Dust Lofting Behind Shock Waves: What Is the Dominate Lofting Mechanism?

  • Y. Leler
  • S. PistinnerEmail author
  • A. Yafe
  • O. Sadot
Conference paper


Blast waves formed by aerial explosion above dust and coal mine explosion lift dust. The lofted dust particles couple to the flow field and are carried by it. The dust lofting phenomenon behind blast/shock waves is studied over seven decades. Yet, a clear identification of the dominated dust lofting mechanism behind blast and shock waves is still lacking.


  1. 1.
    Y. Shao, Physics and Modelling of Wind Erosion (Springer, New York, 2008)Google Scholar
  2. 2.
    J.H. Gerrard, An experimental investigation of the initial stages of the dispersion of dust by shock waves. Br. J. Appl. Phys. 14(4), 186–192 (1963)CrossRefGoogle Scholar
  3. 3.
    A.A. Borisov, A.V. Lyubimov, S.M. Kogarko, V.P. Kozenko, Fizika Goreniya I Vzryua 3(1), 149–151 (1967)Google Scholar
  4. 4.
    D.R. Ausherman, Initial Dust Lofting: Shock-Tube Experiments, Defense Nuclear Agency, Rept. 3162F. (1973)Google Scholar
  5. 5.
    B. Fletcher, The interaction of a shock with a dust deposit. J. Phys. D. 9, 197–202 (1976)CrossRefGoogle Scholar
  6. 6.
    W. Merzkirch, K. Bracht, The erosion of dust by a shock wave in air: initial stages with laminar flow. Int. J. Multiphase Flow 4, 89–95 (1978)CrossRefGoogle Scholar
  7. 7.
    T. Suzuki, T. Adachi, The effects of particle size on shock wave dust deposit interaction, in Proceedings of the 14th ISTS (Tokyo, 1984), pp. 483–490Google Scholar
  8. 8.
    V.M. Boiko, A.N. Papyrin, Dynamics of the formation of a gas suspension behind a shock wave sliding over the surface of a loose material. Combust. Explos. Shock Waves 23(2), 231–235 (1987)CrossRefGoogle Scholar
  9. 9.
    D.A. Gillette, Tests with a portable wind tunnel for determining wind Erosion threshold velocities. Atmos. Environ. 12, 2309–2313 (1978)CrossRefGoogle Scholar
  10. 10.
    B. Hartenbaum, Lofting of Particulates by a High Speed Wind, Defense Nuclear Agency, Rept. 2737. (1971)Google Scholar
  11. 11.
    R.G. Batt, M.P. Petach, S.A. Peabody II, Boundary layer entrainment of sand-sized particles at high speed. J. Fluid Mech. 392, 335–360 (1999)CrossRefGoogle Scholar
  12. 12.
    R.G. Batt, S.A. Peabody II, Threshold friction velocities for large pebble gravel beds. J. Geophys. Res. 104(D20), 24273–24279 (1999)CrossRefGoogle Scholar
  13. 13.
    R. Klemens, P. Kosinski, P. Oleszczak, Mathematical modeling of dust layer dispersion due to rarefaction wave. Arch. Combust. 22(1–2), 3–12 (2002)Google Scholar
  14. 14.
    J.L. Wagner, S.J. Beresh, S.P. Kearney, W.M. Trott, J.N. Castaneda, B.O. Pruett, M.R. Baer, A multiphase shock tube for shock wave interactions with dense particle fields. Exp. Fluids 52, 1507–1517 (2012)CrossRefGoogle Scholar
  15. 15.
    R. Klemens, P. Zydak, M. Kaluzny, D. Litwin, P. Wolanski, Dynamics of dust dispersion from the layer behind the propagation shock wave. J. Loss Prev. Process Ind. 19, 200–209 (2006)CrossRefGoogle Scholar
  16. 16.
    R. Klemens, P. Oleszczak, P. Zydak, Experimental and numerical investigation into the dynamics of dust lifting up from the layer behind the propagating shock wave. Shock Waves 23, 263–270 (2013). K (2013)CrossRefGoogle Scholar
  17. 17.
    A. Yaffe, O. Sadot, Dust Lofting Behind Shock Wave (Mechanical Engineering Department, Ben Gurion University of the Negev, Beer Sheva, 2014)Google Scholar
  18. 18.
    A. Yaffe S. Pistinner, O. Sadot, Evolution of dust lofting behind shock waves, MABS24, in press. (2016)Google Scholar
  19. 19.
    P. Zydak, P. Oleszczak, R. Klemens, Experimental research on dust lifting by propagating shock wave. Shock Waves 27, 179–186 (2016)CrossRefGoogle Scholar
  20. 20.
    R.A. Bagnold, The Physics of Blown Sands and Desert Dunes (Methyen and Co. Ltd., London, 1941)Google Scholar
  21. 21.
    P.R. Owen, Saltation of uniform grains in air. J. Fluid Mech. 20(2), 225–242 (1964)CrossRefGoogle Scholar
  22. 22.
    H. Mirels, The Wall Boundary Layer behind a Moving Shock Wave, Grenzschichforschung Symposium (Springer, Freiburg, 1958), pp. 283–292zbMATHGoogle Scholar
  23. 23.
    H. Mirels, Blowing model for turbulent boundary layer dust ingestion. AIAI J. 22, 1582–1589 (1984)CrossRefGoogle Scholar
  24. 24.
    H. Mirels, Boundary layer growth behind Mach reflections. 10th Mach reflection symposium, pp. 20–23. Abstract Book, Denver, (1992)Google Scholar
  25. 25.
    W.H. Dorrance, Viscous Hypersonic Flow (McGraw-Hill, New York, 1962)zbMATHGoogle Scholar
  26. 26.
    Y. Lefler, S. Pistinner, O. Sadot, A. Yaffe, Dust Lofting Behind a Shock Wave, in Proceedings of the 30rd ISSW. (2015)Google Scholar
  27. 27.
    A. Lipshtat, S. Pistinner, Blast Mitigation by Dust Lofting- Theoretical Perspective, in Proceedings of the 30rd ISSW. (2015)Google Scholar
  28. 28.
    R.A. Gaj, R.D. Small, Target Area Operating Conditions-Dust Lofting from Natural Surfaces. Technical report, Pacific-Sierra Research Corporation. (1991)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Soreq Nuclear Research CenterYavneIsrael
  2. 2.Ben-Gurion University of the NegevBe’er ShevaIsrael

Personalised recommendations