Advertisement

Effect of Lattice Misfit Strain on Surface Acoustic Waves Propagation in Barium Titanate Thin Films

  • P. E. Timoshenko
  • V. V. Kalinchuk
  • V. B. Shirokov
  • A. V. Pan‘kin
Chapter

Abstract

The finite-element approaches are used to the analysis of the properties of acoustoelectronic devices on surface acoustic waves (SAWs) made using thin-film technologies. The device consists of a barium titanate BaTiO3 film placed on a magnesium oxide substrate MgO. The barium titanate (BT) film is studied in the c-, r-, and aa-phases. The interdigital transducer (IDT) is attached to the free surface of the ferroelectric film and consists of a system parallel electrodes (pins) alternately connected to each other via common buses. The commercial software COMSOL is used for two-dimensional finite-element analysis and modeling the processes of excitation and propagation of SAW. The resonance and antiresonance frequencies are calculated for different film thicknesses and values of the lattice misfit strain. The significant influence of the film thickness and strains near the phase transitions and in r-phase on the resonant and antiresonant frequencies is discussed. In addition, a two-dimensional model of a SAW filter consisting of 40 pair pins of transmitting and receiving IDTs spaced 1.8 mm apart is considered. The frequency dependences of scattering parameters (S-parameters) have calculated and are presented.

Keywords

Ferroelectrics Finite-element method Scattering parameters 

Notes

Acknowledgements

This study was supported by the Russian Science Foundation under Project No. 14-19-01676.

References

  1. 1.
    Mukhortov, V.M., Yuzyuk, Y.I.: Heterostructures Based on Nanoscale Ferroelectric Films. Southern Scientific Centre of the Russian Academy of Sciences Publishers, Rostov-on-Don (2008)Google Scholar
  2. 2.
    Sigov, A.S., Mishina, E.D., Mukhortov, V.M.: Thin ferroelectric films: preparation and prospects of integration. Phys. Solid State 52(4), 762–770 (2010)Google Scholar
  3. 3.
    Biryukov, S.V., Mukhortov, V.M., Mukhortov, V.M.: A new sensor for dynamic strain based on thin piezoelectric films obtained with ion plasma deposition. Mir izmereniy 7, 45–52 (2007)Google Scholar
  4. 4.
    Esipov, Y.V., Mukhortov, V.M.: Thin-film ferroelectric integral sensors of dynamic deformation for monitoring sophisticated mechanical systems. Tech. Phys. 54(1), 78–81 (2009)Google Scholar
  5. 5.
    Esipov, Y.V., Mukhortov, V.M., Kalinchuk, V.V.: Test equipment for analyzing the deformation of models of three-dimensional structures. Meas. Tech. 51(10), 1104–1109 (2008)Google Scholar
  6. 6.
    Esipov, Y.V., Mukhortov, V.M., Kalinchuk, V.V., Andjikovich, I.E.: Early diagnosis technology of rod constructions diagnosis with use of deformation ferroelectric sensors. Ecol. Bull. Sci. Cent. Black Sea Econ. Cooper. 4, 29–35 (2018)Google Scholar
  7. 7.
    Matthews, H.: Surface Wave Filters Design, Construction, and Use. Wiley, New York (1977)Google Scholar
  8. 8.
    Emanetoglu, N., Gorla, C., Liu, Y., Liang, S., Lu, Y.: Epitaxial ZnO piezoelectric thin films for saw filters. Mater. Sci. Semicond. Process. 2(3), 247–252 (1999)Google Scholar
  9. 9.
    Omori, T., Hashimoto, K., Yamaguchi, M.: PZT thin films for SAW and BAW devices. In: International Symposium on Acoustic Wave Devices for Future Mobile Communication Systems Chiba, p. 6. Chiba University, Chiba (2001)Google Scholar
  10. 10.
    Kirby, P., Komuro, E., Imura, M., Zhang, Q., Su, Q.-X., Whatmore, R.: High frequency thin film ferroelectric acoustic resonators and filters. Integr. Ferroelectr. 41(1–4), 91–100 (2001)Google Scholar
  11. 11.
    Salut, R., Daniau, W., Ballandras, S., Gariglio, S., Triscone, G., Triscone, J.M.: P1H-3 epitaxial Pb(Zr0.2Ti0.8)O3 thin layers for the fabrication of radio-frequency elastic wave transducers. In: 2007 IEEE Ultrasonics Symposium Proceedings, pp. 1421–1424. IEEE, New York (2007)Google Scholar
  12. 12.
    Khassaf, H., Khakpash, N., Sun, F., Sbrockey N.M., Tompa, G.S., Kalkur, T.S., Alpay, S.P.: Strain engineered barium strontium titanate for tunable thin film resonators. Appl. Phys. Lett. 104(20), 202902 (2014)Google Scholar
  13. 13.
    Mukhortov, V.M., Biryukov, S.V., Golovko, Y.I., Karapet’yan, G.Y., Masychev, S.I., Mukhortov, V.M.: Surface acoustic waves in thin films of barium strontium titanate on magnesium oxide substrates. Tech. Phys. Lett. 37(3), 207–209 (2011)Google Scholar
  14. 14.
    Biryukov, S.V., Golovko, Y.I., Masychev, S.I., Mukhortov, V.M.: Surface acoustic wave converters with electrically adjustable sensitivity. Nauka Yuga Rossii 12, 11–15 (2016)Google Scholar
  15. 15.
    Nye, J.F.: Physical Properties of Crystals. Their Representation by Tensors and Matrices. Clarendon Press, Oxford (1954)Google Scholar
  16. 16.
    Blistanov, A.A., Bondarenko, V.S., Perelomova, N.V.: Acoustic Crystals. Nauka, Moscow (1982)Google Scholar
  17. 17.
    Shirokov, V.B., Golovko, Y.I., Mukhortov, V.M., Yuzyuk, Y.I., Janolin, P.E., Dkhil, B.: Thickness dependence of the properties of epitaxial barium strontium titanate thin films. Phys. Solid State 57(8), 1529–1534 (2015)Google Scholar
  18. 18.
    Li, Y.L., Cross, L.E., Chen, L.Q.: A phenomenological thermodynamic potential for BaTiO3 single crystals. J. Appl. Phys. 98(6), 064101 (2005)Google Scholar
  19. 19.
    Pertsev, N.A., Zembilgotov, A.G., Tagantsev, A.K.: Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys. Rev. Lett. 80(9), 1988–1991 (1998)Google Scholar
  20. 20.
    Berlincourt, D., Jaffe, H.: Elastic and piezoelectric coefficients of single-crystal barium titanate. Phys. Rev. 111(1), 143–148 (1958)Google Scholar
  21. 21.
    Shirokov, V.B., Yuzyuk, Y.I., Kalinchuk, V.V., Lemanov, V.V.: Material constants of (Ba,Sr)TiO3 solid solutions. Phys. Solid State 55(4), 773–779 (2013)Google Scholar
  22. 22.
    Shirokov, V.B., Kalinchuk, V.V., Yuzyuk, Y.I., Lemanov, V.V., Belyankova, T.I.: Formulation of the phenomenological theory of thin ferroelectric films. Ecol. Bull. Sci. Cent. Black Sea Econ. Cooper. 4, 68 (2010)Google Scholar
  23. 23.
    Shirokov, V.B., Yuzyuk, Y.I., Dkhil, B., Lemanov, V.V.: Phenomenological description of phase transitions in thin BaTiO3 films. Phys. Solid State 50(5), 928–936 (2008)Google Scholar
  24. 24.
    Shirokov, V.B., Kalinchuk, V.V., Shakhovoi, R.A., Yuzyuk, Y.I.: Material constants of barium titanate thin films. Phys. Solid State 57(8), 1535–1540 (2015)Google Scholar
  25. 25.
    Shirokov, V.B., Kalinchuk, V.V., Shakhovoy, R.A., Yuzyuk, Y.I.: The problem of determining elastic constants of thin ferroelectric films. Dokl. Phys. 60(8), 349–354 (2015)Google Scholar
  26. 26.
    Mason, W.P. (ed.): Physical Acoustics. Principles and Methods. Vol. 1. Methods and Devices. Part A. Academic, New York/London (1964)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • P. E. Timoshenko
    • 1
  • V. V. Kalinchuk
    • 2
  • V. B. Shirokov
    • 2
  • A. V. Pan‘kin
    • 1
  1. 1.Faculty of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  2. 2.Southern Scientific Center of the Russian Academy of ScienceRostov-on-DonRussia

Personalised recommendations