Thermal Spike Conception for Wave Drag Reduction of Blunt Bodies at Different Supersonic Speeds

  • P. GeorgievskiyEmail author
  • V. Levin
Conference paper


A computational study of supersonic flow past blunt bodies in the presence of energy deposition localized in very small regions of upstream flow is carried out. The effect of front separation zone formation due to the interaction of a bow shock wave and a shock layer with “thermal spike” (a high-temperature wake downstream of the energy deposition region) is investigated. The universal similarity condition for effective wave drag reduction of bodies due to localized energy deposition and front separation zone formation is determined.



The investigations were carried out according to research plan of the Institute of Mechanics of Lomonosov Moscow State University with partial financial support of Russian Foundation for Basic Research (projects 16-29-01092 and 18-01-00793).


  1. 1.
    P.Y. Georgievsky, V.A. Levin, Supersonic flow over bodies in the presence of external heat release sources. Pisma v Zhurnal Tekhnicheskoi Fisiki 14(8), 684–687 (1988). (in Russian)Google Scholar
  2. 2.
    V. Borzov, I. Rybka, A. Yuriev, The estimation for power input using for wave drag reduction of a body in a supersonic flow. Inzhenerno – Phizicheski Zhurnal 63(6), 659–664 (1992). (in Russian)Google Scholar
  3. 3.
    L.N. Myrabo, Yu.P. Raizer, AIAA Paper 1994–2451 (1994)Google Scholar
  4. 4.
    P.K. Tret’yakov, A.F. Garanin, V.L. Krainev, V.I. Yakovlev, et al., Control of supersonic flow around bodies by means of high-power recurrent optical breakdown. Dokl. Phys. 41(11), 566–567 (1996)Google Scholar
  5. 5.
    V.A. Levin, N.A. Afonina, V.G. Gromov, AIAA Paper 1999–4967 (1999)Google Scholar
  6. 6.
    D. Riggins, H.F. Nelson, E. Johnson, AIAA J. 37(4), 460–467 (1999)CrossRefGoogle Scholar
  7. 7.
    P.Y. Georgievskii, V.A. Levin, Control of the flow past bodies using localized energy addition to the supersonic oncoming flow. Fluid Dyn. 38(5), 154–167 (2003)CrossRefGoogle Scholar
  8. 8.
    D. Knight, J. Propuls. Power 24(6), 1153–1167 (2008)CrossRefGoogle Scholar
  9. 9.
    M.N. Shneider, S.O. Macheret, S.H. Zaidi, I. Girgis, R.B. Miles, J. Propuls. Power 24, 900–915 (2008)CrossRefGoogle Scholar
  10. 10.
    E. Schülein, A. Zheltovodov, Shock Waves 21, 383–396 (2011)CrossRefGoogle Scholar
  11. 11.
    E. Erdem, K. Kontis, L. Yang, Shock Waves 23, 285–298 (2013)Google Scholar
  12. 12.
    A. Sasoh, J.-H. Kim, K. Yamashita, T. Sakai, Shock Waves 24, 59–67 (2014)CrossRefGoogle Scholar
  13. 13.
    Y. Kolesnichenko, D. Khmara, V. Brovkin, S. Afanas’ev, AIAA Paper 2007-1228 (2007)Google Scholar
  14. 14.
    J.B. Michael, A. Dogariu, M.N. Shneider, R.B. Milesa, J. Appl. Phys. 108, 093308 (2010)CrossRefGoogle Scholar
  15. 15.
    O. Azarova, D. Knight, Y. Kolesnichenko, ShockWaves 21(5), 439–450 (2011)Google Scholar
  16. 16.
    K. Anderson, D. Knight, Shock Waves 21(2), 149–161 (2011)CrossRefGoogle Scholar
  17. 17.
    S.V. Guvernyuk, K.G. Savinov, Isobaric separation structures in supersonic flows with a localized inhomogeneity. Dokl. Phys. 52(3), 151–155 (2007)CrossRefGoogle Scholar
  18. 18.
    P. Georgievsky, V. Levin, AIAA Paper 2007-1232 (2007)Google Scholar
  19. 19.
    R.W. MacCormack, AIAA Paper 1969-354 (1969)Google Scholar
  20. 20.
    A. Zhmakin, A. Fursenko, On a monotonic shock-capturing difference scheme. USSR Comput. Math. Math. Phys. 20(4), 218–227 (1980)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Mechanics of Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations