Molecular Mechanisms of Gastrointestinal Signaling

  • Menizibeya Osain WelcomeEmail author


The epithelial cells of the gastrointestinal (GI) tract communicate with each other and with cells of other organs via a complex network of highly regulated movement of ions and biomolecules. The molecules ensure regulated activity of cells, tissues, and organs of the GI system and the body as whole. The regulated movement and subsequent activities of the biomolecules released from one cell to the target are made possible by receptive substances (receptors) localized on the membrane of the target cells or intracellular organelles, or in the cytosol. This process, which is referred to as cell-to-cell communication or cellular signaling, ensures the regulated functioning of the cells and tissues of the GI system and the whole organism. This chapter is dedicated to the mechanism of cell-to-cell communication and signaling in normal and relates it to how disease develops. Basic mechanisms of GI epithelial cell signaling and gut nutrient receptor sensing (GI chemosensation) are discussed.


Cellular communication Cell-to-cell communication Cell signaling Steroid receptors G protein-coupled receptor Ion channels Ion channel receptor Channelopathies Tyrphostins Catalytic receptors Enzyme-linked receptor Guanylate cyclase Receptor serine/threonine kinase Tyrosine receptor kinase Morphogens Morphogen receptor Notch Hedgehog Wingless/wnt Cytokines Interleukins Cytokine receptor JAK/STAT Integrin receptors Cell-surface adhesion receptors Gastrointestinal chemosensation Gut nutrient sensing Receptor nutrient sensing Amino acid sensors Fatty acid/lipid sensors Glucose sensors 



5-hydroxytryptamine type


Seven transmembrane


A disintegrin and metalloproteinase protein


“Ak” (mouse bred) that developed thymoma (“t”)


Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid


Atrial natriuretic peptide


Adenomatous polyposis coli


Activating transcription factor 3


Bone morphogenic protein


Brain natriuretic peptide




Calcium/calmodulin-dependent protein kinases


Cyclic adenosine monophosphate


Calcium-sensing receptor of aromatic amino acid


Ca2+-binding proteins




Cyclin-dependent kinase


Cystic fibrosis transmembrane conductance regulator


Cyclic guanosine monophosphate


CDK-like kinase


C-type natriuretic peptide


Carbon monoxide


Ca2+ release-activated Ca2+


CAMP response element-binding protein


(CBF1/Su(H)/Lag-1) C promoter Binding Factor-1, Suppressor of Hairless, Longevity-Assurance Gene




Desert Hedgehog



Dvl or Dsh



Epidermal growth factor


Cyclic nucleotide-gated ion channels and exchange proteins activated by cAMP


Endoplasmic reticulum


Erythroblastic leukemia viral oncogene


Extracellular receptor kinase


Fatty acid-binding proteins


Focal adhesion kinase


Food and Drug Administration


Fatty Acid Transport Protein


Fibroblast growth factor


FK506-binding protein 12-rapamycin-associated protein 1




Gamma-aminobutyric acid




GTPase-activating proteins


GSK-3-binding proteins


Guanylate cyclase


Guanine nucleotide dissociation inhibitor


Glial-derived neurotrophic factor


Guanosine 5′-diphosphate


Guanine nucleotide exchange factors


Glucose-dependent insulinotropic polypeptide


Glucagon-like peptide-1


G protein-coupled bile acid receptor 1


G protein (guanine nucleotide-binding protein) coupled receptor


GPCR kinases


Glycolgen synthase kinase 3


Glycogen synthase kinase-3β


Guanosine 5-triphosphate


Hepatocyte growth factor




High mobility group


Heparan sulfate


Heparan sulfate proteoglycans


Intercellular adhesion molecules


Intracellular domain of the notch receptor




Insulin-like growth factor


Insulin-like growth factor-2


Indian Hedgehog




Integrin-linked kinase


Inositol 1,4,5-trisphosphate


IP3 receptor


Nitric oxide


Insulin receptor substrate 1

Jag-1, Jag-2



Janus kinase


Long-chain fatty acid


Lymphoid enhancer factor




Mitogen-activated protein kinase


Membrane-type receptor for bile acids


Medium chain triglyceride


Mechanistic or mammalian target of rapamycin


Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate


Nicotinic acetylcholine receptors


Nicotinamide adenine dinucleotide


Neural cell adhesion molecule


Nuclear factor of activated T cell


Neuronal growth factor




IP3R-associated cGMP kinase substrate


Nitric oxide



P2X receptors

ATP-gated channels


Platelet-derived growth factor




Phosphatidylinositol 4,5-bisphosphate


Protein kinase A


Protein kinase C


Protein kinase G


Phospholipase C


Peroxisome proliferator-activated receptors


Phosphotyrosine binding


Rat sarcoma


Jκ immunoglobulin gene


Receptor serine/threonine kinase


Receptor tyrosine kinase


Store-operated calcium entry-associated regulatory factor

SCF (also called c-kit)

Stem cell factor


Short chain fatty acid


Sodium glucose cotransporter type 1


Src homology 2


Sonic hedgehog


Sonic Hedgehog


Stromal interacting molecule (previous name for STIMI1)


Store-operated calcium channel


Bacterial heat-stable enterotoxins


Signal transducers and activators of transcription


Stromal interaction molecule 1


T cell factor


Transforming growth factor beta


Tyrosine kinase inhibitors


Transmembrane protein 66


Tumor necrosis factors


Transient Receptor Potential


Transient Receptor Potential Valinoid type 1


Tuberous sclerosis complex subunit 1 and 2


Vascular cell adhesion molecule


Vascular endothelial growth factor

Wif-1 & 2

Wnt inhibitory factor 1 and 2


Wingless-related integration site


  1. 1.
    Banghart MR, Volgraf M, Trauner D (2006) Engineering light-gated ion channels. Biochemistry 45(51):15129–15141PubMedCrossRefGoogle Scholar
  2. 2.
    Chen M, Lin S, Hofestaedt R (2004) STCDB: signal transduction classification database. Nucleic Acids Res 32:D456–D458PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Lim W, Mayer B, Pawson T (2014) Cell signaling—principles and mechnaisms. Garland Science, New York, USAGoogle Scholar
  4. 4.
    Hancock JT (2016) Cell signaling, 4th edn. Oxford University Press, New York, USAGoogle Scholar
  5. 5.
    Mooren FC (2016) Intercellular signaling. In: Mooren F (ed) Encyclopedia of exercise medicine in health and disease. Springer, Heidelberg, USAGoogle Scholar
  6. 6.
    Jobst EE, Enriori PJ, Cowley MA (2004) The electrophysiology of feeding circuits. Trends Endocrinol Metab 15(10):488–499PubMedCrossRefGoogle Scholar
  7. 7.
    Nuche-Berenguer B, Jensen RT (2015) Gastrointestinal hormones/neurotransmitters and growth factors can activate P21 activated kinase 2 in pancreatic acinar cells by novel mechanisms. Biochim Biophys Acta 1853(10):2371–2382CrossRefGoogle Scholar
  8. 8.
    Nezami BG, Srinivasan S (2010) Enteric nervous system in the small intestine: pathophysiology and clinical implications. Curr Gastroenterol Rep 12(5):358–365PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Mace OJ, Tehan B, Marshall F (2015) Pharmacology and physiology of gastrointestinal enteroendocrine cells. Pharmacol Res Perspect 3(4):e00155PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Cummings DE, Overduin J (2007) Gastrointestinal regulation of food intake. J Clin Invest 117(1):13–23PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Psichas A, Reimann F, Gribble FM (2015) Gut chemosensing mechanisms. J Clin Invest 125(3):908–917PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Gribble FM, Reimann F (2016) Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu Rev Physiol 78:277–299PubMedCrossRefGoogle Scholar
  13. 13.
    Nøhr MK, Pedersen MH, Gille A, Egerod KL, Engelstoft MS, Husted AS et al (2013) GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells versus FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 154(10):3552–3564PubMedCrossRefGoogle Scholar
  14. 14.
    Hill SJ (2006) G-protein-coupled receptors: past, present and future. Br J Pharmacol 147(Suppl 1):S27–S37PubMedPubMedCentralGoogle Scholar
  15. 15.
    Boycott BB (1998) John Zachary Young. 18 March 1907–4 July 1997. Biogr Mem Fellows R Soc 44:487–509PubMedCrossRefGoogle Scholar
  16. 16.
    Young JZ (1992) Sources of discovery in neuroscience. In: Worden FG, Swazey JP, Adelman G (eds) The neurosciences: paths of discovery, I. Birkhäuser, Boston, USAGoogle Scholar
  17. 17.
    Ling G, Gerard RW (1949) The normal membrane potential of frog sartorius fibers. J Cell Physiol 34(3):383–396CrossRefGoogle Scholar
  18. 18.
    Ling G, Gerard RW (1949) The membrane potential and metabolism of muscle fibers. J cellular Physiol 34(3):413–438CrossRefGoogle Scholar
  19. 19.
    Ling G, Gerard RW (1950) External potassium and the membrane potential of single muscle fibres. Nature 165:113–114PubMedCrossRefGoogle Scholar
  20. 20.
    Edwards C (1983) Who invented the intracellular microelectrode? Trends Neurosci 6:44CrossRefGoogle Scholar
  21. 21.
    Verkhratsky A, Parpura V (2014) History of electrophysiology and the patch clamp. Methods Mol Biol 1183:1–19PubMedCrossRefGoogle Scholar
  22. 22.
    Rall JA (2014) Excitation-contraction coupling and the role of calcium in contraction and relaxation in the 1950s and 1960s. Mechanism of muscular contraction part of the series perspectives in physiology. Springer, New YorkGoogle Scholar
  23. 23.
    Cole KS (1979) Mostly membranes. Annu Rev Physiol 41:1–24PubMedCrossRefGoogle Scholar
  24. 24.
    Huxley A (1996) Kenneth Stewart Cole: July 10, 1900–April 18, 1984. Biogr Mem Natl Acad Sci 70:25–45PubMedGoogle Scholar
  25. 25.
    Schwiening CJ (2012) A brief historical perspective: Hodgkin and Huxley. J Physiol 590(Pt 11):2571–2575PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Cole KS, Moore JW (1960) Potassium ion current in the squid giant axon: dynamic characteristic. Biophys J 1:IPubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Curtis HJ, Cole KS (1942) Membrane resting and action potentials from the squid giant axon. J Cell Comp Physiol 19:135–144CrossRefGoogle Scholar
  28. 28.
    Vandenberg JI, Waxman SG (2012) Hodgkin and Huxley and the basis for electrical signalling: a remarkable legacy still going strong. J Physiol 590(Pt 11):2569–2570PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    De Palma A, Pareti G (2011) Bernstein’s long path to membrane theory: radical change and conservation in nineteenth-century German electrophysiology. J Hist Neurosci 20(4):306–337PubMedCrossRefGoogle Scholar
  30. 30.
    Grundfest H (1965) Julius Bernstein, Ludimar Hermann and the discovery of the overshoot of the axon spike. Arch Ital Biol 103(3):483–490PubMedGoogle Scholar
  31. 31.
    Seyfarth E-A (2006) Julius Bernstein (1839–1917): pioneer neurobiologist and biophysicist. Biol Cybern 94(1):2–8PubMedCrossRefGoogle Scholar
  32. 32.
    From J (2014) The discovery of the nerve impulse. A chapter in the history of physiology. Dan Medicinhist Arbog 42:81–98PubMedGoogle Scholar
  33. 33.
    Finkelstein G (2006) Emil du Bois-Reymond versus Ludimar Hermann. Comptes Rendus Biol 329(5–6):340–347CrossRefGoogle Scholar
  34. 34.
    Hodgkin AL, Huxley AF, Katz B (1952) Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol 116(4):424–448PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Raju TN (1999) The Nobel chronicles. 1963: Sir Alan Lloyd Hodgkin (1914–98), Sir Andrew Fielding Huxley (b 1917), and Sir John Carew Eccles (1903–97). Lancet 354(9174):263Google Scholar
  36. 36.
    Brock LG, Coombs JS, Eccles JC (I952) The recording of potentials from motoneurones with an intracellular electrode. J Physiol II7:43I–460Google Scholar
  37. 37.
    Ranjan R, Khazen G, Gambazzi L, Ramaswamy S, Hill SL, Schürmann F, Markram H (2011) Channelpedia: an integrative and interactive database for ion channels. Front Neuroinform 5:36PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity of the giant axon of the squid. J Physiol 108:37–77PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Raju TN (1999) The Nobel chronicles. 1971: Earl Wilbur Sutherland, Jr. (1915–74). Lancet 354(9182):961PubMedCrossRefGoogle Scholar
  40. 40.
    Cao H, Yu F, Zhao Y, Zhang X, Tai J, Lee J et al (2014) Wearable multi-channel microelectrode membranes for elucidating electrophysiological phenotypes of injured myocardium. Integr Biol (Camb) 6(8):789–795CrossRefGoogle Scholar
  41. 41.
    Serpe MJ, Zhang X (2007) The principles, development and application of microelectrodes for the in vivo determination of nitric oxide. In: Michael AC, Borland LM (eds) Electrochemical methods for neuroscience. CRC Press/Taylor & Francis, Boca Raton, Florida, USAGoogle Scholar
  42. 42.
    Wijdenes P, Ali H, Armstrong R, Zaidi W, Dalton C, Syed NI (2016) A novel bio-mimicking, planar nano-edge microelectrode enables enhanced long-term neural recording. Sci Rep 6:34553PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Mullins LJ (1959) An analysis of conductance changes in squid axon. J Gen Physiol 42:1013PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Furshpan EJ, Potter DD (1957) Mechanism of nerve-impulse transmission at a crayfish synapse. Nature 180:342–343PubMedCrossRefGoogle Scholar
  45. 45.
    Furshpan EJ, Potter DD (1959) Transmission at the giant motor synapses of the crayfish. J Physiol 145(2):289–325PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Narahashi T, Moore JW, Scott WR (1964) Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J Gen Physiol 47(5):965–974PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Narahashi T (2008) Tetrodotoxin—A brief history. Proc Jpn Acad Ser B Phys Biol Sci 84(5):147–154PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Armstrong CM (1969) Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons. J Gen Physiol 54(5):553–575PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Armstrong CM, Binstock L (1965) Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride. J Gen Physiol 48:859–872PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Armstrong CM (1971) Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J Gen Physiol 58:413–437PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Binstock L, Lecar H (1969) Ammonium ion currents in the squid giant axon. J Gen Physiol 53(3):342–361PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patchclamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802PubMedCrossRefGoogle Scholar
  54. 54.
    Neher E, Sakmann B, Steinbach JH (1978) The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Pflugers Arch 375:219–228PubMedCrossRefGoogle Scholar
  55. 55.
    Hille B (1975) Ionic selectivity, saturation, and block in sodium channels. A four-barrier model. J Gen Physiol 66:535–560PubMedCrossRefGoogle Scholar
  56. 56.
    Geck P, Heinz E (1986) The Na-K-2Cl cotransport system. J Membr Biol 91(2):97–105PubMedCrossRefGoogle Scholar
  57. 57.
    Kostyuk PG (1984) Metabolic control of ionic channels in the neuronal membrane. Neuroscience 13(4):983–989PubMedCrossRefGoogle Scholar
  58. 58.
    Beale R, Dutton GR, Currie DN (1980) An ion flux assay of action potential sodium channels in neuron- and glia-enriched cultures of cells dissociated from rat cerebellum. Brain Res 183(1):241–246PubMedCrossRefGoogle Scholar
  59. 59.
    Káradóttir R, Attwell D (2006) Combining patch-clamping of cells in brain slices with immunocytochemical labelling to define cell type and developmental stage. Nat Protoc 1(4):1977–1986PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Dunlop J, Bowlby M, Peri R, Vasilyev D, Arias R (2008) High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat Rev Drug Discov 7:358–368PubMedCrossRefGoogle Scholar
  61. 61.
    Aldea M, Jun K, Shin HS, Andrés-Mateos E, Solís-Garrido LM, Montiel C et al (2002) A perforated patch-clamp study of calcium currents and exocytosis in chromaffin cells of wild-type and alpha(1A) knockout mice. J Neurochem 81(5):911–921PubMedCrossRefGoogle Scholar
  62. 62.
    Brüggemann A, Farre C, Haarmann C, Haythornthwaite A, Kreir M, Stoelzle S et al (2008) Planar patch clamp: advances in electrophysiology. Methods Mol Biol 491:165–176PubMedCrossRefGoogle Scholar
  63. 63.
    Gardner P (1990) Patch clamp studies of lymphocyte activation. Annu Rev Immunol 8:231–252PubMedCrossRefGoogle Scholar
  64. 64.
    Palmer LG (1986) Patch-clamp technique in renal physiology. Am J Physiol 250(3 Pt 2):F379–F385PubMedGoogle Scholar
  65. 65.
    Long Y, Li Z (2012) Drug screening and drug safety evaluation by patch clamp technique. In: Kaneez FS (ed) patch clamp technique. InTech, CroatiaGoogle Scholar
  66. 66.
    Molleman A (2003) Patch clamping: an introductory guide to patch clamp electrophysiology. John Wiley & Sons, New YorkGoogle Scholar
  67. 67.
    Vandenberg JI, Kuchel PW (2003) Nobel Prizes for magnetic resonance imaging and channel proteins. Med J Aust 179(11):611–613PubMedGoogle Scholar
  68. 68.
    Rothman PB (2016) Introduction of Peter Agre. J Clin Invest 126(12):4735–4741PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Knepper MA, Nielsen S (2004) Peter Agre, 2003 Nobel Prize winner in chemistry. J Am Soc Nephrol 15(4):1093–1095PubMedCrossRefGoogle Scholar
  70. 70.
    Benga G (2006) Water channel proteins: from their discovery in 1985 in Cluj-Napoca, Romania, to the 2003 Nobel Prize in Chemistry. Cell Mol Biol (Noisy-le-grand) 52(7):10–9Google Scholar
  71. 71.
    Benga G (2004) The first water channel protein (later called aquaporin 1) was first discovered in Cluj-Napoca. Romania. Rom J Physiol 41(1–2):3–20PubMedGoogle Scholar
  72. 72.
    Kuchel PW (2006) The story of the discovery of aquaporins: convergent evolution of ideas--but who got there first? Cell Mol Biol (Noisy-le-grand) 52(7):2–5Google Scholar
  73. 73.
    Agre P (2009) The 2009 Lindau Nobel Laureate meeting: Peter Agre, Chemistry 2003. J Vis Exp 34: pii: 1565Google Scholar
  74. 74.
    Cucuianu M (2006) The discovery by Gh. Benga of the first water channel protein in 1985 in Cluj-Napoca, Romania, A few years before P. Agre (2003 Nobel Prize in Chemistry). Rom J Intern Med 44(3):323–334PubMedGoogle Scholar
  75. 75.
    Benga G, Popescu O, Pop VI, Holmes RP (1986) p-(Chloromercuri)benzenesulfonate binding by membrane proteins and the inhibition of water transport in human erythrocytes. Biochemistry 25(7):1535–1538PubMedCrossRefGoogle Scholar
  76. 76.
    Benga G, Popescu O, Borza V, Pop VI, Muresan A, Mocsy I et al (1986) Water permeability of human erythrocytes. Identification of membrane proteins involved in water transport. Eur J Cell Biol 41(2):252–262PubMedGoogle Scholar
  77. 77.
    Hatta S, Sakamoto J, Horio Y (2002) Ion channels and diseases. Med Electron Microsc 35(3):117–126PubMedCrossRefGoogle Scholar
  78. 78.
    Enkvetchakul D (2010) Genetic disorders of ion channels. Mo Med 107(4):270–275PubMedGoogle Scholar
  79. 79.
    Sanguinetti MC, Spector PS (1997) Potassium channelopathies. Neuropharmacology 36(6):755–762PubMedCrossRefGoogle Scholar
  80. 80.
    Rall TW, Sutherland EW (1958) Formation of a cyclic adenine ribonucleotide by tissue particles. J Biol Chem 232:1065–1076PubMedGoogle Scholar
  81. 81.
    Sutherland EW, Rall TW (1958) Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J Biol Chem 232:1077–1092PubMedGoogle Scholar
  82. 82.
    Exton JH, Robison GA, Sutherland EW, Park CR (1971) Studies on the role of adenosine 3′,5′-monophosphate in the hepatic actions of glucagon and catecholamines. J Biol Chem 246(20):6166–6177PubMedGoogle Scholar
  83. 83.
    Jefferson LS, Exton JH, Butcher RW, Sutherland EW, Park CR (1968) Role of adenosine 3′,5′-monophosphate in the effects of insulin and anti-insulin serum on liver metabolism. J Biol Chem 243(5):1031–1038PubMedGoogle Scholar
  84. 84.
    Butcher RW, Ho RJ, Meng HC, Sutherland EW (1965) Adenosine 3′,5′-monophosphate in biological materials. II. The measurement of adenosine 3′,5′-monophosphate in tissues and the role of the cyclic nucleotide in the lipolytic response of fat to epinephrine. J Biol Chem 240(11):4515–4523PubMedGoogle Scholar
  85. 85.
    Sutherland Earl W, Wosilait WD (1956) The relationship of epinephrine and glucagon to liver phosphorylase. I. Liver phosphorylase; preparation and properties. J Biol Chem 218:459–468Google Scholar
  86. 86.
    Blumenthal SA (2012) Earl Sutherland (1915–1974) and the discovery of cyclic AMP. Perspect Biol Med 55(2):236–249PubMedCrossRefGoogle Scholar
  87. 87.
    Kresge N, Simoni RD, Hill RL (2005) Earl W. Sutherland’s discovery of cyclic adenine monophosphate and the second messenger system. J Biol Chem 280:e39Google Scholar
  88. 88.
    Raju TN (1999) The Nobel chronicles. 1966: Francis Peyton Rous (1879–1970) and Charles Brenton Huggins (1901–97). Lancet 354(9177):520CrossRefGoogle Scholar
  89. 89.
    Milligan G, Kostenis E (2006) Heterotrimeric G-proteins: a short history. Br J Pharmacol 147(Suppl 1):S46–S55PubMedPubMedCentralGoogle Scholar
  90. 90.
    Bourne HR (2016) Alfred Gilman: intrepid, committed scientist. Proc Natl Acad Sci USA 113(13):3414–3416PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Birnbaumer L (2007) The discovery of signal transduction by G proteins. A personal account and an overview of the initial findings and contributions that led to our present understanding. Biochim Biophys Acta 1768(4):756–771PubMedCrossRefGoogle Scholar
  92. 92.
    Hofmann L, Palczewski K (2015) The G protein-coupled receptor rhodopsin: a historical perspective. Methods Mol Biol 1271:3–18PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Costanzi S, Siegel J, Tikhonova IG, Jacobson KA (2009) Rhodopsin and the others: a historical perspective on structural studies of G protein-coupled receptors. Curr Pharm Des 15(35):3994–4002PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Ovchinnikov YA (1982) Rhodopsin and bacteriorhodopsin: structure-function relationship. FEBS Lett 148:179–191PubMedCrossRefGoogle Scholar
  95. 95.
    Ovchinnikov YA, Abdulaev NG, Feigina MY, Artamonov ID, Zolotarev AS, Kostina MB et al (1982) The complete amino acid sequence of visual rhodopsin. Bioorg Khim 8:1011–1014Google Scholar
  96. 96.
    Schertler GFX, Hargrave PA (1995) Projection structure of frog rhodopsin in two crystal forms. PNAS 192:11578–11582CrossRefGoogle Scholar
  97. 97.
    Unger VM, Hargrave PA, Baldwin JM, Schertler GFX (1997) Arrangement of rhodopsin transmembrane alpha-helices. Nature 389:203–206PubMedCrossRefGoogle Scholar
  98. 98.
    Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA et al (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289(5480):739–745PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Clark RB (2013) Profile of Brian K. Kobilka and Robert J. Lefkowitz, 2012 Nobel Laureates in chemistry. Proc Natl Acad Sci USA 110(14):5274–5275CrossRefGoogle Scholar
  100. 100.
    Kobilka B, Jamal Azouz H (2014) Q&A: Brian Kobilka. Stuck on structure. Nature 514(7522):S12–S13PubMedCrossRefGoogle Scholar
  101. 101.
    Lefkowitz RJ (2004) Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol Sci 25(8):413–422PubMedCrossRefGoogle Scholar
  102. 102.
    Bourne HR (2006) G-proteins and GPCrs: from the beginning. Ernst Schering Found Symp Proc 2:1–21Google Scholar
  103. 103.
    Schlessinger J (2014) Kinases: legacy of the first two decades. Cold Spring Harb Perspect Biol 6(3). pii: a008912Google Scholar
  104. 104.
    Becsei-Kilborn E (2010) Scientific discovery and scientific reputation: the reception of Peyton Rous’ discovery of the chicken sarcoma virus. J Hist Biol 43(1):111–157PubMedCrossRefGoogle Scholar
  105. 105.
    Collett MS, Erikson RL (1978) Protein kinase activity associated with the avian sarcoma virus src gene product. Proc Natl Acad Sci USA 75:2021–2024PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Eckhart W, Hutchinson MA, Hunter T (1979) An activity phosphorylating tyrosine in polyoma T antigen immunoprecipitates. Cell 18:925–933PubMedCrossRefGoogle Scholar
  107. 107.
    Hunter T, Sefton BM (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci USA 77:1311–1315PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Hunter T (2015) Discovering the first tyrosine kinase. Proc Natl Acad Sci USA 112(26):7877–7882PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Stehelin D, Varmus HE, Bishop JM, Vogt PK (1976) DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260:170–173PubMedCrossRefGoogle Scholar
  110. 110.
    Levinson AD, Oppermann H, Levintow L, Varmus HE, Bishop JM (1978) Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell 15:561–572PubMedCrossRefGoogle Scholar
  111. 111.
    Cohen S (1962) Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the newborn animal. J Biol Chem 237:1555–1562PubMedGoogle Scholar
  112. 112.
    Cohen S, Carpenter G, King L Jr (1980) Epidermal growth factor-receptor-protein kinase interactions: co-purification of receptor and epidermal growth factor-enhanced phosphorylation activity. J Biol Chem 255:4834–4842PubMedGoogle Scholar
  113. 113.
    Cohen S (2008) Origins of growth factors: NGF and EGF. J Biol Chem 283(49):33793–33797PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Galligan JJ (2002) Ligand-gated ion channels in the enteric nervous system. Neurogastroenterol Motil 14(6):611–623PubMedCrossRefGoogle Scholar
  115. 115.
    Julius D, Nathans J (2012) Signaling by sensory receptors. Cold Spring Harb Perspect Biol 4(1):a005991PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Garcia-Villalba P, Jimenez-Lara AM, Aranda A (1996) Vitamin D interferes with transactivation of the growth hormone gene by thyroid hormone and retinoic acid. Mol Cell Biol 16(1):318–327PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Weigel NL (1996) Steroid hormone receptors and their regulation by phosphorylation. Biochem J 319(Pt 3):657–667PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Lazar MA, Chin WW (1990) Nuclear thyroid hormone receptors. J Clin Invest 86(6):1777–1782PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Kumar R, Thompson EB (1999) The structure of the nuclear hormone receptors. Steroids 64(5):310–319PubMedCrossRefGoogle Scholar
  120. 120.
    Castillo AI, Sánchez-Martínez R, Moreno JL, Martínez-Iglesias OA, Palacios D, Aranda A (2004) A permissive retinoid X receptor/thyroid hormone receptor heterodimer allows stimulation of prolactin gene transcription by thyroid hormone and 9-cis-retinoic acid. Mol Cell Biol 24(2):502–513PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Weigel NL, Zhang Y (1998) Ligand-independent activation of steroid hormone receptors. J Mol Med (Berl) 76(7):469–479CrossRefGoogle Scholar
  122. 122.
    García-Gómez E, González-Pedrajo B, Camacho-Arroyo I (2013) Role of sex steroid hormones in bacterial-host interactions. Biomed Res Int 2013:928290PubMedCrossRefGoogle Scholar
  123. 123.
    Chen TS, Doong ML, Chang FY, Lee SD, Wang PS (1995) Effects of sex steroid hormones on gastric emptying and gastrointestinal transit in rats. Am J Physiol 268(1 Pt 1):G171–G176PubMedGoogle Scholar
  124. 124.
    Black HE (1988) The effects of steroids upon the gastrointestinal tract. Toxicol Pathol 16(2):213–222PubMedCrossRefGoogle Scholar
  125. 125.
    Küntzer J, Backes C, Blum T, Gerasch A, Kaufmann M, Kohlbacher O, Lenhof HP (2007) BNDB—the Biochemical Network Database. BMC Bioinformatics 8:367PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Hinard V, Britan A, Rougier JS, Bairoch A, Abriel H, Gaudet P (2016) ICEPO: the ion channel electrophysiology ontology. Database (Oxford) 2016: baw017Google Scholar
  127. 127.
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Mpamhanga CP, Sharman JL, Harmar AJ (2012) How to use the IUPHAR receptor database to navigate pharmacological data. Methods Mol Biol 897:15–29PubMedCrossRefGoogle Scholar
  129. 129.
    Gao J, Cui W, Sheng Y, Ruan J, Kurgan L (2016) PSIONplus: accurate sequence-based predictor of ion channels and their types. PLoS ONE 11(4):e0152964PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Gallin WJ, Boutet PA (2011) VKCDB: voltage-gated K+ channel database updated and upgraded. Nucleic Acids Res 39:D362–D366PubMedCrossRefGoogle Scholar
  131. 131.
    Donizelli M, Djite MA, Le Novère N (2006) LGICdb: a manually curated sequence database after the genomes. Nucleic Acids Res 34:D267–D269PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Michel K, Michaelis M, Mazzuoli G, Mueller K, Vanden Berghe P, Schemann M (2011) Fast calcium and voltage-sensitive dye imaging in enteric neurones reveal calcium peaks associated with single action potential discharge. J Physiol 589(Pt 24):5941–5947PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Vignali S, Peter N, Ceyhan G, Demir IE, Zeller F, Senseman D et al (2010) Recordings from human myenteric neurons using voltage-sensitive dyes. J Neurosci Methods 192(2):240–248PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Dascal N (2001) Ion-channel regulation by G proteins. Trends Endocrinol Metab 12(9):391–398PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    George AL Jr (2005) Inherited disorders of voltage-gated sodium channels. J Clin Invest 115(8):1990–1999PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Ren D (2011) Sodium leak channels in neuronal excitability and rhythmic behaviors. Neuron 72(6):899–911PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Swayne LA, Mezghrani A, Varrault A, Chemin J, Bertrand G, Dalle S et al (2009) The NALCN ion channel is activated by M3 muscarinic receptors in a pancreatic β-cell line. EMBO Rep 10:873–880PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Galligan JJ (2009) Cannabinoid signalling in the enteric nervous system. Neurogastroenterol Motil 21(9):899–902PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Gadsby DC (2009) Ion channels versus ion pumps: the principal difference, in principle. Nat Rev Mol Cell Biol 10:344–352PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Cooper EC, Jan LY (1999) Ion channel genes and human neurological disease: recent progress, prospects, and challenges. Proc Natl Acad Sci USA 96(9):4759–4766PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Albuquerque EX, Pereira EFR, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89(1):73–120PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    McGehee DS, Role LW (1996) Presynaptic ionotropic receptors. Curr Opin Neurobiol 6(3):342–349PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Draguhn A, Axmacher N, Kolbaev S (2008) Presynaptic ionotropic GABA receptors. Results Probl Cell Differ 44:69–85PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Bardoni R, Takazawa T, Tong CK, Choudhury P, Scherrer G, Macdermott AB (2013) Pre- and postsynaptic inhibitory control in the spinal cord dorsal horn. Ann NY Acad Sci 1279:90–96PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Forostyak O, Butenko O, Anderova M, Forostyak S, Sykova E, Verkhratsky A, Dayanithi G (2016) Specific profiles of ion channels and ionotropic receptors define adipose- and bone marrow derived stromal cells. Stem Cell Res 16(3):622–634PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85(2):757–810PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    MacDermott AB, Role LW, Siegelbaum SA (1999) Presynaptic ionotropic receptors and the control of transmitter release. Annu Rev Neurosci 22:443–485PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Bowie D (2008) Ionotropic glutamate receptors & CNS disorders. CNS Neurol Disord: Drug Targets 7(2):129–143CrossRefGoogle Scholar
  149. 149.
    Nys M, Wijckmans E, Farinha A, Yoluk Ö, Andersson M, Brams M et al (2016) Allosteric binding site in a Cys-loop receptor ligand-binding domain unveiled in the crystal structure of ELIC in complex with chlorpromazine. Proc Natl Acad Sci USA 113(43):E6696–E6703PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Lynagh T, Lynch JW (2012) Molecular mechanisms of Cys-loop ion channel receptor modulation by ivermectin. Front Mol Neurosci 5:60PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Kozuska JL, Paulsen IM (2012) The Cys-loop pentameric ligand-gated ion channel receptors: 50 years on. Can J Physiol Pharmacol 90(6):771–782PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Thompson AJ, Lester HA, Lummis SC (2010) The structural basis of function in Cys-loop receptors. Q Rev Biophys 43(4):449–499PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Connolly CN, Wafford KA (2004) The Cys-loop superfamily of ligand-gated ion channels: the impact of receptor structure on function. Biochem Soc Trans 32(Pt3):529–534PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Kaneko S, Akaike A, Satoh M (1999) Receptor-mediated modulation of voltage-dependent Ca2+ channels via heterotrimeric G-proteins in neurons. Jpn J Pharmacol 81(4):324–331PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA (1996) Modulation of Ca2+ channels by G-protein beta gamma subunits. Nature 380(6571):258–262PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Karim F, Bhave G, Gereau RW 4th (2001) Metabotropic glutamate receptors on peripheral sensory neuron terminals as targets for the development of novel analgesics. Mol Psychiatry 6(6):615–617PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Lin W, Kinnamon SC (1999) Physiological evidence for ionotropic and metabotropic glutamate receptors in rat taste cells. J Neurophysiol 82(5):2061–2069PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Ledoux J, Werner ME, Brayden JE, Nelson MT (2006) Calcium-activated potassium channels and the regulation of vascular tone. Physiology 21(1):69–78PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Baker EH (2000) Ion channels and the control of blood pressure. Br J Clin Pharmacol 49(3):185–198PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Lane BR, Strassmaier T, Brady JD, Karpen JW (2006) The pharmacology of cyclic nucleotide-gated channels: emerging from the darkness. Curr Pharm Des 12(28):3597–3613CrossRefGoogle Scholar
  162. 162.
    Wickman KD, Clapham DE (1995) G-protein regulation of ion channels. Curr Opin Neurobiol 5(3):278–285PubMedCrossRefGoogle Scholar
  163. 163.
    Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90(1):291–366PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    de la Cruz L, Puente EI, Reyes-Vaca A, Arenas I, Garduño J, Bravo-Martínez J, Garcia DE (2016) PIP2 in pancreatic β-cells regulates voltage-gated calcium channels by a voltage-independent pathway. Am J Physiol Cell Physiol 311(4):C630–C640PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Suh B-C, Hille B (2008) PIP2 is a necessary cofactor for ion channel function: How and why? Annu Rev Biophys 37:175–195PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Rodríguez-Menchaca AA, Adney SK, Zhou L, Logothetis DE (2012) Dual regulation of voltage-sensitive ion channels by PIP2. Front Pharmacol 3:170PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Pedersen PL (2005) Transport ATPases: structure, motors, mechanism and medicine: a brief overview. J Bioenerg Biomembr 37(6):349–357PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Pedersen PL (2007) Transport ATPases into the year 2008: a brief overview related to types, structures, functions and roles in health and disease. J Bioenerg Biomembr 39(5–6):349–355PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Lopina OD (2000) Na+/K+ -ATPase: structure, mechanism, and regulation. Membr Cell Biol 13(6):721–744PubMedPubMedCentralGoogle Scholar
  170. 170.
    Alexander SPH, Kelly E, Marrion N, Peters JA, Benson HE, Faccenda E et al (2015) The concise guide to pharmacology 2015/16: transporters. Br J Pharmacol 172:6110–6202PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Rappas M, Niwa H, Zhang X (2004) Mechanisms of ATPases—a multi-disciplinary approach. Curr Protein Pep Sci 5(2):89–105CrossRefGoogle Scholar
  172. 172.
    Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46(1):84–101PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Futai M, Sun-Wada GH, Wada Y (2004) Proton pumping ATPases and diverse inside-acidic compartments. Yakugaku Zasshi 124(5):243–260PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82(3):769–824PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Jackson MB (1995) Presynaptic excitability. Int Rev Neurobiol 38:201–251PubMedCrossRefGoogle Scholar
  176. 176.
    Kim J-B (2014) Channelopathies. Korean. J Pediatr 57(1):1–18CrossRefGoogle Scholar
  177. 177.
    Lehmann-Horn F, Jurkat-Rott K (eds) (2000) Channelopathies. Elsevier, New YorkGoogle Scholar
  178. 178.
    Wilders R (2015) A note on the prevalence of cardiac ion channelopathies in the sudden infant death syndrome. Europace 17(11):1739PubMedGoogle Scholar
  179. 179.
    Abriel H, Zaklyazminskaya EV (2013) Cardiac channelopathies: genetic and molecular mechanisms. Gene 517(1):1–11PubMedCrossRefGoogle Scholar
  180. 180.
    Horga A, Raja Rayan DL, Matthews E, Sud R, Fialho D, Durran SC et al (2013) Prevalence study of genetically defined skeletal muscle channelopathies in England. Neurology 80(16):1472–1475PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Davies NP, Hanna MG (1999) Neurological channelopathies: diagnosis and therapy in the new millennium. Ann Med 31(6):406–420PubMedCrossRefGoogle Scholar
  182. 182.
    Rolim AL, Lindsey SC, Kunii IS, Fujikawa AM, Soares FA, Chiamolera MI et al (2010) Ion channelopathies in endocrinology: recent genetic findings and pathophysiological insights. Arq Bras Endocrinol Metabol 54(8):673–681PubMedCrossRefGoogle Scholar
  183. 183.
    Tester DJ, Ackerman MJ (2011) Genetic testing for potentially lethal, highly treatable inherited cardiomyopathies/channelopathies in clinical practice. Circulation 123(9):1021–1037PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Lehnart SE, Ackerman MJ, Benson DW Jr, Brugada R, Clancy CE, Donahue JK et al (2007) Inherited arrhythmias: a National Heart, Lung, and Blood Institute and Office of Rare Diseases workshop consensus report about the diagnosis, phenotyping, molecular mechanisms, and therapeutic approaches for primary cardiomyopathies of gene mutations affecting ion channel function. Circulation 116(20):2325–2345PubMedCrossRefGoogle Scholar
  185. 185.
    Ptáĉek LJ, Tawil R, Griggs RC, Meola G, McManis P, Barohn RJ et al (1994) Sodium channel mutations in acetazolamide-responsive myotonia congenita, paramyotonia congenita, and hyperkalemic periodic paralysis. Neurology 44(8):1500–1503PubMedCrossRefGoogle Scholar
  186. 186.
    Ptácek LJ, George AL Jr, Griggs RC, Tawil R, Kallen RG, Barchi RL et al (1991) Identification of a mutation in the gene causing hyperkalemic periodic paralysis. Cell 67:1021–1027PubMedCrossRefGoogle Scholar
  187. 187.
    Ptacek LJ, Trimmer JS, Agnew WS, Roberts JW, Petajan JH, Leppert M (1991) Paramyotonia congenita and hyperkalemic periodic paralysis map to the same sodium channel gene locus. Am J Hum Genet 49:851–854PubMedPubMedCentralGoogle Scholar
  188. 188.
    Pi Y, Goldenthal MJ, Marín-García J (2007) Mitochondrial channelopathies in aging. J Mol Med (Berl) 85(9):937–951CrossRefGoogle Scholar
  189. 189.
    Camerino DC, Desaphy JF, Tricarico D, Pierno S, Liantonio A (2008) Therapeutic approaches to ion channel diseases. Adv Genet 64:81–145PubMedGoogle Scholar
  190. 190.
    Zhou P, Wang J (2010) Genetic testing for channelopathies, more than ten years progress and remaining challenges. J Cardiovasc Dis Res 1(2):47–49PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Schwartz PJ, Crotti L, Insolia R (2012) Long QT syndrome: from genetics to management. Circ Arrhythm Electrophysiol 5(4):868–877PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Dalemans W, Barbry P, Champigny G, Jallat S, Dott K, Dreyer D et al (1991) Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation. Nature 354(6354):526–528PubMedCrossRefGoogle Scholar
  193. 193.
    Hübner CA, Jentsch TJ (2002) Ion channel diseases. Hum Mol Genet 11(20):2435–2445PubMedCrossRefGoogle Scholar
  194. 194.
    Ackerman MJ, Marcou CA, Tester DJ (2013) Personalized medicine: genetic diagnosis for inherited cardiomyopathies/channelopathies. Rev Esp Cardiol (Engl Ed) 66(4):298–307CrossRefGoogle Scholar
  195. 195.
    Ackerman MJ, Priori SG, Willems S, Berul C, Brugada R, Calkins H et al (2011) HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies. Europace 13(8):1077–1109PubMedCrossRefGoogle Scholar
  196. 196.
    Cleland JC, Griggs RC (2008) Treatment of neuromuscular channelopathies: current concepts and future prospects. Neurother: J Amer Soc Exp NeuroTher 5:607–612PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Cleland JC, Griggs RC (2008) Treatment of neuromuscular channelopathies: current concepts and future prospects. Neurotherapeutics 5(4):607–612PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Beck RW, Cleary PA, Anderson MM Jr, Keltner JL, Shults WT, Kaufman DI et al (1992) A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. The Optic Neuritis Study Group. N Engl J Med 326(9):581–588PubMedCrossRefGoogle Scholar
  199. 199.
    Imbrici P, Liantonio A, Camerino GM, De Bellis M, Camerino C, Mele A et al (2016) Therapeutic approaches to genetic ion channelopathies and perspectives in drug discovery. Front Pharmacol 7:121PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Premont RT, Gainetdinov RR (2007) Physiological roles of G protein-coupled receptor kinases and arrestins. Annu Rev Physiol 69:511–534PubMedCrossRefGoogle Scholar
  201. 201.
    Elefsinioti AL, Bagos PG, Spyropoulos IC, Hamodrakas SJ (2004) A database for G proteins and their interaction with GPCRs. BMC Bioinformatics 5:208PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Fredriksson R, Lagerström MC, Lundin LG, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272PubMedCrossRefGoogle Scholar
  203. 203.
    Horn F, Bettler E, Oliveira L, Campagne F, Cohen FE, Vriend G (2003) GPCRDB information system for G protein-coupled receptors. Nucleic Acids Res 31(1):294–297PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Kristiansen K (2004) Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modelingand mutagenesis approaches to receptor structure and function. Pharmacol Ther 103:21–80PubMedCrossRefGoogle Scholar
  205. 205.
    Rhee SG, Choi KD (1992) Multiple forms of phospholipase C isozymes and their activation mechanisms. Adv Second Messenger Phosphoprotein Res 26:35–61PubMedGoogle Scholar
  206. 206.
    Page CP, Costello J (2000) Theophylline and new generation phosphodiesterase inhibitors in the treatment of asthma. In: Giembycz MA, O’Connor BJ (eds) Asthma: epidemiology, anti-inflammatory therapy and future trends part of the series respiratory pharmacology and pharmacotherapy. Birkhäuser, BaselGoogle Scholar
  207. 207.
    Li X, Mumby SM, Greenwood A, Jope RS (1995) Pertussis toxin-sensitive G protein alpha-subunits: production of monoclonal antibodies and detection of differential increases on differentiation of PC12 and LA-N-5 cells. J Neurochem 64(3):1107–1117PubMedCrossRefGoogle Scholar
  208. 208.
    Gunther EC, von Bartheld CS, Goodman LJ, Johnson JE, Bothwell M (2000) The G-protein inhibitor, pertussis toxin, inhibits the secretion of brain-derived neurotrophic factor. Neuroscience 100(3):569–579PubMedCrossRefGoogle Scholar
  209. 209.
    Mangmool S, Kurose H (2011) Gi/o protein-dependent and -independent actions of Pertussis Toxin (PTX). Toxins (Basel) 3(7):884–899CrossRefGoogle Scholar
  210. 210.
    Akram F, Nasiruddin M, Ahmad Z, Khan RA (2012) Doxofylline and theophylline: a comparative clinical study. J Clin Diagn Res 6(10):1681–1684PubMedPubMedCentralGoogle Scholar
  211. 211.
    Feneck R (2007) Phosphodiesterase inhibitors and the cardiovascular system. Contin Educ Anaesth Crit Care Pain 7(6):203–207CrossRefGoogle Scholar
  212. 212.
    Banner KH, Page CP (1995) Theophylline and selective phosphodiesterase inhibitors as anti-inflammatory drugs in the treatment of bronchial asthma. Eur Respir J 8:996–1000PubMedGoogle Scholar
  213. 213.
    Institute of Medicine (US) (2001) Committee on military nutrition research. Caffeine for the sustainment of mental task performance: formulations for military operations. National Academies Press (US), Washington DC, USAGoogle Scholar
  214. 214.
    Jacobson KA, Gao Z-G (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5(3):247–264PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Smit HJ (2011) Theobromine and the pharmacology of cocoa. Handb Exp Pharmacol 200:201–234CrossRefGoogle Scholar
  216. 216.
    Smit HJ, Gaffan EA, Rogers PJ (2004) Methylxanthines are the psycho-pharmacologically active constituents of chocolate. Psychopharmacology 176(3–4):412–419PubMedCrossRefGoogle Scholar
  217. 217.
    Shively CA, Tarka SM Jr (1984) Methylxanthine composition and consumption patterns of cocoa and chocolate products. Prog Clin Biol Res 158:149–178PubMedGoogle Scholar
  218. 218.
    Cheng Z, Garvin D, Paguio A, Stecha P, Wood K, Fan F (2010) Luciferase reporter assay system for deciphering GPCR pathways. Curr Chem Genomics 4:84–91PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Schou KB, Pedersen LB, Christensen ST (2015) Ins and outs of GPCR signaling in primary cilia. EMBO Rep 16:1099–1113PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    McCudden CR, Hains MD, Kimple RJ, Siderovski DP, Willard FS (2005) G-protein signaling: back to the future. Cell Mol Life Sci 62(5):551–577PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Tuteja N (2009) Signaling through G protein coupled receptors. Plant Signal Behav 4(10):942–947PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Alberts B, Johnson A, Lewis J, Raff M, Bray D, Hopkin K et al (2004) Essential cell biology, 2nd edn. Garland Science, New YorkGoogle Scholar
  223. 223.
    Hanoune J, Defer N (2001) Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol 41:145–174PubMedCrossRefGoogle Scholar
  224. 224.
    Meinkoth JL, Alberts AS, Went W, Fantozzi D, Taylor SS, Hagiwara M et al (1993) Signal transduction through the cAMP-dependent protein kinase. Mol Cell Biochem 127–128:179–186PubMedCrossRefGoogle Scholar
  225. 225.
    Walsh DA, Van Patten SM (1994) Multiple pathway signal transduction by the cAMP-dependent protein kinase. FASEB J 8(15):1227–1236PubMedCrossRefGoogle Scholar
  226. 226.
    Park G, Servin JA, Turner GE, Altamirano L, Colot HV, Collopy P et al (2011) Global analysis of serine-threonine protein kinase genes in Neurospora crassa. Eukaryot Cell 10(11):1553–1564PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Cohen P (2002) Protein kinases—the major drug targets of the twenty-first century? Nat Rev Drug Discov 1(4):309–315PubMedCrossRefGoogle Scholar
  228. 228.
    Roscioni SS, Elzinga CR, Schmidt M (2008) Epac: effectors and biological functions. Naunyn Schmiedebergs Arch Pharmacol 377(4–6):345–357PubMedCrossRefGoogle Scholar
  229. 229.
    Ster J, De Bock F, Guérineau NC, Janossy A, Barrère-Lemaire S, Bos JL et al (2006) Exchange protein activated by cAMP (Epac) mediates cAMP activation of p38 MAPK and modulation of Ca2+ -dependent K+ channels in cerebellar neurons. PNAS 104(7):2519–2524CrossRefGoogle Scholar
  230. 230.
    Bos JL (2006) Epac proteins: multi-purpose cAMP targets. Trends in Biochem Sci 31(12):680–686CrossRefGoogle Scholar
  231. 231.
    Gloerich M, Bos JL (2010) Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol 50:355–375PubMedCrossRefGoogle Scholar
  232. 232.
    Jensen JK, Dolmer K, Schar C, Gettins PG (2009) Receptor-associated protein (RAP) has two high-affinity binding sites for the low-density lipoprotein receptor-related protein (LRP): consequences for the chaperone functions of RAP. Biochem J 421(2):273–282PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Okuno Y, Yang J, Taneishi K, Yabuuchi H, Tsujimoto G (2006) GLIDA: GPCR-ligand database for chemical genomic drug discovery. Nucleic Acids Res 34:D673–D677PubMedCrossRefGoogle Scholar
  234. 234.
    Worth CL, Kreuchwig A, Kleinau G, Krause G (2011) GPCR-SSFE: a comprehensive database of G-protein-coupled receptor template predictions and homology models. BMC Bioinform 12:185CrossRefGoogle Scholar
  235. 235.
    Gumbleton M, Kerr WG (2013) Role of inositol phospholipid signaling in natural killer cell biology. Front Immunol 4:47PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Kerr WG, Colucci F (2011) Inositol phospholipid signaling and the biology of natural killer cells. J Innate Immun 3(3):249–257PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Asaoka Y, Nakamura S-I, Yoshida K, Nishizuka Y (1992) Protein kinase C, calcium and phospholipid degradation. Trends in Biochem Sci 17(10):414–417CrossRefGoogle Scholar
  238. 238.
    Cejas PJ, Carlson LM, Zhang J, Padmanabhan S, Kolonias D, Lindner I et al (2005) Protein kinase C βII plays an essential role in dendritic cell differentiation and autoregulates its own expression. J Biol Chem 280:28412–28423PubMedCrossRefGoogle Scholar
  239. 239.
    Wu SC, Solaro RJ (2007) Protein kinase C ζ: a novel regulator of both phosphorylation and de-phosphorylation of cardiac sarcomeric proteins. J Biol Chem 282(42):30691–30698PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Shin OS, Behera AK, Bronson RT, Hu LT (2007) Role of novel protein kinase C (PKC) isoforms in lyme arthritis. Cell Microbiol 9(8):1987–1996PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Xiao H, Liu M (2013) Atypical protein kinase C in cell motility. Cell Mol Life Sci 70(17):3057–3066PubMedCrossRefGoogle Scholar
  242. 242.
    Watanabe G, Saito Y, Madaule P, Ishizaki T, Fujisawa K, Morii N et al (1996) Protein kinase N (PKN) and PKN-related protein rhophilin as targets of small GTPase Rho. Science 271(5249):645–648PubMedCrossRefGoogle Scholar
  243. 243.
    Browning DD (2008) Protein kinase G as a therapeutic target for the treatment of metastatic colorectal cancer. Expert Opin Ther Targets 12(3):367–376PubMedCrossRefGoogle Scholar
  244. 244.
    Rozengurt E (2011) Protein kinase D signaling: multiple biological functions in health and disease. Physiol (Bethesda) 26(1):23–33Google Scholar
  245. 245.
    Hanks SK, Quinn AM (1991) Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol 200:38–62PubMedCrossRefGoogle Scholar
  246. 246.
    Shigeki H, Hidehiko I, Chie M, Miki H, Hirofumi I, Natsuki M (2008) Membrane-anchored growth factors, the epidermal growth factor family: beyond receptor ligands. Cancer Sci 99(2):214–220CrossRefGoogle Scholar
  247. 247.
    Wood JD, Kirchgessner A (2004) Slow excitatory metabotropic signal transmission in the enteric nervous system. Neurogastroenterol Motil 16(Suppl 1):71–80PubMedCrossRefGoogle Scholar
  248. 248.
    Sternweis PC, Smrcka AV (1992) Regulation of phospholipase C by G proteins. Trends Biochem Sci 17(12):502–506PubMedCrossRefGoogle Scholar
  249. 249.
    Exton JH (1996) Regulation of phosphoinositide phospholipases by hormones, neurotransmitters, and other agonists linked to G proteins. Annu Rev Pharmacol Toxicol 36:481–509PubMedCrossRefGoogle Scholar
  250. 250.
    Feske S (2010) CRAC channelopathies. Pflügers Archiv Eur J Physiol 460(2):417–435CrossRefGoogle Scholar
  251. 251.
    Palty R, Raveh A, Kaminsky I, Meller R, Reuveny E (2012) SARAF inactivates the store operated calcium entry machinery to prevent excess calcium refilling. Cell 149:425–438CrossRefPubMedGoogle Scholar
  252. 252.
    Wilson CH, Ali ES, Scrimgeour N, Martin AM, Hua J, Tallis GA et al (2015) Steatosis inhibits liver cell store-operated Ca(2)(+) entry and reduces ER Ca(2)(+) through a protein kinase C-dependent mechanism. Biochem J 466:379–390PubMedCrossRefPubMedCentralGoogle Scholar
  253. 253.
    Vallejo M (2009) PACAP signaling to DREAM: a cAMP-dependent pathway that regulates cortical astrogliogenesis. Mol Neurobiol 39(2):90–100PubMedCrossRefPubMedCentralGoogle Scholar
  254. 254.
    Vogalis F, Harvey JR, Neylon CB, Furness JB (2002) Regulation of K+ channels underlying the slow afterhyperpolarization in enteric afterhyperpolarization-generating myenteric neurons: role of calcium and phosphorylation. Clin Exp Pharmacol Physiol 29(10):935–943PubMedCrossRefPubMedCentralGoogle Scholar
  255. 255.
    Boesmans W, Ameloot K, van den Abbeel V, Tack J, Vanden Berghe P (2009) Cannabinoid receptor 1 signalling dampens activity and mitochondrial transport in networks of enteric neurones. Neurogastroenterol Motil 21(9):958–e77PubMedCrossRefPubMedCentralGoogle Scholar
  256. 256.
    Putney JW (2010) Pharmacology of store-operated calcium channels. Mol Interv 10(4):209–218PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Oritani K, Kincade PW (1996) Identification of stromal cell products that interact with pre-B cells. J Cell Biol 134:771–782PubMedCrossRefPubMedCentralGoogle Scholar
  258. 258.
    Williams RT, Manji SS, Parker NJ, Hancock MS, Van Stekelenburg L, Eid JP et al (2001) Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem J 357:673–685PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Cai X (2007) Molecular evolution and functional divergence of the Ca2+ sensor protein in store-operated Ca2+ entry: stromal interaction molecule. PLoS ONE 2:e609PubMedPubMedCentralCrossRefGoogle Scholar
  260. 260.
    FreWilliams RT, Senior PV, Van Stekelenburg L, Layton JE, Smith PJ, Dziadek MA (2002) Stromal interaction molecule 1 (STIM1), a transmembrane protein with growth suppressor activity, contains an extracellular SAM domain modified by N-linked glycosylation. Biochim Biophys Acta 1596(1):131–137CrossRefGoogle Scholar
  261. 261.
    Soboloff J, Rothberg BS, Madesh M, Gill DL (2012) STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 13(9):549–565PubMedPubMedCentralCrossRefGoogle Scholar
  262. 262.
    Beech DJ (2012) Orai1 calcium channels in the vasculature. Pflugers Arch 463(5):635–647PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    Taylor CW, Konieczny V (2016) IP3 receptors: take four IP3 to open. Sci Signal 9(422):pe1Google Scholar
  264. 264.
    Alzayady KJ, Wang L, Chandrasekhar R, Wagner LE, Van Petegem F, Yule DI (2016) Defining the stoichiometry of inositol 1,4,5-trisphosphate binding required to initiate Ca2+ release. Sci Signal 9(422):ra35PubMedPubMedCentralCrossRefGoogle Scholar
  265. 265.
    Chandrasekhar R, Alzayady KJ, Wagner LE 2nd, Yule DI (2016) Unique Regulatory Properties of heterotetrameric inositol 1,4,5-trisphosphate receptors revealed by studying concatenated receptor constructs. J Biol Chem 291(10):4846–4860PubMedPubMedCentralCrossRefGoogle Scholar
  266. 266.
    Schlossmann J, Ammendola A, Ashman K, Zong X, Huber A, Neubauer G et al (2000) Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Ibeta. Nature 404(6774):197–201PubMedCrossRefPubMedCentralGoogle Scholar
  267. 267.
    Berghe VP (2004) Fluorescent molecules as tools to study Ca2+ signaling, mitochondrial dynamics and synaptic function in enteric neurons. Verh K Acad Geneeskd Belg 66(5–6):407–425Google Scholar
  268. 268.
    Smith JB (1996) Calcium homeostasis in smooth muscle cells. New Horiz 4(1):2–18PubMedPubMedCentralGoogle Scholar
  269. 269.
    Uzhachenko R, Shanker A, Yarbrough WG, Ivanova AV (2015) Mitochondria, calcium, and tumor suppressor Fus1: at the crossroad of cancer, inflammation, and autoimmunity. Oncotarget 6(25):20754–20772PubMedPubMedCentralCrossRefGoogle Scholar
  270. 270.
    Walsh C, Barrow S, Voronina S, Chvanov M, Petersen OH, Tepikin A (2009) Modulation of calcium signalling by mitochondria. Biochim Biophys Acta Bioenergetics 1787(11):1374–1382CrossRefGoogle Scholar
  271. 271.
    Santo-Domingo J, Demaurex N (2010) Calcium uptake mechanisms of mitochondria. Biochim Biophys Acta Bioenergetics 1797(6–7):907–912CrossRefGoogle Scholar
  272. 272.
    Pang ZP, Cao P, Xu W, Südhof TC (2010) Calmodulin controls synaptic strength via presynaptic activation of calmodulin kinase II. J Neurosci 30(11):4132–4142PubMedCrossRefPubMedCentralGoogle Scholar
  273. 273.
    Wilmann M, Gautel M, Mayans O (2000) Activation of calcium/calmodulin regulated kinases. Cell Mol Biol (Noisy-le-grand) 46(5):883–94Google Scholar
  274. 274.
    Pfisterer SG, Mauthe M, Codogno P, Proikas-Cezanne T (2011) Ca2+/calmodulin-dependent kinase (CaMK) signaling via CaMKI and AMP-activated protein kinase contributes to the regulation of WIPI-1 at the onset of autophagy. Mol Pharmacol 80(6):1066–1075PubMedCrossRefPubMedCentralGoogle Scholar
  275. 275.
    Nairn AC, Picciotto MR (1994) Calcium/calmodulin-dependent protein kinases. Semin Cancer Biol 5(4):295–303PubMedPubMedCentralGoogle Scholar
  276. 276.
    Mohanta TK, Kumar P, Bae H (2017) Genomics and evolutionary aspect of calcium signaling event in calmodulin and calmodulin-like proteins in plants. BMC Plant Biol 17:38PubMedPubMedCentralCrossRefGoogle Scholar
  277. 277.
    Zhu X, Dunand C, Snedden W, Galaud J-P (2015) CaM and CML emergence in the green lineage. Trends Plant Sci 20(8):483–489PubMedCrossRefPubMedCentralGoogle Scholar
  278. 278.
    Means AR, Cruzalegui F, Lemagueresse B, Needleman DS, Slaughter GR, Ono T (1991) A novel Ca2+/calmodulin-dependent protein kinase and a male germ cell-specific calmodulin-binding protein are derived from the same gene. Mol Cell Biol 11(8):3960–3971PubMedPubMedCentralCrossRefGoogle Scholar
  279. 279.
    Tsunoda T, Yamakawa M, Takahashi T (1999) Differential expression of Ca2+ -binding proteins on follicular dendritic cells in non-neoplastic and neoplastic lymphoid follicles. Am J Pathol 155(3):805–814PubMedPubMedCentralCrossRefGoogle Scholar
  280. 280.
    Armstrong DL (1989) Calcium channel regulation by calcineurin, a Ca2+ -activated phosphatase in mammalian brain. Trends Neurosci 12(3):117–122PubMedCrossRefPubMedCentralGoogle Scholar
  281. 281.
    Lim HW, De Windt LJ, Steinberg L, Taigen T, Witt SA, Kimball TR, Molkentin JD (2000) Calcineurin expression, activation, and function in cardiac pressure-overload hypertrophy. Circulation 101:2431–2437PubMedCrossRefPubMedCentralGoogle Scholar
  282. 282.
    Song YH, Cai GY, Xiao YF, Wang YP, Yuan BS, Xia YY et al (2017) Efficacy and safety of calcineurin inhibitor treatment for IgA nephropathy: a meta-analysis. BMC Nephrol 18(1):61PubMedPubMedCentralCrossRefGoogle Scholar
  283. 283.
    Naesens M, Kuypers DRJ, Sarwal M (2009) Calcineurin inhibitor nephrotoxicity. CJASN 4(2):481–508PubMedPubMedCentralGoogle Scholar
  284. 284.
    Qiu TT, Zhang C, Zhao HW, Zhou JW (2017) Calcineurin inhibitors versus cyclophosphamide for idiopathic membranous nephropathy: a systematic review and meta-analysis of 21 clinical trials. Autoimmun Rev 16(2):136–145PubMedCrossRefPubMedCentralGoogle Scholar
  285. 285.
    Crabtree GR (2001) Calcium, calcineurin, and the control of transcription. J Biol Chem 276:2313–2316PubMedCrossRefPubMedCentralGoogle Scholar
  286. 286.
    Wang C-LA (2008) Caldesmon and the regulation of cytoskeletal functions. Adv Exp Med Biol 644:250–272PubMedPubMedCentralCrossRefGoogle Scholar
  287. 287.
    Yáñez M, Gil-Longo J, Campos-Toimil M (2012) Calcium binding proteins. Adv Exp Med Biol 740:461–482PubMedCrossRefPubMedCentralGoogle Scholar
  288. 288.
    Weinman S (1991) Calcium-binding proteins: an overview. J Biol Buccale 19(1):90–98PubMedPubMedCentralGoogle Scholar
  289. 289.
    Heizmann CW (1992) Calcium-binding proteins: basic concepts and clinical implications. Gen Physiol Biophys 11(5):411–425PubMedPubMedCentralGoogle Scholar
  290. 290.
    Ozcan L, de Souza JC, Harari AA, Backs J, Olson EN, Tabas I (2013) Activation of calcium/calmodulin-dependent protein kinase II in obesity mediates suppression of hepatic insulin signaling. Cell Metab 18(6):803–815PubMedCrossRefPubMedCentralGoogle Scholar
  291. 291.
    Lu D, Chen J, Hai T (2007) The regulation of ATF3 gene expression by mitogen-activated protein kinases. Biochem J 401(Pt 2):559–567PubMedCrossRefPubMedCentralGoogle Scholar
  292. 292.
    Kim HR, Appel S, Vetterkind S, Gangopadhyay SS, Morgan KG (2008) Smooth muscle signalling pathways in health and disease. J Cell Mol Med 12(6a):2165–2180PubMedPubMedCentralCrossRefGoogle Scholar
  293. 293.
    Yang Z (2002) Small GTPases—versatile signaling switches in plants. Plant Cell 14(Suppl):s375–s388PubMedPubMedCentralCrossRefGoogle Scholar
  294. 294.
    Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118(Pt 5):843–846PubMedCrossRefPubMedCentralGoogle Scholar
  295. 295.
    Goitre L, Trapani E, Trabalzini L, Retta SF (2014) The Ras superfamily of small GTPases: the unlocked secrets. Methods Mol Biol 1120:1–18PubMedCrossRefPubMedCentralGoogle Scholar
  296. 296.
    Manser E (2002) Small GTPases take the stage. Dev Cell 3(3):323–328PubMedCrossRefGoogle Scholar
  297. 297.
    Ivanova-Nikolova TT, Breitwieser GE (1997) Effector contributions to G beta gamma-mediated signaling as revealed by muscarinic potassium channel gating. J Gen Physiol 109(2):245–253PubMedPubMedCentralCrossRefGoogle Scholar
  298. 298.
    Krupnick JG, Benovic JL (1998) The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol 38:289–319PubMedCrossRefGoogle Scholar
  299. 299.
    Premont RT, Inglese J, Lefkowitz RJ (1995) Protein kinases that phosphorylate activated G protein-coupled receptors. FASEB J 9(2):175–182PubMedCrossRefGoogle Scholar
  300. 300.
    Palczewski K (1994) Structure and functions of arrestins. Protein Sci 3(9):1355–1361PubMedPubMedCentralCrossRefGoogle Scholar
  301. 301.
    Puca L, Chastagner P, Meas-Yedid V, Israël A, Brou C (2013) Α-arrestin 1 (ARRDC1) and β-arrestins cooperate to mediate Notch degradation in mammals. J Cell Sci 126(Pt 19):4457–4468PubMedCrossRefGoogle Scholar
  302. 302.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York, USAGoogle Scholar
  303. 303.
    Alexander SP, Mathie A, Peters JA (2007) Catalytic receptors. Br J Pharmacol 150 Suppl 1 (S1):S122–S127PubMedCentralCrossRefPubMedGoogle Scholar
  304. 304.
    Gomez-Puerta JA, Mócsai A (2013) Tyrosine kinase inhibitors for the treatment of rheumatoid arthritis. Curr Top Med Chem 13(6):760–773PubMedPubMedCentralCrossRefGoogle Scholar
  305. 305.
    Grassot J, Mouchiroud G, Perrière G (2003) RTKdb: database of receptor tyrosine kinase. Nucleic Acids Res 31(1):353–358PubMedPubMedCentralCrossRefGoogle Scholar
  306. 306.
    Kontzias A, Laurence A, Gadina M, O’Shea JJ (2012) Kinase inhibitors in the treatment of immune-mediated disease. F1000 Med Rep 4:5Google Scholar
  307. 307.
    Martin J, Anamika K, Srinivasan N (2010) Classification of protein kinases on the basis of both kinase and non-kinase regions. PLoS ONE 5(9):e12460PubMedPubMedCentralCrossRefGoogle Scholar
  308. 308.
    Alexander SPH, Fabbro D, Kelly E, Marrion N, Peters JA, Benson HE et al (2015) The concise guide to pharmacology 2015/16: catalytic receptors. Br J Pharmacol 172:5979–6023PubMedPubMedCentralCrossRefGoogle Scholar
  309. 309.
    Tyagi N, Anamika K, Srinivasan N (2010) A framework for classification of prokaryotic protein kinases. PLoS ONE 5(5):e10608PubMedPubMedCentralCrossRefGoogle Scholar
  310. 310.
    Prisic S, Husson RN (2014) Mycobacterium tuberculosis serine/threonine protein kinases. Microbiol Spectr 2(5):1–26Google Scholar
  311. 311.
    Magnuson NS, Beck T, Vahidi H, Hahn H, Smola U, Rapp UR (1994) The Raf-1 serine/threonine protein kinase. Semin Cancer Biol 5(4):247–253PubMedGoogle Scholar
  312. 312.
    Taylor SS, Radzio-Andzelm E, Hunter T (1995) How do protein kinases discriminate between serine/threonine and tyrosine? Structural insights from the insulin receptor protein-tyrosine kinase. FASEB J 9(13):1255–1266PubMedCrossRefGoogle Scholar
  313. 313.
    Feldmann M (2008) Many cytokines are very useful therapeutic targets in disease. J Clin Invest 118(11):3533–3536PubMedPubMedCentralCrossRefGoogle Scholar
  314. 314.
    Vilček J, Feldmann M (2004) Historical review: cytokines as therapeutics and targets of therapeutics. Trends Pharmacol Sci 25(4):201–209PubMedCrossRefGoogle Scholar
  315. 315.
    Massagué J, Weis-Garcia F (1996) Serine/threonine kinase receptors: mediators of transforming growth factor beta family signals. Cancer Surv 27:41–64PubMedGoogle Scholar
  316. 316.
    ten Dijke P, Franzén P, Yamashita H, Ichijo H, Heldin CH, Miyazono K (1994) Serine/threonine kinase receptors. Prog Growth Factor Res 5(1):55–72PubMedCrossRefGoogle Scholar
  317. 317.
    Josso N, di Clemente N (1997) Serine/threonine kinase receptors and ligands. Curr Opin Genet Dev 7(3):371–377PubMedCrossRefGoogle Scholar
  318. 318.
    Schulz S, Chinkers M, Garbers DL (1989) The guanylate cyclase/receptor family of proteins. FASEB J 3(9):2026–2035PubMedCrossRefGoogle Scholar
  319. 319.
    Martin E, Berka V, Tsai AL, Murad F (2005) Soluble guanylyl cyclase: the nitric oxide receptor. Methods Enzymol 396:478–492PubMedCrossRefGoogle Scholar
  320. 320.
    Ma X, Sayed N, Beuve A, van den Akker F (2007) NO and CO differentially activate soluble guanylyl cyclase via a heme pivot-bend mechanism. EMBO J 26(2):578–588PubMedPubMedCentralCrossRefGoogle Scholar
  321. 321.
    Murthy KS (2004) Modulation of soluble guanylate cyclase activity by phosphorylation. Neurochem Int 45(6):845–851PubMedCrossRefGoogle Scholar
  322. 322.
    Potter LR (2011) Guanylyl cyclase structure, function and regulation. Cell Signal 23(12):1921–1926PubMedPubMedCentralCrossRefGoogle Scholar
  323. 323.
    Qian X, Prabhakar S, Nandi A, Visweswariah SS, Goy MF (2000) Expression of GC-C, a receptor-guanylate cyclase, and its endogenous ligands uroguanylin and guanylin along the rostrocaudal axis of the intestine. Endocrinology 141(9):3210–3224PubMedCrossRefGoogle Scholar
  324. 324.
    Sharma RK, Duda T, Goraczniak R, Sitaramayya A (1997) Membrane guanylate cyclase signal transduction system. Indian J Biochem Biophys 34(1–2):40–49PubMedCrossRefGoogle Scholar
  325. 325.
    Garbers DL (1991) Guanylyl cyclase-linked receptors. Pharmacol Ther 50(3):337–345PubMedCrossRefGoogle Scholar
  326. 326.
    Garbers DL (1989) Guanylate cyclase, a cell surface receptor. J Biol Chem 264(16):9103–9106PubMedGoogle Scholar
  327. 327.
    Chinkers M, Garbers DL, Chang MS, Lowe DG, Chin HM, Goeddel DV, Schulz S (1989) A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338(6210):78–83PubMedCrossRefGoogle Scholar
  328. 328.
    Thorpe DS, Garbers DL (1989) The membrane form of guanylate cyclase. Homology with a subunit of the cytoplasmic form of the enzyme. J Biol Chem 264(11):6545–6549PubMedGoogle Scholar
  329. 329.
    Singh S, Lowe DG, Thorpe DS, Rodriguez H, Kuang WJ, Dangott LJ et al (1988) Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases. Nature 334(6184):708–712PubMedCrossRefGoogle Scholar
  330. 330.
    Chao YC, Chen CC, Lin YC, Breer H, Fleischer J, Yang RB (2015) Receptor guanylyl cyclase-G is a novel thermosensory protein activated by cool temperatures. EMBO J 34(3):294–306PubMedCrossRefGoogle Scholar
  331. 331.
    Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934PubMedCrossRefGoogle Scholar
  332. 332.
    Robinson SDR, Wu Y-M, Lin S-F (2000) The protein tyrosine kinase family of the human genome. Oncogene 19:5548–5557PubMedCrossRefGoogle Scholar
  333. 333.
    Bublil EM, Yarden Y (2007) The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr Opin Cell Biol 19(2):124–134PubMedCrossRefGoogle Scholar
  334. 334.
    Ribchester RR, Thomson D, Haddow LJ, Ushkaryov YA (1998) Enhancement of spontaneous transmitter release at neonatal mouse neuromuscular junctions by the glial cell line-derived neurotrophic factor (GDNF). J Physiol 512(3):635–664PubMedPubMedCentralCrossRefGoogle Scholar
  335. 335.
    Mead B, Logan A, Berry M, Leadbeater W, Scheven BA (2014) Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS ONE 9(10):e109305PubMedPubMedCentralCrossRefGoogle Scholar
  336. 336.
    Hollis ER II, Tuszynski MH (2011) Neurotrophins: potential therapeutic tools for the treatment of spinal cord injury. Neurotherapeutics 8(4):694–703PubMedPubMedCentralCrossRefGoogle Scholar
  337. 337.
    Blume-Jensen P, Hunter T (2001) Oncogenic kinase signaling. Nature 411:355–365PubMedCrossRefGoogle Scholar
  338. 338.
    Seidel HM, Lamb P, Rosen J (2000) Pharmaceutical intervention in the JAK/STAT signaling pathway. Oncogene 19(21):2645–2656PubMedCrossRefGoogle Scholar
  339. 339.
    Sansone P, Bromberg J (2012) Targeting the interleukin-6/Jak/stat pathway in human malignancies. J Clin Oncol 30(9):1005–1014PubMedPubMedCentralCrossRefGoogle Scholar
  340. 340.
    Vainchenker W, Constantinescu SN (2013) JAK/STAT signaling in hematological malignancies. Oncogene 32(21):2601–2613PubMedCrossRefGoogle Scholar
  341. 341.
    Jatiani SS, Baker SJ, Silverman LR, Reddy EP (2010) JAK/STAT pathways in cytokine signaling and myeloproliferative disorders. Genes Cancer 1(10):979–993PubMedPubMedCentralCrossRefGoogle Scholar
  342. 342.
    Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9(1):59–71PubMedCrossRefGoogle Scholar
  343. 343.
    Gammeltoft S, Van Obberghen E (1986) Protein kinase activity of the insulin receptor. Biochem J 235(1):1–11PubMedPubMedCentralCrossRefGoogle Scholar
  344. 344.
    Zick Y (1989) The insulin receptor: structure and function. Crit Rev Biochem Mol Biol 24(3):217–269PubMedCrossRefGoogle Scholar
  345. 345.
    Rosen OM (1987) After insulin binds. Science 237(4821):1452–1458PubMedCrossRefGoogle Scholar
  346. 346.
    Kasuga M, Izumi T, Tobe K, Shiba T, Momomura K, Tashiro-Hashimoto Y, Kadowaki T (1990) Substrates for insulin-receptor kinase. Diabet Care 13(3):317–326CrossRefGoogle Scholar
  347. 347.
    Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18(16):1926–1945PubMedCrossRefGoogle Scholar
  348. 348.
    Morris DL, Cho KW, Zhou Y, Rui L (2009) Enhances insulin sensitivity by both stimulating the insulin receptor and inhibiting tyrosine dephosphorylation of insulin receptor substrate proteins. Diabetes 58(9):2039–2047PubMedPubMedCentralCrossRefGoogle Scholar
  349. 349.
    Watson RT, Pessin JE (2001) Subcellular compartmentalization and trafficking of theinsulin-responsive glucose transporter, GLUT4. Exp Cell Res 271:75–83PubMedCrossRefGoogle Scholar
  350. 350.
    Huang S, Czech MP (2007) The GLUT4 glucose transporter. Cell Metab 5(4):237–252PubMedCrossRefGoogle Scholar
  351. 351.
    Takai H, Wang RC, Takai KK, Yang H, de Lange T (2007) Tel2 regulates the stability of PI3 K-related protein kinases. Cell 131:1248–1259PubMedCrossRefGoogle Scholar
  352. 352.
    Krebs M, Brunmair B, Brehm A, Artwohl M, Szendroedi J, Nowotny P et al (2007) The mammalian target of rapamycin pathway regulates nutrient-sensitive glucose uptake in man. Diabetes 56(6):1600–1607PubMedCrossRefGoogle Scholar
  353. 353.
    Smith GC, Ong WK, Costa JL, Watson M, Cornish J, Grey A et al (2013) Extended treatment with selective phosphatidylinositol 3-kinase and mTOR inhibitors has effects on metabolism, growth, behaviour and bone strength. FEBS J 280(21):5337–5349PubMedCrossRefGoogle Scholar
  354. 354.
    Yecies JL, Manning BD (2011) Transcriptional control of cellular metabolism by mTOR signaling. Cancer Res 71(8):2815–2820PubMedPubMedCentralCrossRefGoogle Scholar
  355. 355.
    Huang J, Manning BD (2009) A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans 37(Pt 1):217–222PubMedPubMedCentralCrossRefGoogle Scholar
  356. 356.
    Buller CL, Loberg RD, Fan MH, Zhu Q, Park JL, Vesely E et al (2008) A GSK-3/TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression. Am J Physiol Cell Physiol 295(3):C836–C843PubMedPubMedCentralCrossRefGoogle Scholar
  357. 357.
    Feng Z, Levine AJ (2010) The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol 20(7):427–434PubMedPubMedCentralCrossRefGoogle Scholar
  358. 358.
    Choura M, Rebaï A (2010) Application of computational approaches to study signalling networks of nuclear and tyrosine kinase receptors. Biol Direct 5:58PubMedPubMedCentralCrossRefGoogle Scholar
  359. 359.
    Gray KA, Seal RL, Tweedie S, Wright MW, Bruford EA (2016) A review of the new HGNC gene family resource. Hum Genomics 10:6PubMedPubMedCentralCrossRefGoogle Scholar
  360. 360.
    Yates B, Braschi B, Gray KA, Seal RL, Tweedie S, Bruford EA (2017) the HGNC and VGNC resources in 2017. Nucleic Acids Res 45(D1):D619–D625PubMedCrossRefGoogle Scholar
  361. 361.
    Brown JE, Krodel M, Pazos M, Lai C, Prieto AL (2012) Cross-phosphorylation, signaling and proliferative functions of the Tyro3 and Axl receptors in Rat2 cells. PLoS ONE 7(5):e36800PubMedPubMedCentralCrossRefGoogle Scholar
  362. 362.
    Levitzki A, Gazit A, Osherov N, Posner I, Gilon C (1991) Inhibition of protein-tyrosine kinases by tyrphostins. Methods Enzymol 201:347–361PubMedCrossRefGoogle Scholar
  363. 363.
    Gillespie J, Dye JF, Schachter M, Guillou PJ (1993) Inhibition of pancreatic cancer cell growth in vitro by the tyrphostin group of tyrosine kinase inhibitors. Br J Cancer 68(6):1122–1126PubMedPubMedCentralCrossRefGoogle Scholar
  364. 364.
    Zlotnik Y, Patya M, Vanichkin A, Novogrodsky A (2005) Tyrphostins reduce chemotherapy-induced intestinal injury in mice: assessment by a biochemical assay. Br J Cancer 92(2):294–297PubMedPubMedCentralCrossRefGoogle Scholar
  365. 365.
    Natoli C, Perrucci B, Perrotti F, Falchi L, Iacobelli S (2010) Consorzio Interuniversitario Nazionale per Bio-Oncologia (CINBO), tyrosine kinase inhibitors. Curr Cancer Drug Targets 10(5):462–483PubMedCrossRefGoogle Scholar
  366. 366.
    Wu P, Nielsen TE, Clausen MH (2016) Small-molecule kinase inhibitors: an analysis of FDA-approved drugs. Drug Discov Today 21(1):5–10PubMedCrossRefGoogle Scholar
  367. 367.
    Hartmann JT, Haap M, Kopp HG, Lipp HP (2009) Tyrosine kinase inhibitors—a review on pharmacology, metabolism and side effects. Curr Drug Metab 10(5):470–481PubMedCrossRefGoogle Scholar
  368. 368.
    Kaplan FS, Groppe J, Pignolo RJ, Shore EM (2007) Morphogen receptor genes and metamorphogenes: skeleton keys to metamorphosis. Ann NY Acad Sci 1116:113–133PubMedCrossRefGoogle Scholar
  369. 369.
    Christian JL (2012) Morphogen gradients in development: from form to function. Wiley Interdiscip Rev Dev Biol 1(1):3–15PubMedCrossRefGoogle Scholar
  370. 370.
    Artells R, Navarro A, Diaz T, Monzó M (2011) Ultrastructural and immunohistochemical analysis of intestinal myofibroblasts during the early organogenesis of the human small intestine. Anat Record 294(3):462–471CrossRefGoogle Scholar
  371. 371.
    Lévy E, Delvin E, Ménard D, Beaulieu J-F (2009) Functional development of human fetal gastrointestinal tract. Human Embryogenesis: Methods Mol Biol 550:205–224CrossRefGoogle Scholar
  372. 372.
    Drozdowski LA, Clandinin T, Thomson ABR (2010) Ontogeny, growth and development of the small intestine: understanding pediatric gastroenterology. World J Gastroenterol 16(7):787–799PubMedPubMedCentralGoogle Scholar
  373. 373.
    Tabata T, Takei Y (2004) Morphogens, their identification and regulation Development 131:703–712PubMedCrossRefPubMedCentralGoogle Scholar
  374. 374.
    Janas T, Janas MM, Sapoń K, Janas T (2015) Mechanisms of RNA loading into exosomes. FEBS Lett 589(13):1391–1398PubMedCrossRefPubMedCentralGoogle Scholar
  375. 375.
    Lakkaraju A, Rodriguez-Boulan E (2008) Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol 18(5):199–209PubMedPubMedCentralCrossRefGoogle Scholar
  376. 376.
    Vincent J-P, Magee T (2002) Argosomes: membrane fragments on the run. Trends Cell Biol 12(2):57–60PubMedCrossRefPubMedCentralGoogle Scholar
  377. 377.
    Ramírez-Weber F-A, Kornberg TB (1999) Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97(5):599–607PubMedCrossRefPubMedCentralGoogle Scholar
  378. 378.
    Zhang L, Wrana JL (2014) The emerging role of exosomes in Wnt secretion and transport. Curr Opin Genet Dev 27:14–19PubMedCrossRefPubMedCentralGoogle Scholar
  379. 379.
    Bischoff M, Gradilla AC, Seijo I, Andrés G, Rodríguez-Navas C, González-Méndez L, Guerrero I (2013) Cytonemes are required for the establishment of a normal Hedgehog morphogen gradient in Drosophila epithelia. Nat Cell Biol 15(11):1269–1281PubMedCrossRefPubMedCentralGoogle Scholar
  380. 380.
    Gradilla A-C, González E, Seijo I, Andrés G, Bischoff M, González-Mendez L et al (2014) Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat Commun 5:5649PubMedCrossRefPubMedCentralGoogle Scholar
  381. 381.
    Lim YS, Tang BL (2012) Intercellular organelle trafficking by membranous nanotube connections: a possible new role in cellular rejuvenation? Cell Commun Adhes 19(3–4):39–44PubMedCrossRefPubMedCentralGoogle Scholar
  382. 382.
    Shilo B-Z (2001) The organizer and beyond. Cell 106(1):17–22PubMedCrossRefPubMedCentralGoogle Scholar
  383. 383.
    Greco V, Hannus M, Eaton S (2001) Argosomes: a potential vehicle for the spread of morphogens through epithelia. Cell 106(5):633–645PubMedCrossRefPubMedCentralGoogle Scholar
  384. 384.
    Austefjord MW, Gerdes H-H, Wang X (2014) Tunneling nanotubes: diversity in morphology and structure. Commun Integr Biol 7:e27934PubMedPubMedCentralCrossRefGoogle Scholar
  385. 385.
    Gurke S, Barroso JFV, Gerdes H-H (2008) The art of cellular communication: tunneling nanotubes bridge the divide. Histochem Cell Biol 129(5):539–550PubMedPubMedCentralCrossRefGoogle Scholar
  386. 386.
    Sarrazin S, Lamanna WC, Esko JD (2011) Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 3(7):a004952PubMedPubMedCentralCrossRefGoogle Scholar
  387. 387.
    Rodgers KD, San Antonio JD, Jacenko O (2008) Heparan sulfate proteoglycans: a GAGgle of skeletal-hematopoietic regulators. Dev Dyn 237(10):2622–2642PubMedPubMedCentralCrossRefGoogle Scholar
  388. 388.
    Fisher MC, Li Y, Seghatoleslami MR, Dealy CN, Kosher RA (2006) Heparan sulfate proteoglycans including syndecan-3 modulate BMP activity during limb cartilage differentiation. Matrix Biol 25(1):27–39PubMedCrossRefPubMedCentralGoogle Scholar
  389. 389.
    Li JP, Spillmann D (2012) Heparan sulfate proteoglycans as multifunctional cell regulators: cell surface receptors. Methods Mol Biol 836:239–255PubMedCrossRefPubMedCentralGoogle Scholar
  390. 390.
    Nusse R, Varmus HE (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31(1):99–109PubMedCrossRefPubMedCentralGoogle Scholar
  391. 391.
    Roel N, Harold V (2012) Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO J 31(12):2670–2684CrossRefGoogle Scholar
  392. 392.
    Nusse R, van Ooyen A, Cox D, Fung YK, Varmus H (1984) Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307(5947):131–136PubMedCrossRefPubMedCentralGoogle Scholar
  393. 393.
    Klaus A, Birchmeier W (2008) Wnt signaling and its impact on development and cancer. Nat Rev Cancer 8(5):387–398PubMedCrossRefPubMedCentralGoogle Scholar
  394. 394.
    Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287(5785):795–801PubMedCrossRefPubMedCentralGoogle Scholar
  395. 395.
    Nakamura T, Hamada F, Ishidate T, Anai K, Kawahara K, Toyoshima K, Akiyama T (1998) Axin, an inhibitor of the Wnt signalling pathway, interacts with β-catenin, GSK-3β and APC and reduces the β-catenin level. Genes Cells 3(6):395–403PubMedCrossRefPubMedCentralGoogle Scholar
  396. 396.
    Kim JH, Liu X, Wang J, Chen X, Zhang H, Kim SH et al (2013) Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther Adv Musculoskel Dis 5(1):13–31CrossRefGoogle Scholar
  397. 397.
    Yao H, Ashihara E, Maekawa T (2011) Targeting the Wnt/β-catenin signaling pathway in human cancers. Expert Opin Ther Targets 15(7):873–887PubMedCrossRefPubMedCentralGoogle Scholar
  398. 398.
    Kühl M, Sheldahl LC, Park M, Miller JR, Moon RT (2000) The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 16(7):279–283PubMedCrossRefPubMedCentralGoogle Scholar
  399. 399.
    Bryja V, Andersson ER, Schambony A, Esner M, Bryjová L, Biris KK et al (2009) The extracellular domain of Lrp5/6 inhibits noncanonical wnt signaling in vivo. Mol Biol Cell 20(3):924–936PubMedPubMedCentralCrossRefGoogle Scholar
  400. 400.
    Ren D, Chen J, Li Z, Yan H, Yin Y, Wo D et al (2014) LRP5/6 directly bind to Frizzled and prevent Frizzled-regulated tumour metastasis. Nat Commun 6:6906CrossRefGoogle Scholar
  401. 401.
    Malbon CC (2004) Frizzleds: new members of the superfamily of G-protein-coupled receptors. Front Biosci 9:1048–1058PubMedCrossRefGoogle Scholar
  402. 402.
    Huang HC, Klein PS (2004) The Frizzled family: receptors for multiple signal transduction pathways. Genome Biol 5(7):234PubMedPubMedCentralCrossRefGoogle Scholar
  403. 403.
    Sear RP (2007) Dishevelled: a protein that functions in living cells by phase separating. Soft Matter 3:680–684CrossRefGoogle Scholar
  404. 404.
    Pulvirenti T, Van Der Heijden M, Droms LA, Huse JT, Tabar V, Hall A (2011) Dishevelled 2 signaling promotes self-renewal and tumorigenicity in human gliomas. Cancer Res 71(23):7280–7290PubMedPubMedCentralCrossRefGoogle Scholar
  405. 405.
    Wallingford JB, Habas R (2005) The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 132:4421–4436PubMedCrossRefGoogle Scholar
  406. 406.
    Kikuchi A (1999) Modulation of Wnt signaling by Axin and Axil. Cytokine Growth Factor Rev 10(3–4):255–265PubMedCrossRefGoogle Scholar
  407. 407.
    Li KK-W, Lau K-M, Ng H-K (2013) Signaling pathway and molecular subgroups of medulloblastoma. Int J Clin Exp Pathol 6(7):1211–1222PubMedPubMedCentralGoogle Scholar
  408. 408.
    Farr GH III, Ferkey DM, Yost C, Pierce SB, Weaver C, Kimelman D (2000) Interaction among Gsk-3, Gbp, Axin, and APC in Xenopus axis specification. J Cell Biol 148(4):691–702PubMedPubMedCentralCrossRefGoogle Scholar
  409. 409.
    Hedgepeth CM, Deardorff MA, Rankin K, Klein PS (1999) Regulation of glycogen synthase kinase 3β and downstream wnt signaling by Axin. Mol Cell Biol 19(10):7147–7157PubMedPubMedCentralCrossRefGoogle Scholar
  410. 410.
    Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A (1998) Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. The EMBO J 17:1371–1384PubMedCrossRefGoogle Scholar
  411. 411.
    Yamamoto H, Kishida S, Uochi T, Ikeda S, Koyama S, Asashima M, Kikuchi A (1998) Axil, a member of the Axin family, interacts with both glycogen synthase kinase 3beta and beta-catenin and inhibits axis formation of Xenopus embryos. Mol Cell Biol 18(5):2867–2875PubMedPubMedCentralCrossRefGoogle Scholar
  412. 412.
    Takemaru K-I, Yamaguchi S, Lee YS, Zhang Y, Carthew RW, Moon RT (2003) Chibby, a nuclear β-catenin-associated antagonist of the Wnt/Wingless pathway. Nature 422:905–909PubMedCrossRefGoogle Scholar
  413. 413.
    Lin GL, Hankenson KD (2012) Integration of BMP, Wnt, and Notch signaling pathways in osteoblast differentiation. J Cell Biochem 112(12):3491–3501CrossRefGoogle Scholar
  414. 414.
    Djabrayan NJV, Dudley NR, Sommermann EM, Rothman JH (2012) Essential role for Notch signaling in restricting developmental plasticity. Genes Dev 26(21):2386–2391PubMedPubMedCentralCrossRefGoogle Scholar
  415. 415.
    Huang T, Zhou Y, Cheng ASL, Yu J, To KF, Kang W (2016) Notch receptors in gastric and other gastrointestinal cancers: oncogenes or tumor suppressors? Mol Cancer 15:80PubMedPubMedCentralCrossRefGoogle Scholar
  416. 416.
    Demitrack ES, Samuelson LC (2016) Notch regulation of gastrointestinal stem cells. J Physiol 594(17):4791–4803PubMedPubMedCentralCrossRefGoogle Scholar
  417. 417.
    Kim TH, Kim BM, Mao J, Rowan S, Shivdasani RA (2011) Endodermal Hedgehog signals modulate Notch pathway activity in the developing digestive tract mesenchyme. Development 138(15):3225–3233PubMedPubMedCentralCrossRefGoogle Scholar
  418. 418.
    Liu JA, Ngan ES-W (2014) Hedgehog and Notch signaling in enteric nervous system development. Neurosignals 22:1–13PubMedCrossRefGoogle Scholar
  419. 419.
    Katoh M, Katoh M (2007) Notch signaling in gastrointestinal tract (review). Int J Oncol 30(1):247–251PubMedGoogle Scholar
  420. 420.
    Fernandez-Valdivia R, Takeuchi H, Samarghandi A, Lopez M, Leonardi J, Haltiwanger RS, Jafar-Nejad H (2011) Regulation of mammalian Notch signaling and embryonic development by the protein O-glucosyltransferase Rumi. Development 138(10):1925–1934PubMedPubMedCentralCrossRefGoogle Scholar
  421. 421.
    Ungerbäck J, Elander N, Grünberg J, Sigvardsson M, Söderkvist P (2011) The Notch-2 gene is regulated by Wnt signaling in cultured colorectal cancer cells. PLoS ONE 6(3):e17957PubMedPubMedCentralCrossRefGoogle Scholar
  422. 422.
    Kangsamaksin T, Murtomaki A, Kofler NM, Cuervo H, Chaudhri RA, Tattersall IW et al (2015) Notch decoys that selectively block Dll/Notch or Jagged/Notch disrupt angiogenesis by unique mechanisms to inhibit tumor growth. Cancer Discov 5(2):182–197PubMedCrossRefGoogle Scholar
  423. 423.
    Van de Walle I, De Smet G, Gärtner M, De Smedt M, Waegemans E, Vandekerckhove B et al (2011) Jagged2 acts as a Delta-like Notch ligand during early hematopoietic cell fate decisions. Blood 117(17):4449–4459PubMedPubMedCentralCrossRefGoogle Scholar
  424. 424.
    Chillakuri CR, Sheppard D, Lea SM, Handford PA (2012) Notch receptor–ligand binding and activation: insights from molecular studies. Semin Cell Dev Biol 23(4):421–428PubMedPubMedCentralCrossRefGoogle Scholar
  425. 425.
    Seals DF, Courtneidge SA (2003) The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 17:7–30PubMedCrossRefGoogle Scholar
  426. 426.
    Tsai YH, VanDussen KL, Sawey ET, Wade AW, Kasper C, Rakshit S et al (2014) ADAM10 regulates Notch function in intestinal stem cells of mice. Gastroenterology 147(4):822–834.e13PubMedPubMedCentralCrossRefGoogle Scholar
  427. 427.
    De Santa BP, Van Den Brink GR, Roberts DJ (2003) Development and differentiation of the intestinal epithelium. Cell Mol Life Sci 60(7):1322–1332CrossRefGoogle Scholar
  428. 428.
    D’mello NP, Childress AM, Franklin DS, Kale SP, Pinswasdi C, Jazwinski SM (1994) Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J Biol Chem 269(22):15451–15459PubMedGoogle Scholar
  429. 429.
    Teufel A, Maass T, Galle PR, Malik N (2009) The longevity assurance homologue of yeast lag1 (Lass) gene family (review). Int J Mol Med 23(2):135–140PubMedGoogle Scholar
  430. 430.
    Lehman RF, Jimenez W, Dietrich U, Campos-Ortega JA (1983) On the phenotype and development of mutants of early neurogenesis in Drosophila melanogaster. Wilhelm Roux’s Arch Dev Biol 192:62–74CrossRefGoogle Scholar
  431. 431.
    Smoller D, Friedel C, Schmid A, Bettler D, Lam L, Yedvobnick B (1990) The Drosophila neurogenic locus mastermind encodes a nuclear protein unusually rich in amino acid homopolymers. Genes Dev 4:1688–1700PubMedCrossRefGoogle Scholar
  432. 432.
    Artavanis-Tsakonas S, Matsuno K, Fortini ME (1995) Notch signaling. Science 268:225–232PubMedCrossRefGoogle Scholar
  433. 433.
    Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137(2):216–233PubMedPubMedCentralCrossRefGoogle Scholar
  434. 434.
    Yamamoto N, Yamamoto S, Inagaki F, Kawaichi M, Fukamizu A, Kishi N et al (2001) Role of Deltex-1 as a transcriptional regulator downstream of the Notch receptor. J Biol Chem 276(48):45031–45040PubMedCrossRefGoogle Scholar
  435. 435.
    Matsuno K, Eastman D, Mitsiades T, Quinn AM, Carcanciu ML, Ordentlich P et al (1998) Human deltex is a conserved regulator of Notch signalling. Nat Gene 19(1):74–78CrossRefGoogle Scholar
  436. 436.
    Matsuno K, Diederich RJ, Go MJ, Blaumueller CM, Artavanis-Tsakonas S (1995) Deltex acts as a positive regulator of Notch signaling through interactions with the Notch ankyrin repeats. Development 121(8):2633–2644PubMedGoogle Scholar
  437. 437.
    Deregowski V, Gazzerro E, Priest L, Rydziel S, Canalis E (2006) Role of the Ram domain and ankyrin repeats on notch signalingand activity in cells of osteoblastic lineage. J Bone Miner Res 21(8):1317–1326PubMedCrossRefGoogle Scholar
  438. 438.
    Panelos J, Massi D (2009) Emerging role of Notch signaling in epidermal differentiation and skin cancer. Cancer Biol Ther 8(21):1986–1993PubMedCrossRefGoogle Scholar
  439. 439.
    Andersen P, Uosaki H, Shenje LT, Kwon C (2012) Non-canonical Notch signaling: emerging role and mechanism. Trends Cell Biol 22(5):257–265PubMedPubMedCentralCrossRefGoogle Scholar
  440. 440.
    Heretsch P, Tzagkaroulaki L, Giannis A (2010) Modulators of the hedgehog signaling pathway. Bioorg Med Chem 18(18):6613–6624PubMedCrossRefGoogle Scholar
  441. 441.
    Zhou J, Wei X, Wei L (2014) Indian Hedgehog, a critical modulator in osteoarthritis, could be a potential therapeutic target for attenuating cartilage degeneration disease. Connect Tissue Res 55(4):257–261PubMedCrossRefGoogle Scholar
  442. 442.
    Sam SA, Teel J, Tegge AN, Bharadwaj A, Murali TM (2017) XTalkDB: a database of signaling pathway crosstalk. Nucleic Acids Res 45(D1):D432–D439PubMedCrossRefGoogle Scholar
  443. 443.
    Tamkun JW, DeSimone DW, Fonda D, Patel RS, Buck C, Horwitz AF, Hynes RO (1986) Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46:271–282PubMedCrossRefGoogle Scholar
  444. 444.
    Hynes RO (1987) Integrins: a family of cell surface receptors. Cell 48:549–554PubMedCrossRefGoogle Scholar
  445. 445.
    Humphries JD, Byron A, Humphries MJ (2006) Integrin ligands. J Cell Sci 119(Pt 19):3901–3903PubMedPubMedCentralCrossRefGoogle Scholar
  446. 446.
    Campbell ID, Humphries MJ (2011) Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol 3(3):a004994PubMedPubMedCentralCrossRefGoogle Scholar
  447. 447.
    Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687PubMedCrossRefGoogle Scholar
  448. 448.
    Akiyama SK (1996) Integrins in cell adhesion and signaling. Hum Cell 9(3):181–186PubMedGoogle Scholar
  449. 449.
    Wagner G (1994) Cell surface adhesion receptors. Curr Opin Struct Biol 4(6):841–851PubMedCrossRefGoogle Scholar
  450. 450.
    Gorfu G, Rivera-Nieves J, Ley K (2009) Role of β7 integrins in intestinal lymphocyte homing and retention. Curr Mol Med 9(7):836–850PubMedPubMedCentralCrossRefGoogle Scholar
  451. 451.
    Harburger DS, Calderwood DA (2009) Integrin signalling at a glance. J Cell Sci 122:159–163PubMedCrossRefGoogle Scholar
  452. 452.
    Lee JW, Juliano RL (2000) α5β1 integrin protects intestinal epithelial cells from apoptosis through a phosphatidylinositol 3-kinase and protein kinase B–dependent pathway. Mol Biol Cell 11(6):1973–1987PubMedPubMedCentralCrossRefGoogle Scholar
  453. 453.
    Wang X, Xu H, Gill AF, Pahar B, Kempf D, Rasmussen T et al (2009) Monitoring α4 β7 integrin expression on circulating CD4+ T cells as a surrogate marker for tracking intestinal CD4+ T-cell loss in SIV infection. Mucosal Immunol 2:518–526PubMedPubMedCentralCrossRefGoogle Scholar
  454. 454.
    Liu Y-X, Yoshino T, Ohara N, Oka T, Jin Z-S, Hayashi K, Akagi T (2001) Loss of expression of α4 β7 integrin and L-selectin is associated with high-grade progression of low-grade MALT lymphoma. Mod Pathol 14(8):798–805PubMedCrossRefGoogle Scholar
  455. 455.
    Heino J (2000) The collagen receptor integrins have distinct ligand recognition and signaling functions. Matrix Biol 19(4):319–323PubMedCrossRefGoogle Scholar
  456. 456.
    Teixidó J, Hemler ME, Greenberger JS, Anklesaria P (1992) Role of beta 1 and beta 2 integrins in the adhesion of human CD34hi stem cells to bone marrow stroma. J Clin Invest 90(2):358–367PubMedPubMedCentralCrossRefGoogle Scholar
  457. 457.
    Takada Y, Ye X, Simon S (2007) The integrins. Genome Biol 8(5):215PubMedPubMedCentralCrossRefGoogle Scholar
  458. 458.
    Mengaud J, Ohayon H, Gounon P, Mege R-M, Cossart P (1996) E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84(6):923–932PubMedCrossRefGoogle Scholar
  459. 459.
    Niessen CM, Leckband D, Yap AS (2011) Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 91(2):691–731PubMedPubMedCentralCrossRefGoogle Scholar
  460. 460.
    Takeichi M (1991) Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251(5000):1451–1455PubMedCrossRefGoogle Scholar
  461. 461.
    Shimono Y, Rikitake Y, Mandai K, Mori M, Takai Y (2012) Immunoglobulin superfamily receptors and adherens junctions. Subcell Biochem 60:137–170PubMedCrossRefGoogle Scholar
  462. 462.
    Geissmann F, Ruskoné-Fourmestraux A, Hermine O, Bourquelot P, Belanger C, Audouin J et al (1998) Homing receptor α4β7 integrin expression predicts digestive tract involvement in mantle cell lymphoma. Am J Pathol 153(6):1701–1705PubMedPubMedCentralCrossRefGoogle Scholar
  463. 463.
    Baruch-Morgenstern NB, Shik D, Moshkovits I, Itan M, Karo-Atar D, Bouffi C et al (2014) Paired immunoglobulin-like receptor A is an intrinsic, self-limiting suppressor of IL-5-induced eosinophil development. Nat Immunol 15(1):36–44PubMedCrossRefGoogle Scholar
  464. 464.
    Michail S, Mezoff E, Abernathy F (2005) Role of selectins in the intestinal epithelial migration of eosinophils. Pediatr Res 58:644–647PubMedCrossRefGoogle Scholar
  465. 465.
    Kawamura YI, Kawashima R, Fukunaga R, Hirai K, Toyama-Sorimachi N, Tokuhara M et al (2005) Introduction of Sda carbohydrate antigen in gastrointestinal cancer cells eliminates selectin ligands and inhibits metastasis. Cancer Res 65(14):6220–6227PubMedCrossRefGoogle Scholar
  466. 466.
    Trinchera M, Aronica A, Dall’Olio F (2017) Selectin ligands sialyl-lewis a and sialyl-lewis x in gastrointestinal cancers. Biology 6(16):1–18Google Scholar
  467. 467.
    Hermand P, Gane P, Callebaut I, Kieffer N, Cartron JP, Bailly P (2004) Integrin receptor specificity for human red cell ICAM-4 ligand. Critical residues for alphaIIbeta3 binding. Eur J Biochem 271(18):3729–3740PubMedCrossRefGoogle Scholar
  468. 468.
    Kajita M, McClinic KN, Wade PA (2004) Aberrant expression of the transcription factors Snail and Slug alters the response to genotoxic stress. Mol Cell Biol 24(17):7559–7566PubMedPubMedCentralCrossRefGoogle Scholar
  469. 469.
    Weng M, Wieschaus E (2016) Myosin-dependent remodeling of adherens junctions protects junctions from Snail-dependent disassembly. J Cell Biol 212(2):219–229PubMedPubMedCentralCrossRefGoogle Scholar
  470. 470.
    Janssen S, Depoortere I (2013) Nutrient sensing in the gut: new roads to therapeutics? Trends Endocrin Metab 24(2):92–100CrossRefGoogle Scholar
  471. 471.
    Running CA, Craig BA, Mattes RD (2015) Oleogustus: the unique taste of fat. Chem Senses 40(7):507–516PubMedCrossRefGoogle Scholar
  472. 472.
    Besnard P, Passilly-Degrace P, Khan NA (2016) Taste of fat: a sixth taste modality? Physiol Rev 96(1):151–176PubMedCrossRefGoogle Scholar
  473. 473.
    Dramane G, Akpona S, Simonin AM, Besnard P, Khan NA (2011) Cell signaling mechanisms of gustatory perception of lipids: can the taste cells be the target of anti-obesity agents? Curr Med Chem 18(22):3417–3422PubMedCrossRefGoogle Scholar
  474. 474.
    Liu D, Archer N, Duesing K, Hannan G, Keast R (2016) Mechanism of fat taste perception: association with diet and obesity. Prog Lipid Res 63:41–49PubMedCrossRefGoogle Scholar
  475. 475.
    Keast RSJ, Costanzo A (2015) Is fat the sixth taste primary? Evidence and implications. Flavour 4:5CrossRefGoogle Scholar
  476. 476.
    Degrace-Passilly P, Besnard P (2012) CD36 and taste of fat. Curr Opin Clin Nutr Metab Care 15(2):107–111PubMedCrossRefGoogle Scholar
  477. 477.
    Richter TA, Caicedo A, Roper SD (2003) Sour taste stimuli evoke Ca2+ and pH responses in mouse taste cells. J Physiol 547(Pt 2):475–483PubMedPubMedCentralCrossRefGoogle Scholar
  478. 478.
    Chandrashekar J, Hoon MA, Ryba NJP, Zuker CS (2006) The receptors and cells for mammalian taste. Nature 444:288–294PubMedCrossRefGoogle Scholar
  479. 479.
    Liman ER, Zhang YV, Craig M (2014) Peripheral coding of taste. Neuron 81(5):984–1000PubMedPubMedCentralCrossRefGoogle Scholar
  480. 480.
    Kawaguchi H, Yamanaka A, Uchida K, Shibasaki K, Sokabe T, Maruyama Y et al (2010) Activation of polycystic kidney disease-2-like 1 (PKD2L1)-PKD1L3 complex by acid in mouse taste cells. J Biol Chem 285(23):17277–17281PubMedPubMedCentralCrossRefGoogle Scholar
  481. 481.
    Wright EM, Turk E (2004) The sodium/glucose cotransport family SLC5. Pflugers Arch 447(5):510–518PubMedCrossRefGoogle Scholar
  482. 482.
    Jung H (2001) Towards the molecular mechanism of Na+/solute symport in prokaryotes. Biochim Biophys Acta Bioenerg 1505(1):131–143CrossRefGoogle Scholar
  483. 483.
    Harada N, Inagaki N (2012) Role of sodium-glucose transporters in glucose uptake of the intestine and kidney. J Diabetes Invest 3(4):352–353CrossRefGoogle Scholar
  484. 484.
    Takata K, Hirano H, Kasahara M (1997) Transport of glucose across the blood-tissue barriers. Int Rev Cytol 172:1–53PubMedCrossRefGoogle Scholar
  485. 485.
    Weale AR, Edwards AG, Bailey M, Lear PA (2005) Intestinal adaptation after massive intestinal resection. Postgrad Med J 81:178–184PubMedPubMedCentralCrossRefGoogle Scholar
  486. 486.
    Bertrand PP (2009) The cornucopia of intestinal chemosensory transduction. Front Neurosci 3:48PubMedPubMedCentralGoogle Scholar
  487. 487.
    Sykaras AG, Demenis C, Case RM, McLaughlin JT, Smith CP (2012) Duodenal enteroendocrine I-cells contain mRNA transcripts encoding key endocannabinoid and fatty acid receptors. PLoS ONE 7(8):e42373PubMedPubMedCentralCrossRefGoogle Scholar
  488. 488.
    Daly K, Al-Rammahi M, Moran A, Marcello M, Ninomiya Y, Shirazi-Beechey SP (2013) Sensing of amino acids by the gut-expressed taste receptor T1R1-T1R3 stimulates CCK secretion. Am J Physiol Gastrointest Liver Physiol 304(3):G271–G282PubMedCrossRefGoogle Scholar
  489. 489.
    Gabriel AS, Uneyama H (2013) Amino acid sensing in the gastrointestinal tract. Amino Acids 45(3):451–461CrossRefGoogle Scholar
  490. 490.
    Talukdar S, Olefsky JM, Osborn O (2011) Targeting GPR120 and other fatty acid sensing GPCRs ameliorates insulin resistance and inflammatory diseases. Trends Pharmacol Sci 32(9):543–550PubMedPubMedCentralCrossRefGoogle Scholar
  491. 491.
    Hara T, Hirasawa A, Ichimura A, Kimura I, Tsujimoto G (2011) Free fatty acid receptors FFAR1 and GPR120 as novel therapeutic targets for metabolic disorders. J Pharm Sci 100(9):3594–3601PubMedCrossRefGoogle Scholar
  492. 492.
    Ichimura A, Hirasawa A, Hara T, Tsujimoto G (2009) Free fatty acid receptors act as nutrient sensors to regulate energy homeostasis. Prostaglandins Other Lipid Mediat 89(3–4):82–88PubMedCrossRefGoogle Scholar
  493. 493.
    Mohamed HA, Khaled DM, Mohamed HA (2014) Homology modeling and explicit membrane molecular dynamics simulation to delineate the mode of binding of thiazolidinediones into FFAR1 and the mechanism of receptor activation. Bioorg Med Chem Lett 24(22):5330–5336CrossRefGoogle Scholar
  494. 494.
    Mace OJ, Lister N, Morgan E, Shepherd E, Affleck J, Helliwell P et al (2009) An energy supply network of nutrient absorption coordinated by calcium and T1R taste receptors in rat small intestine. J Physiol 587:195–210PubMedCrossRefPubMedCentralGoogle Scholar
  495. 495.
    Li T, Holmstrom SR, Kir S, Umetani M, Schmidt DR, Kliewer SA, Mangelsdorf DJ (2011) The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling. Mol Endocrinol 25(6):1066–1071PubMedPubMedCentralCrossRefGoogle Scholar
  496. 496.
    Motter AL, Ahern GP (2012) TRPA1 is a polyunsaturated fatty acid sensor in mammals. PLoS ONE 7(6):e38439PubMedPubMedCentralCrossRefGoogle Scholar
  497. 497.
    Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L (2014) The role of short-chain fatty acids in health and disease. Adv Immunol 121:91–119PubMedCrossRefPubMedCentralGoogle Scholar
  498. 498.
    Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S et al (2011) Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci USA 108(19):8030–8035PubMedPubMedCentralCrossRefGoogle Scholar
  499. 499.
    Gaetani S, Oveisi F, Piomelli D (2003) Modulation of meal pattern in the rat by the anorexic lipid mediator oleoylethanolamine. Neuropsychopharmacology 28(7):1311–1316PubMedCrossRefPubMedCentralGoogle Scholar
  500. 500.
    Criado AS, Pavon-Moron FJ, de Arco I, de Fonseca FR (2006) Oleoylethanolamide reverses changes in both fatty acid composition and desaturase mRNA expression in a new model of liver steatosis. Obes Metab 2(3):155–164Google Scholar
  501. 501.
    Kim CH, Park J, Kim M (2014) Gut microbiota-derived short-chain fatty acids, T cells, and inflammation. Immune Netw 14(6):277–288PubMedPubMedCentralCrossRefGoogle Scholar
  502. 502.
    Eberle JA-M, Widmayer P, Breer H (2014) Receptors for short-chain fatty acids in brush cells at the “gastric groove”. Front Physiol 5:152PubMedPubMedCentralCrossRefGoogle Scholar
  503. 503.
    Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G et al (2009) TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 10(3):167–177PubMedPubMedCentralCrossRefGoogle Scholar
  504. 504.
    Kumar DP, Rajagopal S, Mahavadi S, Mirshahi F, Grider JR, Murthy KS, Sanyal AJ (2012) Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β cells. Biochem Biophys Res Commun 427(3):600–605PubMedPubMedCentralCrossRefGoogle Scholar
  505. 505.
    Tiwari A, Maiti P (2009) TGR5: an emerging bile acid G-protein-coupled receptor target for the potential treatment of metabolic disorders. Drug Discov Today 14(9–10):523–530PubMedCrossRefGoogle Scholar
  506. 506.
    Tu H, Okamoto AY, Shan B (2000) FXR, a bile acid receptor and biological sensor. Trends Cardiovasc Med 10(1):30–35PubMedCrossRefGoogle Scholar
  507. 507.
    Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M et al (2003) A G protein-coupled receptor responsive to bile acids. J Biol Chem 278(11):9435–9440PubMedCrossRefGoogle Scholar
  508. 508.
    Duboc H, Taché Y, Hofmann AF (2014) The bile acid TGR5 membrane receptor: from basic research to clinical application. Int J Gatroenterol Hepatol 46(4):302–312Google Scholar
  509. 509.
    Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM et al (2002) Vitamin D receptor as an intestinal bile acid sensor. Science 296(5571):1313–1316PubMedCrossRefGoogle Scholar
  510. 510.
    Ajouz H, Mukherji D, Shamseddine A (2014) Secondary bile acids: an underrecognized cause of colon cancer. World J Surg Oncol 12:164PubMedPubMedCentralCrossRefGoogle Scholar
  511. 511.
    Bernstein H, Bernstein C, Payne CM, Dvorakova K, Garewal H (2005) Bile acids as carcinogens in human gastrointestinal cancers. Mutat Res/Rev Mutat Res 589(1):47–65CrossRefGoogle Scholar
  512. 512.
    Vuolo L, Di Somma C, Faggiano A, Colao A (2012) Vitamin D and cancer. Front Endocrinol (Lausanne) 3:58Google Scholar
  513. 513.
    Konstantakis C, Tselekouni P, Kalafateli M, Triantos C (2016) Vitamin D deficiency in patients with liver cirrhosis. Ann Gastroenterol 29(3):297–306PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physiology, Faculty of Basic Medical SciencesCollege of Health Sciences, Nile University of NigeriaFCT-AbujaNigeria

Personalised recommendations