Three-Dimensional Instability of Shock-Wave/Boundary-Layer Interaction for Rocket Engine Nozzle Applications

  • J.-Ch. Robinet
  • A. SansicaEmail author
  • Eric Goncalves
  • J. Herpe
Conference paper


A fully three-dimensional analysis is carried out on an overexpanded rocket engine nozzle configuration to investigate the role of the internal shock-induced separation on the mechanism of generation of side loads during start-up and shutdown transients. A hybrid URANS/LES approach based on the delayed detached eddy simulation turbulence model is used. Reasonable good agreement is obtained between numerical and experimental results. The numerical wall-pressure spectrum shows a narrow peak that a dynamic mode decomposition reveals to be associated with a mode whose characteristics resemble the experimental azimuthal mode believed to be the cause of the generation of side loads.


  1. 1.
    Nave, L. H. and Coffey, G. A., Sea level side loads in high-area-ratio rocket engines, AIAA Paper 1973-1284, 1973Google Scholar
  2. 2.
    Aghababaie, A., Experimental Characterisation and Analytical Modelling of Rocket Nozzle Side-Loads, PhD thesis, University of Bristol, 2013Google Scholar
  3. 3.
    Shams, A., Contribution to the Numerical Simulation of Turbulent Shock-Induced Separated Flows, PhD thesis, Universite de Poitiers, 2011Google Scholar
  4. 4.
    E. Touber, N.D. Sandham, Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theor. Comput. Fluid Dyn. 23, 79–107 (2009)CrossRefGoogle Scholar
  5. 5.
    A. Sansica, N. Sandham, Z. Hu, Instability and low-frequency unsteadiness in a shock-induced laminar separation bubble. J. Fluid Mech. 798, 5–26 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    F. Sartor, C. Mettot, R. Bur, D. Sipp, Unsteadiness in transonic shock-wave/boundary-layer interactions: Experimental investigation and global stability analysis. J. Fluid Mech. 781, 550–577 (2015)CrossRefGoogle Scholar
  7. 7.
    F. Guiho, F. Alizard, J.-C. Robinet, Instabilities in oblique shock wave/laminar boundary-layer interactions. J. Fluid Mech. 789, 1–35 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    P. Dupont, C. Haddad, J. Ardissone, J.F. Débieve, Space and time organization of a shock wave/turbulent boundary layer interaction. Aerosp. Sci. Technol. 9(7), 561–572 (2005)CrossRefGoogle Scholar
  9. 9.
    P.R. Spalart, S. Deck, M.L. Shur, K.D. Squires, M.K. Strelets, A. Travin, A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20, 181–195 (2006)CrossRefGoogle Scholar
  10. 10.
    Jameson, A., Time-dependent calculations using multigrid with applications to unsteady flows past airfoils and wings, AIAA Paper 1991-1596, 1991Google Scholar
  11. 11.
    P.J. Schmid, Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • J.-Ch. Robinet
    • 1
  • A. Sansica
    • 1
    • 2
    Email author
  • Eric Goncalves
    • 3
  • J. Herpe
    • 2
  1. 1.DynFluid Laboratory, Arts et Métiers ParisTech, 151 Boulevard de l’HôpitalParisFrance
  2. 2.Centre National d’Études Spatiales (CNES) – Direction des LanceursParisFrance
  3. 3.ENSMA, Institut Pprime, UPR 3346, CNRS, Chasseneuil-du-PoitouChasseneuilFrance

Personalised recommendations