Advertisement

Functional Relationship Between the Gut and Other Tissues/Organs of the Body

  • Menizibeya Osain Welcome
Chapter

Abstract

The enteral system provides a pivotal functional connectivity with other organs and tissues of the body, referred to as gut–extraenteric tissue axis. This functional relationship regulates several functions of the body including higher mental (memory, cognition), cardiac, renal, pulmonary, hepatic, pancreatic functions. Examples of such relationship include gut–brain (enterocerebral) axis, gut–liver (enterohepatic) axis, gut–pancreas (enteropancreatic) axis, gut–liver–pancreas (enterohepatopancreatic/enteropancreatohepatic) axis or triangle, gut–heart (enterocardiac) axis, gut–kidney (enterorenal, enteronephric) axis, gut–lung (enteropulmonary) axis, gut–bone (entero-osseous) axis, gut–skin (enterocutaneous) axis, and gut–brain–skin (enterocerebrocutaneous) triangle. Other axes (usually referred to as systems) include hepatobiliary, pancreatobiliary, and pancreatohepatobiliary systems. These axes, triangles, and systems play a crucial role in the maintenance of homeostasis not only in the GI tract, but also in extraenteric tissues/organs. It is important to note that apart from the functional relationship, some of these axes, triangles, and systems are structurally connected to the gut. This chapter is concerned with this functional and structural connectivity.

Keywords

Gut–liver (enterohepatic) axis Gut–brain (enterocerebral) axis Gut–pancreas (enteropancreatic) axis Gut–liver-pancreas (enterohepatopancreatic/enteropancreatohepatic) axis or triangle Gut–heart (enterocardiac) axis Gut–bone (entero-osseous) axis Gut–kidney (enterorenal, enteronephric) axis Gut–lung (enteropulmonary) axis Gut–skin (enterocutaneous) axis Gut–brain–skin (enterocerebrocutaneous) triangle Hepatobiliary Pancreatobiliary Pancreatohepatobiliary system Small intestinal bacterial overgrowth 

Abbreviations

cAMP

Cyclic adenosine monophosphate

CCK

Cholecystokinin

cGMP

Cyclic guanosine monophosphate

GDP

Guanosine diphosphate

GI

Gastrointestinal

GIP

Glucose-dependent insulinotropic polypeptide/gastro-inhibitory polypeptide

GLP-1

Glucagon-like peptide 1

GPCR

G protein-coupled receptor

IGF-1

Insulin-like growth factor-1

OXM

Oxyntomodulin

PP

Pancreatic polypeptide

SBP

Spontaneous bacterial peritonitis

Bibliography

  1. 1.
    Fenske W, Athanasiou T, Harling L, Drechsler C, Darzi A, Ashrafian H (2013) Obesity-related cardiorenal disease: the benefits of bariatric surgery. Nat Rev Nephrol 9:539–551PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Michell AR, Debnam ES, Unwin RJ (2008) Regulation of renal function by the gastrointestinal tract: potential role of gut-derived peptides and hormones. Annu Rev Physiol 70:379–403PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Pereverzev VA, Lobanok LM (2014) Physiology of digestion. In: Kubarko AI (ed) Normal physiology. Visheishaya Shkola, Minsk, BelarusGoogle Scholar
  4. 4.
    Nikitina OS, Welcome MO, Pereverzev VA (2016) Human anatomy and physiology. Belarusian State Medical University Press, MinskGoogle Scholar
  5. 5.
    Vitetta L, Manuel R, Zhou JY, Linnane AW, Hall S, Coulson S (2014) The overarching influence of the gut microbiome on end-organ function: the role of live probiotic cultures. Pharmaceuticals (Basel) 7(9):954–989CrossRefGoogle Scholar
  6. 6.
    Arck P, Handjiski B, Hagen E, Pincus M, Bruenahl C, Bienenstock J, Paus R (2010) Is there a ‘gut-brain-skin axis’? Exp Dermatol 19(5):401–405PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Benson MD, Gandhi MR (2000) Ultrasound of the hepatobiliary-pancreatic system. World J Surg 24(2):166–170PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Olivier AK, Gibson-Corley KN, Meyerholz DK (2015) Animal models of gastrointestinal and liver diseases. Animal models of cystic fibrosis: gastrointestinal, pancreatic, and hepatobiliary disease and pathophysiology. Am J Physiol Gastrointest Liver Physiol 308(6):G459–G471PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Serino M, Blasco-Baque V, Nicolas S, Burcelin R (2014) Managing the manager: gut microbes, stem cells and metabolism. Diabetes Metab 40(3):186–190PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Sekirov I, Russell SL, Antunes LCM, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Vajro P, Paolella G, Fasano A (2013) Microbiota and gut-liver axis: a mini-review on their influences on obesity and obesity related liver disease. J Pediatr Gastroenterol Nutr 56(5):461–468PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Paolella G, Mandato C, Pierri L, Poeta M, Di Stasi M, Vajro P (2014) Gut-liver axis and probiotics: their role in non-alcoholic fatty liver disease. World J Gastroenterol 20(42):15518–15531PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Shukla SD, Budden KF, Neal R, Hansbro PM (2017) Microbiome effects on immunity, health and disease in the lung. Clin Transl Immunol 6:e133CrossRefGoogle Scholar
  14. 14.
    Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104:13780–13785PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Zhu B, Wang X, Li L (2010) Human gut microbiome: the second genome of human body. Protein Cell 1(8):718–725PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14(8):e1002533PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu W-H et al (2010) The human oral microbiome. J Bacteriol 192(19):5002–5017PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Kort R, Caspers M, van de Graaf A, van Egmond W, Keijser B, Roeselers G (2014) Shaping the oral microbiota through intimate kissing. Microbiome 2:41PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Liu N, Ando T, Ishiguro K, Maeda O, Watanabe O, Funasaka K et al (2013) Characterization of bacterial biota in the distal esophagus of Japanese patients with reflux esophagitis and Barrett’s esophagus. BMC Infect Dis 13:130PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Harris JK, Fang R, Wagner BD, Choe HN, Kelly CJ, Schroeder S et al (2015) Esophageal microbiome in eosinophilic esophagitis. PLoS ONE 10(5):e0128346PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Acharya C, Sahingur SE, Bajaj JS (2017) Microbiota, cirrhosis, and the emerging oral-gut-liver axis. JCI Insight 2(19). pii: 94416Google Scholar
  22. 22.
    Odamaki T, Bottacini F, Kato K, Mitsuyama E, Yoshida K, Horigome A et al (2018) Genomic diversity and distribution of Bifidobacterium longum subsp. longum across the human lifespan. Sci Rep 8:85Google Scholar
  23. 23.
    Basson A, Trotter A, Rodriguez-Palacios A, Cominelli F (2016) Mucosal interactions between genetics, diet, and microbiome in inflammatory bowel disease. Front Immunol 7:290PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Brandl K, Kumar V, Eckmann L (2017) Gut-liver axis at the frontier of host-microbial interactions. Am J Physiol Gastrointest Liver Physiol 312(5):G413–G419PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Wiest R, Albillos A, Trauner M, Bajaj J, Jalan R (2017) Targeting the gut-liver axis in liver disease. J Hepatol pii: S0168-8278(17)32016-0Google Scholar
  26. 26.
    Arab JP, Martin-Mateos RM, Shah VH (2018) Gut-liver axis, cirrhosis and portal hypertension: the chicken and the egg. Hepatol Int 12(1):24–33PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Fukui H (2015) Gut-liver axis in liver cirrhosis: how to manage leaky gut and endotoxemia. World J Hepatol 7(3):425–442PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kabeerdoss J, Jayakanthan P, Pugazhendhi S, Ramakrishna BS (2015) Alterations of mucosal microbiota in the colon of patients with inflammatory bowel disease revealed by real time polymerase chain reaction amplification of 16S ribosomal ribonucleic acid. Indian J Med Res 142(1):23–32PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Compare D, Coccoli P, Rocco A, Nardone OM, De Maria S, Cartenì M, Nardone G (2012) Gut–liver axis: the impact of gut microbiota on non alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis 22(6):471–476PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Kalaitzakis E (2014) Gastrointestinal dysfunction in liver cirrhosis. World J Gastroenterol 20(40):14686–14695PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Visschers RG, Luyer MD, Schaap FG, Olde Damink SW, Soeters PB (2013) The gut-liver axis. Curr Opin Clin Nutr Metab Care 16(5):576–581PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Koulaouzidis A, Bhat S, Karagiannidis A, Tan WC, Linaker BD (2007) Spontaneous bacterial peritonitis. Postgrad Med J 83(980):379–383PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Koulaouzidis A, Bhat S, Saeed AA (2009) Spontaneous bacterial peritonitis. World J Gastroenterol 15(9):1042–1049PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Lata J, Stiburek O, Kopacova M (2009) Spontaneous bacterial peritonitis: a severe complication of liver cirrhosis. World J Gastroenterol 15(44):5505–5510PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Procopet B, Berzigotti A (2017) Diagnosis of cirrhosis and portal hypertension: imaging, non-invasive markers of fibrosis and liver biopsy. Gastroenterol Rep 5(2):79–89CrossRefGoogle Scholar
  36. 36.
    Banerjee JK (2012) Portal hypertension. Med J Armed Forces India 68(3):276–279PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Ferenci P (2017) Hepatic encephalopathy. Gastroenterol Rep (Oxf) 5(2):138–147CrossRefGoogle Scholar
  38. 38.
    Dharel N, Bajaj JS (2015) Definition and nomenclature of hepatic encephalopathy. J Clin Exp Hepatol 5(1):S37–S41PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Pantham G, Mullen KD (2017) Practical issues in the management of overt hepatic encephalopathy. Gastroenterol Hepatol (N Y) 13(11):659–665Google Scholar
  40. 40.
    Shawcross DL (2018) Diagnosis and management of hepatic encephalopathy. Br J Nurs 27(3):S7–S13PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Unger RH, Eisentraut AM (1969) Entero-insular axis. Arch Intern Med 123:261–266PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Creutzfeldt W (1979) The incretin concept today. Diabetologia 16:75–85PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Schmidt WE, Meier JJ (2006) Werner Creutzfeldt May 11, 1924–August 30, 2006. Regul Pept 137(3):105–106CrossRefGoogle Scholar
  44. 44.
    Creutzfeldt W, Nauck M (1992) Gut hormones and diabetes mellitus. Diabetes/Metab Rev 8(2):149–177CrossRefGoogle Scholar
  45. 45.
    Göke B (2006) Obituary for Prof. Dr. med. Dr. h.c. Werner Creutzfeldt, FRCP. May 11, 1924 to August 30, 2006. Digestion 74:55–56CrossRefGoogle Scholar
  46. 46.
    Schönfeld JV, Goebell H, Mütter MK (1994) The islet-acinar axis of the pancreas. Int J Pancreatol 16(2–3):131–140Google Scholar
  47. 47.
    Ranganath LR (2007) The entero-insular axis: implications for human metabolism. Clin Chem Lab Med 46(1):43–56Google Scholar
  48. 48.
    Ørskov C (1992) Glucagon-like peptide-1, a new hormone of the entero-insular axis. Diabetologia 35(8):701–711PubMedPubMedCentralGoogle Scholar
  49. 49.
    Barreto SG, Carati CJ, Toouli J, Saccone GT (2010) The islet-acinar axis of the pancreas: more than just insulin. Am J Physiol Gastrointest Liver Physiol 299(1):G10–G22PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Williams JA, Goldfine ID (1985) The insulin-pancreatic acinar axis. Diabetes 34(10):980–986PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Foster JA (2013) Gut feelings: bacteria and the brain. Cerebrum 2013:9PubMedPubMedCentralGoogle Scholar
  52. 52.
    Pimentel GD, Micheletti TO, Pace F, Rosa JC, Santos RVT, Lira FS (2012) Gut-central nervous system axis is a target for nutritional therapies. Nutr J 11:22PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Furness JB, Callaghan BP, Rivera LR, Cho HJ (2014) The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol 817:39–71CrossRefPubMedGoogle Scholar
  54. 54.
    Chaudhri O, Small C, Bloom S (2006) Gastrointestinal hormones regulating appetite. Philos Trans R Soc Lond B Biol Sci 361(1471):1187–1209PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Nyberg F, Hallberg M (2013) Growth hormone and cognitive function. Nat Rev Endocrinol 9(6):357–365PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K (2014) Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci 34(46):15490–15496PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Galland L (2014) The gut microbiome and the brain. J Med Food 17(12):1261–1272PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Li Q, Zhou JM (2016) The microbiota-gut-brain axis and its potential therapeutic role in autism spectrum disorder. Neuroscience 324:131–139PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    MacFabe DF (2015) Enteric short-chain fatty acids: microbial messengers of metabolism, mitochondria, and mind: implications in autism spectrum disorders. Microb Ecol Health Dis 26:28177PubMedPubMedCentralGoogle Scholar
  60. 60.
    Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC (2015) Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther 37(5):984–995PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Grootaert C, Van den Abbeele P, Marzorati M, Broekaert WF, Courtin CM, Delcour JA et al (2009) Comparison of prebiotic effects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 69(2):231–242PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Geurts L, Neyrinck AM, Delzenne NM, Knauf C, Cani PD (2014) Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics. Benef Microbes 5(1):3–17PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Carabotti M, Scirocco A, Maselli MA, Severia C (2015) The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28(2):203–209PubMedPubMedCentralGoogle Scholar
  64. 64.
    Hyland N, Stanton C (eds) (2016) The gut-brain axis: dietary, probiotic, and prebiotic interventions on the microbiota. Academic Press, Cambridge, MA, USAGoogle Scholar
  65. 65.
    Sollazzo R, Sanges M (2016) The second brain and possible interactions with the heart. In: Roncella A, Pristipino C (eds) Psychotherapy for ischemic heart disease. Springer, Cham, SwitzerlandGoogle Scholar
  66. 66.
    Kim M, Platt MJ, Shibasaki T, Quaggin SE, Backx PH, Seino S et al (2013) GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat Med 19:567–575PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Ruiz-Hurtado G, Morel E, Domínguez-Rodríguez A, Llach A, Lezoualc’h F, Benitah JP, Gomez AM (2013) Epac in cardiac calcium signaling. J Mol Cell Cardiol 58:162–171PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Holz GG, Kang G, Harbeck M, Roe MW, Chepurny OG (2006) Cell physiology of cAMP sensor Epac. J Physiol 577(1):5–15PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Sheikh A (2013) Direct cardiovascular effects of glucagon like peptide-1. Diabetol Metab Syndr 5:47PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Méry P-F, Brechler V, Pavoine C, Pecker F, Fischmeister R (1990) Glucagon stimulates the cardiac Ca2+ current by activation of adenylyl cyclase and inhibition of phosphodiesterase. Nature 345:158–161PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Farah AE (1983) Glucagon and the heart. In: Lefebvre PJ (ed) Glucagon II. Handbook of experimental pharmacology, vol. 66 of the series. Springer, HeidelbergCrossRefGoogle Scholar
  72. 72.
    Williams JF Jr, Childress RH, Chip JN, Border JF (1969) Hemodynamic effects of glucagon in patients with heart disease. Circulation 39:38–47PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Entman ML, Levey GS, Epstein SE (1969) Mechanism of action of epinephrine and glucagon on the canine heart: evidence for increase in sarcotubular calcium stores mediated by cyclic 3′,5′-AMP. Circ Res 25:429–438PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Rieker RP, Lee JC, Downing SE (1975) Positive inotropic action of insulin on piglet heart. Yale J Biol Med 48(5):353–359PubMedPubMedCentralGoogle Scholar
  75. 75.
    Hsu C-H, Wei J, Chen Y-C, Yang S-P, Tsai C-S, Lin C-I (2006) Cellular mechanisms responsible for the inotropic action of insulin on failing human myocardium. J Heart Lung Transpl 25(9):1126–1134CrossRefGoogle Scholar
  76. 76.
    von Lewinski D, Bruns S, Walther S, Kögler H, Pieske B (2005) Insulin causes [Ca2 +]i-dependent and [Ca2 +]i-independent positive inotropic effects in failing human myocardium. Circulation 111(20):2588–2595CrossRefGoogle Scholar
  77. 77.
    Engebretsen KM, Kaczmarek KM, Morgan J, Holger JS (2011) High-dose insulin therapy in beta-blocker and calcium channel-blocker poisoning. Clin Toxicol (Phila) 49(4):277–283CrossRefGoogle Scholar
  78. 78.
    von Lewinski D, Voss K, Hülsmann S, Kögler H, Pieske B (2003) Insulin-like growth factor-1 exerts Ca2 + -dependent positive inotropic effects in failing human myocardium. Circ Res 92(2):169–176CrossRefGoogle Scholar
  79. 79.
    Kaygisiz Z, Ozden H, Erkasap N, Köken T, Gündüz T, Ikizler M, Kural T (2009) Effects of proadrenomedullin N-terminal 20 peptide and calcitonin on isolated perfused rat hearts. Anadolu Kardiyol Derg 9(3):176–182PubMedPubMedCentralGoogle Scholar
  80. 80.
    Kaygisiz Z, Ozden H, Erkasap N, Koken T, Gunduz T, Ikizler M, Kural T (2010) Positive inotropic, positive chronotropic and coronary vasodilatory effects of rat amylin: mechanisms of amylin-induced positive inotropy. Acta Physiol Hung 97(4):362–374PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Opgaard SO, de Vries R, Tom B, Edvinsson L, Saxena PR (1999) Positive inotropy of calcitonin gene-related peptide and amylin on porcine isolated myocardium. Eur J Pharmacol 385(2–3):147–154CrossRefGoogle Scholar
  82. 82.
    Sindić A, Schlatter E (2006) Cellular effects of guanylin and uroguanylin. J Am Soc Nephrol 17(3):607–616PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Yuge S, Inoue K, Hyodo S, Takei Y (2003) A novel guanylin family (guanylin, uroguanylin, and renoguanylin) in eels: possible osmoregulatory hormones in intestine and kidney. J Biol Chem 278:22726–22733PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Forte LR, Eber SL, Fan X, London RM, Wang Y, Rowland LM et al (1999) Lymphoguanylin: cloning and characterization of a unique member of the guanylin peptide family. Endocrinology 140(4):1800–1806PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Sindic A (2013) Current understanding of guanylin peptides actions. ISRN Nephrol 2013:813648PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Rozenfeld J, Tal O, Kladnitsky O, Adler L, Efrati E, Carrithers SL et al (2012) The pendrin anion exchanger gene is transcriptionally regulated by uroguanylin: a novel enterorenal link. Am J Physiol Renal Physiol 302(5):F614–F624PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Preston RA, Afshartous D, Forte LR, Rodco R, Alonso AB, Garg D, Raij L (2012) Sodium challenge does not support an acute gastrointestinal–renal natriuretic signaling axis in humans. Kidney Int 82:1313–1320PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Wall SM, Lazo-Fernandez Y (2015) The role of pendrin in renal physiology. Annu Rev Physiol 77:363–378PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Wall SM (2017) Renal intercalated cells and blood pressure regulation. Kidney Res Clin Pract 36(4):305–317PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Mathai ML, Sosa Leon LA, May CN, Thomson CE, McKinley MJ (2005) Amylin induces natriuresis by a central angiotensin-dependent mechanism. Regul Pept 130(1–2):91–96PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Rossi M, Johnson DW, Campbell KL (2015) The kidney-gut axis: implications for nutrition care. J Ren Nutr 25(5):399–403PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Coppo R (2018) The gut-kidney axis in IgA nephropathy: role of microbiota and diet on genetic predisposition. Pediatr Nephrol 33(1):53–61PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Wing MR, Patel SS, Ramezani A, Raj DS (2016) Gut microbiome in chronic kidney disease. Exp Physiol 101(4):471–477PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Fernandez-Prado R, Esteras R, Perez-Gomez MV, Gracia-Iguacel C, Gonzalez-Parra E, Sanz AB et al (2017) Nutrients turned into toxins: microbiota modulation of nutrient properties in chronic kidney disease. Nutrients 9(5). pii: E489Google Scholar
  95. 95.
    Sabatino A, Regolisti G, Brusasco I, Cabassi A, Morabito S, Fiaccadori E (2015) Alterations of intestinal barrier and microbiota in chronic kidney disease. Nephrol Dial Transplant 30(6):924–933PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Ito S, Yoshida M (2014) Protein-bound uremic toxins: new culprits of cardiovascular events in chronic kidney disease patients. Toxins (Basel) 6(2):665–678CrossRefGoogle Scholar
  97. 97.
    Huang W, Zhou L, Guo H, Xu Y, Xu Y (2017) The role of short-chain fatty acids in kidney injury induced by gut-derived inflammatory response. Metabolism 68:20–30PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Marsland BJ, Trompette A, Gollwitzer ES (2015) The gut-lung axis in respiratory disease. Ann Am Thorac Soc 12(2):S150–S156PubMedPubMedCentralGoogle Scholar
  99. 99.
    Keely S, Talley NJ, Hansbro PM (2012) Pulmonary-intestinal cross-talk in mucosal inflammatory disease. Mucosal Immunol 5:7–18PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Wang H, Liu J-S, Peng S-H, Deng X-Y, Zhu D-M, Javidiparsijani S et al (2013) Gut-lung crosstalk in pulmonary involvement with inflammatory bowel diseases. World J Gastroenterol 19(40):6794–6804PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Bingula R, Filaire M, Radosevic-Robin N, Bey M, Berthon JY, Bernalier-Donadille A et al (2017) Desired turbulence? Gut-lung axis, immunity, and lung cancer. J Oncol 2017:5035371PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Zhao Y, Wang J, Liu Z, Lin H, Shi Y, Sun X (2017) Pulmonary dysfunction in 114 patients with inflammatory bowel disease. Medicine (Baltimore) 96(18):e6808CrossRefGoogle Scholar
  103. 103.
    Dickson RP, Huffnagle GB (2015) The lung microbiome: new principles for respiratory bacteriology in health and disease. PLoS Pathog 11(7):e1004923.  https://doi.org/10.1371/journal.ppat.1004923CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Berg RD (1999) Bacterial translocation from the gastrointestinal tract. Adv Exp Med Biol 473:11–30PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Vaishnavi C (2013) Translocation of gut flora and its role in sepsis. Indian J Med Microbiol 31(4):334–342PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Dickson RP, Singer BH, Newstead MW, Falkowski NR, Erb-Downward JR, Standiford TJ, Huffnagle GB (2016) Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat Microbiol 1(10):16113PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Garcı́a-Tsao G (2001) Bacterial translocation: cause or consequence of decompensation in cirrhosis? J Hepatol 34(1):150–155PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Isales CM, Hamrick M (2008) Nutritional hormones and the entero-osseous axis. J Musculoskelet Neuronal Interact 8(4):348–350PubMedPubMedCentralGoogle Scholar
  109. 109.
    Levasseur R, Lacombe D, de Vernejoul MC (2005) LRP5 mutations in osteoporosis-pseudoglioma syndrome and high-bone-mass disorders. Jt Bone Spine 72(3):207–214CrossRefGoogle Scholar
  110. 110.
    Chen D, Zhao CM (2011) The possible existence of a gut-bone axis suggested by studies of genetically manipulated mouse models? Curr Pharm Des 17(16):1552–1555PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Lerner A, Matthias T (2016) Gut-bone cross talks and implications in celiac disease. Int J Celiac Dis 4(1):19–23CrossRefGoogle Scholar
  112. 112.
    Zhao LJ, Jiang H, Papasian CJ, Maulik D, Drees B, Hamilton J, Deng HW (2008) Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res 23(1):17–29PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Novince CM, Whittow CR, Aartun JD, Hathaway JD, Poulides N, Chavez MB et al (2017) Commensal gut microbiota immunomodulatory actions in bone marrow and liver have catabolic effects on skeletal homeostasis in health. Sci Rep 7(1):5747PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Christensen MB, Lund A, Calanna S, Jørgensen NR, Holst JJ, Vilsbøll T, Knop FK (2018) Glucose-dependent insulinotropic polypeptide (GIP) inhibits bone resorption independently of insulin and glycemia. J Clin Endocrinol Metab 103(1):288–294PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Pacheco-Pantoja EL, Ranganath LR, Gallagher JA, Wilson PJ, Fraser WD (2011) Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol 11:12PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Zhao C, Liang J, Yang Y, Yu M, Qu X (2017) The impact of glucagon-like peptide-1 on bone metabolism and its possible mechanisms. Front Endocrinol (Lausanne) 8:98CrossRefGoogle Scholar
  117. 117.
    Meng J, Ma X, Wang N, Jia M, Bi L, Wang Y et al (2016) Activation of GLP-1 receptor promotes bone marrow stromal cell osteogenic differentiation through β-catenin. Stem Cell Rep 6(4):579–591CrossRefGoogle Scholar
  118. 118.
    Craig MJ (2016) Atopic dermatitis and the intestinal microbiota in humans and dogs. Vet Med Sci 2(2):95–105PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Bowe WP, Logan AC (2011) Acne vulgaris, probiotics and the gut-brain-skin axis—back to the future? Gut Pathogens 3:1PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Zákostelská Z, Málková J, Klimešová K, Rossmann P, Hornová M, Novosádová I et al (2016) Intestinal microbiota promotes psoriasis-like skin inflammation by enhancing Th17 response. PLoS ONE 11(7):e0159539PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    O’Neill CA, Monteleone G, McLaughlin JT, Paus R (2016) The gut-skin axis in health and disease: a paradigm with therapeutic implications. BioEssays 38(11):1167–1176PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Titus S, Hodge J (2012) Diagnosis and treatment of acne. Am Fam Physician 86(8):734–740PubMedPubMedCentralGoogle Scholar
  123. 123.
    Mokos BZ, Kralj M, Basta-Juzbašić A, Jukić LI (2012) Seborrheic dermatitis: an update. Acta Dermatovenerol Croat 20(2):98–104Google Scholar
  124. 124.
    Johnson BA, Nunley JR (2000) Treatment of seborrheic dermatitis. Am Fam Physician 61(9):2703–2710PubMedPubMedCentralGoogle Scholar
  125. 125.
    Berk T, Scheinfeld N (2010) Seborrheic dermatitis. PT 35(6):348–352Google Scholar
  126. 126.
    Darsow U, Raap U, Ständer S (2014) Atopic dermatitis. In: Carstens E, Akiyama T (eds) Itch: mechanisms and treatment. CRC Press/Taylor & Francis, Boca Raton, Florida, USAGoogle Scholar
  127. 127.
    Correale CE, Walker C, Murphy L, Craig TJ (1999) Atopic dermatitis: a review of diagnosis and treatment. Am Fam Physician 60(4):1191–1198PubMedPubMedCentralGoogle Scholar
  128. 128.
    Simpson EL, Keck LE, Chalmers JR, Williams HC (2012) How should an incident case of atopic dermatitis be defined? A systematic review of primary prevention studies. J Allergy Clin Immunol 130(1):137–144PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Stokes JH, Pillsbury DM (1930) The effect on the skin of emotional and nervous states iii. Theoretical and practical consideration of a gastro-intestinal mechanism. Arch Derm Syphilol 22(6):962–993CrossRefGoogle Scholar
  130. 130.
    Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PWJ (2016) Psychobiotics and the manipulation of bacteria–gut–brain signals. Trends Neurosci 39(11):763–781PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Bures J, Cyrany J, Kohoutova D, Förstl M, Rejchrt S, Kvetina J et al (2010) Small intestinal bacterial overgrowth syndrome. World J Gastroenterol 16(24):2978–2990PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Dukowicz AC, Lacy BE, Levine GM (2007) Small intestinal bacterial overgrowth: a comprehensive review. Gastroenterol Hepatol (N Y) 3(2):112–122Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physiology, Faculty of Basic Medical SciencesCollege of Health Sciences, Nile University of NigeriaFCT-AbujaNigeria

Personalised recommendations