel and colon in patients with the carcinoid syndrome and diarrhea. N Engl J Med 329(15):1073–1078PubMedCrossRefPubMedCentralGoogle Scholar
  445. 445.
    Basha ME, Duke GE (1999) Effect of fasting on small intestinal antiperistalsis in the Nicholas turkey (Meleagris gallopavo). J Exp Zool 283(4–5):469–477PubMedCrossRefPubMedCentralGoogle Scholar
  446. 446.
    Bayliss WM, Starling EH (1899) The movements and innervation of the small intestine. J Physiol 24:99–143PubMedPubMedCentralCrossRefGoogle Scholar
  447. 447.
    Bayliss WM, Starling EH (1900) The movements and innervation of the large intestine. J Physiol 26:107–118PubMedPubMedCentralCrossRefGoogle Scholar
  448. 448.
    Spencer NJ, Hennig GW, Smith TK (2002) A rhythmic motor pattern activated by circumferential stretch in guinea-pig distal colon. J Physiol 545(Pt 2):629–648PubMedPubMedCentralCrossRefGoogle Scholar
  449. 449.
    Alvarez WC (1915) The motor functions of the intestine from a new point of view. JAMA LXV(5):388–394CrossRefGoogle Scholar
  450. 450.
    Alvarez WC (1924) Bayliss and Starling’s law of the intestine or the myenteric reflex. Am J Physiol 69:229–248Google Scholar
  451. 451.
    Cannon WB (1912) Peristalsis, segmentation, and the myenteric reflex. Am J Physiol 30:114–128Google Scholar
  452. 452.
    Fleckenstein P (1978) Migrating electrical spike activity in the fasting human small intestine. Am J Dig Dis 23(9):769–775PubMedCrossRefGoogle Scholar
  453. 453.
    Rayner V, Wenham G (1986) Small intestinal motility and transit by electromyography and radiology in the fasted and fed pig. J Physiol 379:245–256PubMedPubMedCentralCrossRefGoogle Scholar
  454. 454.
    Kruis W, Azpiroz F, Phillips SF (1985) Contractile patterns and transit of fluid in canine terminal ileum. Am J Physiol 249(2 Pt 1):G264–G270PubMedGoogle Scholar
  455. 455.
    Lammers WJEP (2005) Spatial and temporal coupling between slow waves and pendular contractions. Am J Physiol Gastrointest Liver Physiol 289(5):G898–G903PubMedCrossRefGoogle Scholar
  456. 456.
    Seerden TC, Lammers WJEP, De Winter BY, De Man JG, Pelckmans PA (2005) Spatiotemporal electrical and motility mapping of distension-induced propagating oscillations in the murine small intestine. Am J Physiol Gastrointest Liver Physiol 289(6):G1043–G1051PubMedCrossRefGoogle Scholar
  457. 457.
    Campbell I (2012) The mouth, stomach and intestines. Anaesth Inten Care Med 13(2):56–58CrossRefGoogle Scholar
  458. 458.
    Kerlin P, Phillips S (1983) Differential transit of liquids and solid residue through the human ileum. Am J Physiol 245:G38–G43PubMedGoogle Scholar
  459. 459.
    Seow-Choen F (2009) The physiology of colonic hydrotherapy. Colorectal Dis 11(7):686–688PubMedCrossRefGoogle Scholar
  460. 460.
    Maurer AH (2015) Gastrointestinal motility, part 2: small-bowel and colon transit. J Nucl Med 56(9):1395–1400PubMedGoogle Scholar
  461. 461.
    Rose C, Parker A, Jefferson B, Cartmell E (2015) The characterization of feces and urine: a review of the literature to inform advanced treatment technology. Crit Rev Environ Sci Technol 45(17):1827–1879PubMedPubMedCentralCrossRefGoogle Scholar
  462. 462.
    Smith TK, Oliver GR, Hennig GW, O’Shea DM, Vanden Berghe P, Kang SH, Spencer NJ (2003) A smooth muscle tone-dependent stretch-activated migrating motor pattern in isolated guinea-pig distal colon. J Physiol 551(Pt 3):955–969PubMedPubMedCentralCrossRefGoogle Scholar
  463. 463.
    D’Antona G, Hennig GW, Costa M, Humphreys CM, Brookes SJ (2001) Analysis of motor patterns in the isolated guinea-pig large intestine by spatio-temporal maps. Neurogastroenterol Motil 13(5):483–492PubMedCrossRefPubMedCentralGoogle Scholar
  464. 464.
    Shafik A (1997) Electrosigmoidogram, electrorectogram and their relation. Front Biosci 2:b12–b16PubMedCrossRefPubMedCentralGoogle Scholar
  465. 465.
    Sarna SK (2010) Colonic motility: from bench side to bedside. Integrated systems physiology: from molecule to function to disease. Morgan & Claypool Life Sciences, San RafaelGoogle Scholar
  466. 466.
    Fischer B, Hoh S, Wehler M, Hahn EG, Schneider HT (2001) Faecal elastase-1: lyophilization of stool samples prevents false low results in diarrhoea. Scand J Gastroenterol 36(7):771–774PubMedCrossRefPubMedCentralGoogle Scholar
  467. 467.
    Schouw NL, Danteravanich S, Mosbaek H, Tjell JC (2002) Composition of human excreta—a case study from Southern Thailand. Sci Total Environ 286(1–3):155–166PubMedCrossRefPubMedCentralGoogle Scholar
  468. 468.
    Tare V, Yadav KD (2009) Fate of physico-chemical parameters during decomposition of human feces. Glob J Environ Res 3(1):18–21Google Scholar
  469. 469.
    Santiago A, Panda S, Mengels G, Martinez X, Azpiroz F, Dore J et al (2014) Processing faecal samples: a step forward for standards in microbial community analysis. BMC Microbiol 14:112PubMedPubMedCentralCrossRefGoogle Scholar
  470. 470.
    Misawa H, Hoshi T, Kitame F, Homma M, Nakamura K (1986) Isolation of an antigenically unique methanogen from human feces. Appl Environ Microbiol 51(2):429–431PubMedPubMedCentralGoogle Scholar
  471. 471.
    Ward SM, Burns AJ, Torihashi S, Sanders KM (1994) Mutation of the proto-oncogene c-Kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol 480:91–97PubMedPubMedCentralCrossRefGoogle Scholar
  472. 472.
    Fukuzawa M (2014) Progress in the treatment of and research on Hirschsprung’s disease. Nihon Geka Gakkai Zasshi 115(6):312–316PubMedGoogle Scholar
  473. 473.
    Yamataka A, Kato Y, Tibboel D, Murata Y, Sueyoshi N, Fujimoto T et al (1995) A lack of intestinal pacemaker (c-Kit) in aganglionic bowel of patients with Hirschsprung’s disease. J Pediatr Surg 30:441–444PubMedCrossRefPubMedCentralGoogle Scholar
  474. 474.
    Vanasin B, Ustach TJ, Schuster MM (1974) Electrical and motor activity of human and dog colon in vitro. Johns Hopkins Med J 134(4):201–210PubMedGoogle Scholar
  475. 475.
    Sarna SK (1991) Physiology and pathophysiology of colonic motor activity (2). Dig Dis Sci 36(7):998–1018PubMedCrossRefGoogle Scholar
  476. 476.
    Gonella J, Bouvier M, Blanquet F (1987) Extrinsic nervous control of motility of small and large intestines and related sphincters. Physiol Rev 67(3):902–961PubMedCrossRefGoogle Scholar
  477. 477.
    Holdstock DJ, Misiewicz JJ, Smith T, Rowlands EN (1970) Propulsion (mass movements) in the human colon and its relationship to meals and somatic activity. Gut 11(2):91–99PubMedPubMedCentralCrossRefGoogle Scholar
  478. 478.
    Bassotti G, Crowell MD, Whitehead WE (1993) Contractile activity of the human colon: lessons from 24 hour studies. Gut 34(1):129–133PubMedPubMedCentralCrossRefGoogle Scholar
  479. 479.
    Bhate PA, Patel JA, Parikh P, Ingle MA, Phadke A, Sawant PD (2015) Total and segmental colon transit time study in functional constipation: comparison with healthy subjects. Gastroenterol Res 8(1):157–159CrossRefGoogle Scholar
  480. 480.
    Read NW, Miles CA, Fisher D, Holgate AM, Kime ND, Mitchell MA et al (1980) Transit of a meal through the stomach, small intestine, and colon in normal subjects and its role in the pathogenesis of diarrhea. Gastroenterology 79(6):1276–1282PubMedGoogle Scholar
  481. 481.
    Camilleri M (2004) Chronic diarrhea: a review on pathophysiology and management for the clinical gastroenterologist. Clin Gastroenterol Hepatol 2(3):198–206PubMedCrossRefGoogle Scholar
  482. 482.
    Bassotti G, Antonelli E, Villanacci V, Baldoni M, Dore MP (2014) Colonic motility in ulcerative colitis. United European Gastroenterol J 2(6):457–462PubMedPubMedCentralCrossRefGoogle Scholar
  483. 483.
    Sarna SK (1993) Colonic motor activity. Surg Clin North Am 73(6):1201–1223PubMedCrossRefGoogle Scholar
  484. 484.
    Misiewicz JJ (1984) Human colonic motility. Scand J Gastroenterol 93:43–51Google Scholar
  485. 485.
    Suzuki N, Gomi Y (1992) Evidence that stretch receptors for peristalsis are located in the mucosal layer of the guinea pig ileum. Jpn J Pharmacol 60(3):261–267PubMedCrossRefGoogle Scholar
  486. 486.
    Tsuji S, Anglade P, Ozaki T, Sazi T, Yokoyama S (1992) Peristaltic movement evoked in intestinal tube devoid of mucosa and submucosa. Jpn J Physiol 42(3):363–375PubMedCrossRefGoogle Scholar
  487. 487.
    Hennig GW, Costa M, Chen BN, Brookes SJH (1999) Quantitative analysis of peristalsis in the guinea-pig small intestine using spatio-temporal maps. J Physiol 517(Pt 2):575–590PubMedPubMedCentralCrossRefGoogle Scholar
  488. 488.
    Smith TK, Robertson WJ (1998) Synchronous movements of the longitudinal and circular muscle during peristalsis in the isolated guinea-pig distal colon. J Physiol 506(Pt 2):563–577PubMedPubMedCentralGoogle Scholar
  489. 489.
    Lee KJ (2015) Pharmacologic agents for chronic diarrhea. Intest Res 13(4):306–312PubMedPubMedCentralCrossRefGoogle Scholar
  490. 490.
    Quigley EM (1987) Small intestinal motor activity—its role in gut homeostasis and disease. Q J Med 65(246):799–810PubMedGoogle Scholar
  491. 491.
    Canadian Agency for Drugs and Technologies in Health (2014) Dioctyl sulfosuccinate or docusate (calcium or sodium) for the prevention or management of constipation: a review of the clinical effectiveness. CADTH Rapid Response Reports, Ottawa, CanadaGoogle Scholar
  492. 492.
    Canadian Agency for Drugs and Technologies in Health (2014) Treatments for constipation: a review of systematic reviews. CADTH Rapid Response Reports, Ottawa, CanadaGoogle Scholar
  493. 493.
    Schmulson MJ, Drossman DA (2017) What is new in Rome IV. J Neurogastroenterol Motil 23(2):151–163PubMedPubMedCentralCrossRefGoogle Scholar
  494. 494.
    de Milliano I, Tabbers MM, van der Post JA, Benninga MA (2012) Is a multispecies probiotic mixture effective in constipation during pregnancy? ‘A pilot study’. Nutr J 11:80PubMedPubMedCentralCrossRefGoogle Scholar
  495. 495.
    Gordon M, Naidoo K, Akobeng AK, Thomas AG (2013) Cochrane review: osmotic and stimulant laxatives for the management of childhood constipation (review). Evid Based Child Health 8(1):57–109PubMedCrossRefPubMedCentralGoogle Scholar
  496. 496.
    Kortz WJ (1985) Intestinal obstruction and pregnancy. In: Gleicher N (ed) Principles of medical therapy in pregnancy. Springer, New YorkGoogle Scholar
  497. 497.
    Vanagunas A (2008) Gastrointestinal complications in pregnancy. Glob Libr Women’s Med.  https://doi.org/10.3843/GLOWM.10172CrossRefGoogle Scholar
  498. 498.
    İlhan M, Arabaci E, Turgut S, Karaman O, Danalioglu A, Tasan E (2014) Esophagus motility in overt hypothyroidism. J Endocrinol Invest 37(7):639–644PubMedCrossRefPubMedCentralGoogle Scholar
  499. 499.
    Yaylali O, Kirac S, Yilmaz M, Akin F, Yuksel D, Demirkan N, Akdag B (2009) Does hypothyroidism affect gastrointestinal motility? Gastroenterol Res Pract 2009:529802PubMedCrossRefPubMedCentralGoogle Scholar
  500. 500.
    Leeds AR (1987) Dietary fibre: mechanisms of action. Int J Obes 11(1):3–7PubMedPubMedCentralGoogle Scholar
  501. 501.
    Abdel-Aziz H, Windeck T, Ploch M, Verspohl EJ (2006) Mode of action of gingerols and shogaols on 5-HT3 receptors: binding studies, cation uptake by the receptor channel and contraction of isolated guinea-pig ileum. Eur J Pharmacol 530(1–2):136–143PubMedCrossRefPubMedCentralGoogle Scholar
  502. 502.
    Huang Q, Iwamoto Y, Aoki S, Tanaka N, Tajima K, Yamahara J et al (1991) Anti-5-hydroxytryptamine3 effect of galanolactone, diterpenoid isolated from ginger. Chem Pharm Bull 39(2):397–399PubMedCrossRefPubMedCentralGoogle Scholar
  503. 503.
    Marx WM, Teleni L, McCarthy AL, Vitetta L, McKavanagh D, Thomson D, Isenring E (2013) Ginger (Zingiber officinale) and chemotherapy-induced nausea and vomiting: a systematic literature review. Nutr Rev 71(4):245–254PubMedCrossRefPubMedCentralGoogle Scholar
  504. 504.
    Lete I, Allué J (2016) The effectiveness of ginger in the prevention of nausea and vomiting during pregnancy and chemotherapy. Integr Med Insights 11:11–17PubMedPubMedCentralCrossRefGoogle Scholar
  505. 505.
    Ahrens FA, Zhu BL (1982) Effects of epinephrine, clonidine, l-phenylephrine, and morphine on intestinal secretion mediated by Escherichia coli heat-stable enterotoxin in pig jejunum. Can J Physiol Pharmacol 60(12):1680–1685PubMedCrossRefPubMedCentralGoogle Scholar
  506. 506.
    Kromer W (1993) Gastrointestinal effects of opioids. In: Herz A, Akil H, Simon EJ (eds) Opioids II, vol 104. Springer, HeidelbergCrossRefGoogle Scholar
  507. 507.
    Sun X, Wang X, Wang GD, Xia Y, Liu S, Qu M et al (2011) Lubiprostone reverses the inhibitory action of morphine on mucosal secretion in human small intestine. Dig Dis Sci 56(2):330–338PubMedCrossRefPubMedCentralGoogle Scholar
  508. 508.
    Glare P, Pereira G, Kristjanson LJ, Stockler M, Tattersall M (2004) Systematic review of the efficacy of antiemetics in the treatment of nausea in patients with far-advanced cancer. Support Care Cancer 12(6):432–440PubMedCrossRefPubMedCentralGoogle Scholar
  509. 509.
    Gillman PK (2007) Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol 151(6):737–748PubMedPubMedCentralCrossRefGoogle Scholar
  510. 510.
    Artigas F, Nutt DJ, Shelton R (2002) Mechanism of action of antidepressants. Psychopharmacol Bull 36(2):123–132PubMedPubMedCentralGoogle Scholar
  511. 511.
    Feighner JP (1999) Mechanism of action of antidepressant medications. J Clin Psychiatry 60(4):4–13PubMedPubMedCentralGoogle Scholar
  512. 512.
    Schwartz TL, Goradia V (2013) Managing insomnia: an overview of insomnia and pharmacologic treatment strategies in use and on the horizon. Drugs Context 2013:212257PubMedPubMedCentralGoogle Scholar
  513. 513.
    Menezes C, Rodrigues B, Magalhães E, Melo A (2007) Botulinum toxin type A in refractory chronic migraine: an open-label trial. Arq Neuropsiquiatr 65(3A):596–598PubMedCrossRefPubMedCentralGoogle Scholar
  514. 514.
    Wieckiewicz M, Grychowska N, Zietek M, Wieckiewicz G, Smardz J (2017) Evidence to use botulinum toxin injections in tension-type headache management: a systematic review. Toxins (Basel) 9(11):E370PubMedCentralCrossRefGoogle Scholar
  515. 515.
    Münchau A, Bhatia KP (2000) Uses of botulinum toxin injection in medicine today. BMJ 320(7228):161–165PubMedPubMedCentralCrossRefGoogle Scholar
  516. 516.
    Nigam PK, Nigam A (2010) Botulinum toxin. Indian J Dermatol 55(1):8–14PubMedPubMedCentralCrossRefGoogle Scholar
  517. 517.
    Ahmadi J, Azary S, Ashjaei B, Paragomi P, Khalifeh-Soltani A (2013) Intrasphincteric botulinum toxin injection in treatment of chronic idiopathic constipation in children. Iran J Pediatr 23(5):574–578PubMedPubMedCentralGoogle Scholar
  518. 518.
    Arbizu RA, Rodriguez L (2015) Use of Clostridium botulinum toxin in gastrointestinal motility disorders in children. World J Gastrointest Endosc 7(5):433–437PubMedPubMedCentralCrossRefGoogle Scholar
  519. 519.
    Keshtgar AS, Ward HC, Clayden GS (2009) Transcutaneous needle-free injection of botulinum toxin: a novel treatment of childhood constipation and anal fissure. J Pediatr Surg 44(9):1791–1798PubMedCrossRefPubMedCentralGoogle Scholar
  520. 520.
    Emile SH, Elfeki HA, Elbanna HG, Youssef M, Thabet W, Abd El-Hamed TM et al (2016) Efficacy and safety of botulinum toxin in treatment of anismus: a systematic review. World J Gastrointest Pharmacol Ther 7(3):453–462PubMedPubMedCentralCrossRefGoogle Scholar
  521. 521.
    Itoh Z, Nakaya M, Suzuki T, Arai H, Wakabayashi K (1984) Erythromycin mimics exogenous motilin in gastrointestinal contractile activity in the dog. Am J Physiol 247:G688–G694PubMedPubMedCentralGoogle Scholar
  522. 522.
    Armstrong DN, Ballantyne GH, Modlin IM (1992) Erythromycin stimulates ileal motility by activation of dihydropyridine-sensitive calcium channels. J Surg Res 52(2):140–146PubMedCrossRefPubMedCentralGoogle Scholar
  523. 523.
    Broad J, Mukherjee S, Samadi M, Martin JE, Dukes GE, Sanger GJ (2012) Regional- and agonist-dependent facilitation of human neurogastrointestinal functions by motilin receptor agonists. Br J Pharmacol 167(4):763–774PubMedPubMedCentralCrossRefGoogle Scholar
  524. 524.
    Deloose E, Vos R, Janssen P, Van den Bergh O, Van Oudenhove L, Depoortere I, Tack J (2016) The motilin receptor agonist erythromycin stimulates hunger and food intake through a cholinergic pathway. Am J Clin Nutr 103(3):730–737PubMedCrossRefPubMedCentralGoogle Scholar
  525. 525.
    Broad J, Sanger GJ (2013) The antibiotic azithromycin is a motilin receptor agonist in human stomach: comparison with erythromycin. Br J Pharmacol 168(8):1859–1867PubMedPubMedCentralCrossRefGoogle Scholar
  526. 526.
    Basch E, Prestrud AA, Hesketh PJ, Kris MG, Feyer PC, Somerfield MR et al (2011) Antiemetics: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 29(31):4189–4198PubMedPubMedCentralCrossRefGoogle Scholar
  527. 527.
    Agrawal A, Hila A, Tutuian R, Mainie I, Castell DO (2007) Bethanechol improves smooth muscle function in patients with severe ineffective esophageal motility. J Clin Gastroenterol 41(4):366–370PubMedCrossRefPubMedCentralGoogle Scholar
  528. 528.
    Blonski W, Vela MF, Freeman J, Sharma N, Castell DO (2009) The effect of oral buspirone, pyridostigmine, and bethanechol on esophageal function evaluated with combined multichannel esophageal impedance-manometry in healthy volunteers. J Clin Gastroenterol 43(3):253–260PubMedCrossRefPubMedCentralGoogle Scholar
  529. 529.
    Vitton V, Benezech A, Honoré S, Sudour P, Lesavre N, Auquier P, Baumstarck K (2015) CON-COUR study: interferential therapy in the treatment of chronic constipation in adults: study protocol for a randomized controlled trial. Trials 16:234PubMedPubMedCentralCrossRefGoogle Scholar
  530. 530.
    Lu ML, He J, Lu S (2015) Electrical stimulation therapy for slow transit constipation in children: a systematic review. Int J Colorectal Dis 30(5):697–702PubMedCrossRefPubMedCentralGoogle Scholar
  531. 531.
    Wang X, Yin J (2015) Complementary and alternative therapies for chronic constipation. Evid Based Complement Alternat Med 2015:396396PubMedPubMedCentralGoogle Scholar
  532. 532.
    Li Y, Zheng H, Zeng F, Zhou S-Y, Zhong F, Zheng H-B et al (2012) Use acupuncture to treat functional constipation: study protocol for a randomized controlled trial. Trials 13:104PubMedPubMedCentralCrossRefGoogle Scholar
  533. 533.
    Xiong F, Wang Y, Li S, Tian M, Zheng C-H, Huang G-Y (2014) Clinical study of electro-acupuncture treatment with different intensities for functional constipation patients. J Huazhong Univ Sci Technol (Med Sci) 34(5):775–781CrossRefGoogle Scholar
  534. 534.
    DeCamp LR, Byerley JS, Doshi N, Steiner MJ (2008) Use of antiemetic agents in acute gastroenteritis—a systematic review and meta-analysis. Arch Pediatr Adolesc Med 162(9):858–865PubMedCrossRefPubMedCentralGoogle Scholar
  535. 535.
    Olkkola KT, Ahonen J (2008) Midazolam and other benzodiazepines. Handb Exp Pharmacol 182:335–360CrossRefGoogle Scholar
  536. 536.
    Enrico P, Giuseppe V, Gabriele F, Walter M, Salvatore G, Leonardo G et al (1997) Ondansetron versus metoclopramide in the treatment of postoperative nausea and vomiting. Anesth Analg 85(2):395–399Google Scholar
  537. 537.
    Savant K, Khandeparker RV, Berwal V, Khandeparker PV, Jain H (2016) Comparison of ondansetron and granisetron for antiemetic prophylaxis in maxillofacial surgery patients receiving general anesthesia: a prospective, randomised, and double blind study. J Korean Assoc Oral Maxillofac Surg 42(2):84–89PubMedPubMedCentralCrossRefGoogle Scholar
  538. 538.
    Gupta K, Singh I, Gupta PK, Chauhan H, Jain M, Rastogi B (2014) Palonosetron, ondansetron, and granisetron for antiemetic prophylaxis of postoperative nausea and vomiting—a comparative evaluation. Anesth Essays Res 8(2):197–201PubMedPubMedCentralCrossRefGoogle Scholar
  539. 539.
    Board T, Board R (2006) The role of 5-HT3 receptor antagonists in preventing postoperative nausea and vomiting. AORN J 83(1):209–216, 219–220PubMedCrossRefPubMedCentralGoogle Scholar
  540. 540.
    Liu M, Zhang H, Du B-X, Xu F-Y, Zou Z, Sui B, Shi X-Y (2015) Neurokinin-1 receptor antagonists in preventing postoperative nausea and vomiting. A systematic review and meta-analysis. Medicine (Baltimore) 94(19):e762CrossRefGoogle Scholar
  541. 541.
    Chu C-C, Hsing C-H, Shieh J-P, Chien C-C, Ho C-M, Wang J-J (2014) The cellular mechanisms of the antiemetic action of dexamethasone and related glucocorticoids against vomiting. Eur J Pharmacol 722:48–54PubMedCrossRefPubMedCentralGoogle Scholar
  542. 542.
    Ho CM, Ho ST, Wang JJ, Tsai SK, Chai CY (2004) Dexamethasone has a central antiemetic mechanism in decerebrated cats. Anesth Analg 99(3):734–739PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physiology, Faculty of Basic Medical SciencesCollege of Health Sciences, Nile University of NigeriaFCT-AbujaNigeria

Personalised recommendations