Pelvic Neurophysiology

  • Jalesh N. Panicker


The role of pelvic neurophysiology in the clinical assessment of patients reporting bladder, bowel, sexual dysfunction and/or pelvic floor complaints is debatable, and this chapter provides an overview of the different tests that are available to assess the pelvic innervation. These include electromyography (EMG), evaluation of sacral reflexes (bulbocavernosus reflex), evoked potential studies (pudendal sensory evoked potentials and motor evoked potentials), nerve conduction studies (measurement of pudendal nerve terminal motor latency) and autonomic testing (recording genital sympathetic skin response). The chapter presents different clinical scenarios where pelvic neurophysiology testing may aid in the diagnosis of patients presenting with unexplained bladder/bowel/sexual complaints.


Pelvic neurophysiology Electromyography Sphincter EMG Fowler’s syndrome Pudendal sensory evoked potentials Bulbocavernosus reflex Sympathetic skin response 



This work was undertaken at the UCLH/UCL Institute of Neurology which received a proportion of funding from the Department of Health’s NIHR Biomedical Research Centres funding scheme.


  1. 1.
    Schwarz J, Kornhuber M, Bischoff C, Straube A. Electromyography of the external anal sphincter in patients with Parkinson’s disease and multiple system atrophy: frequency of abnormal spontaneous activity and polyphasic motor unit potentials. Muscle Nerve. 1997;20:1167–72.CrossRefPubMedGoogle Scholar
  2. 2.
    Podnar S, Trsinar B, Vodusek DB. Bladder dysfunction in patients with cauda equina lesions. Neurourol Urodyn. 2006;25:23–31.CrossRefPubMedGoogle Scholar
  3. 3.
    Beck RO, Betts CD, Fowler CJ. Genitourinary dysfunction in multiple system atrophy: clinical features and treatment in 62 cases. J Urol. 1994;151:1336–41.CrossRefPubMedGoogle Scholar
  4. 4.
    Valldeoriola F, Valls-Sole J, Tolosa ES, Marti MJ. Striated anal sphincter denervation in patients with progressive supranuclear palsy. Mov Disord. 1995;10:550–5.CrossRefPubMedGoogle Scholar
  5. 5.
    Vodusek DB. Sphincter EMG and differential diagnosis of multiple system atrophy. Mov Disord. 2001;16:600–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Paviour DC, Williams D, Fowler CJ, Quinn NP, Lees AJ. Is sphincter electromyography a helpful investigation in the diagnosis of multiple system atrophy? A retrospective study with pathological diagnosis. Mov Disord. 2005;20:1425–30.CrossRefPubMedGoogle Scholar
  7. 7.
    Fowler CJ, Christmas TJ, Chapple CR, Parkhouse HF, Kirby RS, Jacobs HS. Abnormal electromyographic activity of the urethral sphincter, voiding dysfunction, and polycystic ovaries: a new syndrome? BMJ. 1988;297:1436–8.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wiseman OJ, Swinn MJ, Brady CM, Fowler CJ. Maximum urethral closure pressure and sphincter volume in women with urinary retention. J Urol. 2002;167:1348–51; discussion 1351–2.CrossRefPubMedGoogle Scholar
  9. 9.
    Webb RJ, Fawcett PR, Neal DE. Electromyographic abnormalities in the urethral and anal sphincters of women with idiopathic retention of urine. Br J Urol. 1992;70:22–5.CrossRefPubMedGoogle Scholar
  10. 10.
    Ramm O, Mueller ER, Brubaker L, Lowenstein L, Kenton K. Complex repetitive discharges—a feature of the urethral continence mechanism or a pathological finding? J Urol. 2012;187:2140–3.CrossRefPubMedGoogle Scholar
  11. 11.
    Tawadros C, Burnett K, Derbyshire LF, Tawadros T, Clarke NW, Betts CD. External urethral sphincter electromyography in asymptomatic women and the influence of the menstrual cycle. BJU Int. 2015;116:423–31.CrossRefPubMedGoogle Scholar
  12. 12.
    Sihra N, Malde S, Panicker J, Kightley R, Solomon E, Hamid R, et al. Does the appearance of the urethral pressure profile trace correlate with the sphincter EMG findings in women with voiding dysfunction? Neurourol Urodyn. 2018;37:751–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Tubaro A, Vodušek D, Amarenco R, Doumouchtsis S, DeLancey J, Fernando R, et al. Imaging, neurophysiological testing and other tests. Paris: ICUD-EAU; 2013.Google Scholar
  14. 14.
    Cai ZY, Niu XT, Pan J, Ni PQ, Wang X, Shao B. The value of the bulbocavernosus reflex and pudendal nerve somatosensory evoked potentials in distinguishing between multiple system atrophy and Parkinson's disease at an early stage. Acta Neurol Scand. 2017;136:195–203.CrossRefPubMedGoogle Scholar
  15. 15.
    Deletis V, Vodusek DB. Intraoperative recording of the bulbocavernosus reflex. Neurosurgery. 1997;40:88–92; discussion 92–3.PubMedGoogle Scholar
  16. 16.
    Lee DG, Kwak SG, Chang MC. Prediction of the outcome of bladder dysfunction based on electrically induced reflex findings in patients with cauda equina syndrome: a retrospective study. Medicine (Baltimore). 2017;96:e7014.CrossRefGoogle Scholar
  17. 17.
    Pelliccioni G, Piloni V, Sabbatini D, Fioravanti P, Scarpino O. Sex differences in pudendal somatosensory evoked potentials. Tech Coloproctol. 2014;18:565–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Opsomer RJ, Guerit JM, Wese FX, Van Cangh PJ. The contribution of electrophysiological tests in the assessment of paraplegia. Acta Urol Belg. 1991;59:61–2.PubMedGoogle Scholar
  19. 19.
    Cavalcanti GA, Bruschini H, Manzano GM, Nunes KF, Giuliano LM, Nobrega JA, et al. Pudendal somatosensory evoked potentials in normal women. Int Braz J Urol. 2007;33:815–21.CrossRefPubMedGoogle Scholar
  20. 20.
    Rodi Z, Vodusek D, Denislic M. Clinical uro-neurophysiological investigation in multiple sclerosis. Eur J Neurol. 1996;3:574–80.CrossRefGoogle Scholar
  21. 21.
    Ormeci B, Avci E, Kaspar C, Terim OE, Erdogru T, Oge AE. A novel electrophysiological method in the diagnosis of pudendal neuropathy: position-related changes in pudendal sensory evoked potentials. Urology. 2017;99:288.e1–7.CrossRefGoogle Scholar
  22. 22.
    Vodusek D, Deletis V, Abbott R, et al. Prevention of iatrogenic micturition disorders through intraoperative monitoring. Neurourol Urodyn. 1990;9:444–5.Google Scholar
  23. 23.
    Cohen BA, Major MR, Huizenga BA. Pudendal nerve evoked potential monitoring in procedures involving low sacral fixation. Spine. 1991;16:S375–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Sala F, Squintani G, Tramontano V, Arcaro C, Faccioli F, Mazza C. Intraoperative neurophysiology in tethered cord surgery: techniques and results. Childs Nerv Syst. 2013;29:1611–24.CrossRefPubMedGoogle Scholar
  25. 25.
    Eccher MA. Below the belt: sensory mapping and monitoring in the sacral-pudendal region. J Clin Neurophysiol. 2014;31:323–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Vodusek D, Zidar J. Perineal motor evoked responses. Neurourol Urodyn. 1988;7:236–7.Google Scholar
  27. 27.
    Kiff ES, Swash M. Slowed conduction in the pudendal nerves in idiopathic (neurogenic) faecal incontinence. Br J Surg. 1984;71:614–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Opsomer RJ, Boccasena P, Traversa R, Rossini PM. Sympathetic skin responses from the limbs and the genitalia: normative study and contribution to the evaluation of neurourological disorders. Electroencephalogr Clin Neurophysiol. 1996;101:25–31.CrossRefPubMedGoogle Scholar
  29. 29.
    Rodic B, Curt A, Dietz V, Schurch B. Bladder neck incompetence in patients with spinal cord injury: significance of sympathetic skin response. J Urol. 2000;163:1223–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Secil Y, Ozdedeli K, Altay B, Aydogdu I, Yilmaz C, Ertekin C. Sympathetic skin response recorded from the genital region in normal and diabetic women. Neurophysiol Clin. 2005;35:11–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Valles-Antuna C, Fernandez-Gomez J, Escaf S, Fernandez-Gonzalez F. Sympathetic skin response in patients with erectile dysfunction. BJU Int. 2009;104:1709–12.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Uro-NeurologyThe National Hospital for Neurology and Neurosurgery, UCL Institute of NeurologyLondonUK

Personalised recommendations