Shock Train Structures in Rectangular Ducts

  • F. GnaniEmail author
  • H. Zare-Behtash
  • C. White
  • K. Kontis
Conference paper


The deceleration of a supersonic flow to subsonic velocity inside a high-speed engine occurs through a series of shock waves, known as a shock train. The generation of such a flow structure is due to the interaction between the shock waves and the boundary layer inside a long duct. This phenomenon is frequently encountered in a variety of internal flow fields where a shock wave interacts with the boundary layer including air-breathing engines, high-speed wind tunnel diffusers, and supersonic compressors and ejectors. The present study investigates the complex SBLI phenomenon encountered in a Mach 2 shock train through numerical analysis.


  1. 1.
    E.T. Curran, W.H. Heiser, D.T. Pratt, Fluid phenomena in scramjet combustion systems. Annu. Rev. Fluid Mech. 28, 323–360 (1996)CrossRefGoogle Scholar
  2. 2.
    F. Gnani, H. Zare-Behtash, K. Kontis, Pseudo-shock waves and their interactions in high-speed intakes. Prog. Aerosp. Sci. 82, 36–56 (2016)CrossRefGoogle Scholar
  3. 3.
    D. Om, M.E. Childs, J.R. Viegas, Transonic shock-wave/turbulent boundary-layer interactions in a circular duct. AIAA J. 23(5), 707–714 (1985)CrossRefGoogle Scholar
  4. 4.
    W.H. Heiser, D.T. Pratt, Hypersonic Airbreathing Propulsion (American Institute of Aeronautics and Astronautics, Washington, DC, 1994)CrossRefGoogle Scholar
  5. 5.
    I. Hataue, Computational study of the shock-wavey/boundary-layer interaction in a duct. Fluid Dyn. Res. 5(3), 217–234 (1989)CrossRefGoogle Scholar
  6. 6.
    H. Sugiyama, R. Minato, K. Mizobata, A. Tojo, Y. Muto, Experimental and numerical analysis of the structure of pseudo-shock systems in Laval nozzles with parallel side walls. J. Therm. Sci. 15(1), 37–42 (2006)CrossRefGoogle Scholar
  7. 7.
    T.J. Barber, G.B. Cox, Hypersonic vehicle propulsion – a computational fluid dynamics application case study. J. Propuls. Power 5(4), 492–501 (1989)CrossRefGoogle Scholar
  8. 8.
    L.Q. Sun, H. Sugiyama, K. Mizobata, K. Fukuda, Numerical and experimental investigations on the mach 2 pseudo-shock wave in a square duct. J. Vis. 6(4), 363–370 (2003)CrossRefGoogle Scholar
  9. 9.
    D.D. Knight, Calculation of three-dimensional shock/turbulent boundary-layer interaction generated by sharp fin. AIAA J. 23(12), 1885–1891 (1985)MathSciNetCrossRefGoogle Scholar
  10. 10.
    B.F. Carroll, P.A. Lopez-Fernandez, J.C. Dutton, Computations and experiments for a multiple normal shock/boundary-layer interaction. J. Propuls. Power 9(3), 405–411 (1993)CrossRefGoogle Scholar
  11. 11.
    W.Y.K. Chan, P.A. Jacobs, D.J. Mee, Suitability of the k − ε turbulence model for scramjet flowfield simulations. Int. J. Numer. Methods Fluids 70(4), 493–514 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    B. Morgan, K. Duraisamy, S.K. Lele, Large-eddy simulations of a normal shock train in a constant-area isolator. AIAA J. 52(3), 539–558 (2014)CrossRefGoogle Scholar
  13. 13.
    G. Sullins, Experimental results of shock trains in rectangular ducts. AIAA-92-5103 (1992)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • F. Gnani
    • 1
    Email author
  • H. Zare-Behtash
    • 1
  • C. White
    • 1
  • K. Kontis
    • 1
  1. 1.School of EngineeringUniversity of GlasgowGlasgowUK

Personalised recommendations