Advertisement

Certain Fractional Integrals and Solutions of Fractional Kinetic Equations Involving the Product of S-Function

  • Mehar Chand
  • Zakia Hammouch
  • Joshua Kiddy K. Asamoah
  • Dumitru Baleanu
Chapter
Part of the Nonlinear Systems and Complexity book series (NSCH, volume 24)

Abstract

The aim of the present work is to establish certain new fractional integral by applying the Saigo hypergeometric fractional integral operators, and images of the resulting formulas involving the product of S-function are also presented by employing some useful integral transforms. Furthermore, we develop a new and further generalized form of the fractional kinetic equation involving the product of S-function. The manifold generality of the S-function is discussed in terms of the solution of the fractional kinetic equation, and their graphical and numerical interpretation is presented in the present paper. The results obtained here are quite general in nature and capable of yielding a large number of known and (presumably) new results.

References

  1. 1.
    Agarwal, P., Ntouyas, S.K., Jain, S., Chand, M., Singh, G.: Fractional kinetic equations involving generalized k-Bessel function via Sumudu transform. Alexandria Eng. J. 57, 6 (2017)Google Scholar
  2. 2.
    Bateman, H., Erdelyi, A.: Tables of Integral Transforms. McGraw-Hill Book Co., New York (1954)Google Scholar
  3. 3.
    Chand, M., Prajapati, J.C., Bonyah, E.: Fractional integrals and solution of fractional kinetic equations involving k-Mittag-Leffler function. Trans. A. Razmadze Math. Inst. 171(2), 144–166 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chaurasia, V.B.L., Pandey, S.C.: On the new computable solution of the generalized fractional kinetic equations involving the generalized function for the fractional calculus and related functions. Astrophys. Space Sci. 317(3–4), 213–219 (2008)CrossRefGoogle Scholar
  5. 5.
    Chouhan, A., Sarswat, S.: On solution of generalized Kinetic equation of fractional order. Int. J. Math. Sci. Appl. 2(2), 813–818 (2012)Google Scholar
  6. 6.
    Chouhan, A., Purohit, S.D., Saraswat, S.: An alternative method for solving generalized differential equations of fractional order. Kragujevac J. Math. 37(2), 299–306 (2013)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Daiya, J., Ram, J.: Fractional calculus of generalized k-Mittag-Leffler function. J. Rajasthan Acad. Phys. Sci. 15(1), 89–96 (2016)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Dıaz, R., Pariguan, E.: On hypergeometric functions and Pochhammer k-symbol. Divulgaciones Matemáticas 15(2), 179–192 (2007)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Dorrego, G.A., Cerutti, R.A.: The k-Mittag-Leffler function. Int. J. Contemp. Math. Sci. 7(15), 705–716 (2012)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gupta, A., Parihar, C.L.: On solutions of generalized kinetic equations of fractional order. Bol. Soc. Paran. Mat. 32(1), 183–191 (2014)MathSciNetGoogle Scholar
  11. 11.
    Gupta, V.G., Sharma, B., Belgacem, F.B.M.: On the solutions of generalized fractional kinetic equations. Appl. Math. Sci. 5(19), 899–910 (2011)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Haubold, H.J., Mathai, A.M.: The fractional kinetic equation and thermonuclear functions. Astrophys. Space Sci. 273(1), 53–63 (2000)CrossRefGoogle Scholar
  13. 13.
    Kilbas, A.A., Sebastian, N.: Generalized fractional integration of Bessel function of the first kind. Integral Transforms Spec. Funct. 19(12), 869–883 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kiryakova, V.: All the special functions are fractional differintegrals of elementary functions. J. Phys. A Math. Gen. 30(14), 50–85 (1997)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Miller, K.S., Ross, B.: An introduction to the fractional calculus and fractional differential equations. John Wiley & Sons, New York (1993)Google Scholar
  16. 16.
    Mittag-Leffler, G.M.: Sur la representation analytiqie dune fonction monogene cinquieme note. Acta Math. 29(1), 101–181 (1905)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Lefflerfunction in the kernel. Yokohoma Math. J. 19, 7–15 (1971)zbMATHGoogle Scholar
  18. 18.
    Romero, L., Cerutti, R., Luque, L.: A new fractional Fourier transform and convolutions products. Int. J. Pure Appl. Math. 66(4), 397–408 (2011)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Saichev, A.I., Zaslavsky, G.M.: Fractional kinetic equations: solutions and applications. Chaos Interdisciplinary J. Nonlinear Sci. 7(4), 753–764 (1997)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Saxena, R.K., Kalla, S.L.: On the solutions of certain fractional kinetic equations. Appl. Math. Comput. 199(2), 504–511 (2008)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Saxena, R.K., Daiya, J.: Integral transforms of the S-functions. Le Mathematiche. LXX, 147–159 (2015)Google Scholar
  22. 22.
    Saxena, R.K., Mathai, A.M., Haubold, H.J.: On fractional kinetic equations. Astrophys. Space Sci. 282(1), 281–287 (2002)CrossRefGoogle Scholar
  23. 23.
    Saxena, R.K., Mathai, A.M., Haubold, H.J.: On generalized fractional kinetic equations. Physica A Stat. Mech. Appl. 344(3), 657–664 (2004)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Saxena, R.K., Mathai, A.M., Haubold, H.J.: Solution of generalized fractional reaction-diffusion equations. Astrophys. Space Sci. 305(3), 305–313 (2006)CrossRefGoogle Scholar
  25. 25.
    Sharma, K.: Application of fractional calculus operators to related areas. Gen. Math. Notes. 7(1), 33–40 (2011)Google Scholar
  26. 26.
    Sharma, K., Jain, R.: A note on a generalized M-series as a special function of fractional calculus. Fractional Calculus Appl. Anal. 12(4), 449–452 (2009)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Shukla, A.K., Prajapati, J.C.: On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 336(2), 797–811 (2007)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Spiegel, M.R.: Laplace Transforms. McGraw-Hill, New York (1965)Google Scholar
  29. 29.
    Sneddon, I.N.: The Use of Integral Transforms. Tata McGraw-Hill, New Delhi (1979)zbMATHGoogle Scholar
  30. 30.
    Srivastava, H.M., Karlsson, P.-W.: Multiple Gaussian Hypergeometric Series. Halsted Press (Ellis Horwood Limited, Chichester). John Wiley and Sons, New York/Chichester/Brisbane and Toronto (1985)Google Scholar
  31. 31.
    Srivastava, H.M., Saxena, R.K.: Operators of fractional integration and their applications. Appl. Math. Comput. 118(1), 1–52 (2001)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Srivastava, H.M., Tomovski, Ž.: Fractional calculus with an integral operator containing a generalized Mittag–Leffler function in the kernel. Appl. Math. Comput. 211(1), 198–210 (2009)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Srivastava, H.M., Lin, S.-D., Wang, P.-Y.: Some fractional-calculus results for the-function associated with a class of Feynman integrals. Russian J. Math. Phys. 13(1), 94–100 (2006)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Wiman, A.: Über den Fundamentalsatz in der Teorie der Funktionen E a(x). Acta Math. 29(1), 191–201 (1905)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Zaslavsky, G.M.: Fractional kinetic equation for Hamiltonian chaos. Phys. D Nonlinear Phenom. 76(1–3), 110–122 (1994)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Mehar Chand
    • 1
  • Zakia Hammouch
    • 2
  • Joshua Kiddy K. Asamoah
    • 3
    • 4
  • Dumitru Baleanu
    • 5
  1. 1.Department of Applied SciencesGuru Kashi UniversityBathindaIndia
  2. 2.Faculty of Sciences and Techniques, Department of MathematicsMoulay Ismail UniversityErrachidiaMorocco
  3. 3.Department of MathematicsKwame Nkrumah University of Science and TechnologyKumasiGhana
  4. 4.African Institute for Mathematical SciencesBiriwaGhana
  5. 5.Department of MathematicsÇankara UniversityAnkaraTurkey

Personalised recommendations