Advertisement

Dynamic Soil–Structure Interaction in Earthquake Analysis

  • Indrajit Chowdhury
  • Shambhu P. Dasgupta
Chapter
Part of the GeoPlanet: Earth and Planetary Sciences book series (GEPS)

Abstract

In the last thirty years or so, the dynamic soil–structure interaction (DSSI) has undertaken giant leaps in terms of application. From being perceived initially as a utopian exercise in the realms of theoretical physics (understood by few), in the early 1960s it has stormed into the hard nosed arena of professional design and has possibly cut itself a permanent niche, rather than being perceived as just a passing fad.

References

  1. Anandakrishnan, M., & Krishnaswamy, N. R. (1973). Response of embedded footings to vertical vibrations. Journal of the Soil Mechanics and Foundations Engineering, ASCE, 99(10), 863–883.Google Scholar
  2. Barkan, D. D. (1962). Dynamics of bases and foundations. New York: McGraw-Hill Book Co.Google Scholar
  3. Biggs, J. M. (1964). Introduction to structural dynamics. New York: McGraw Hill Publication.Google Scholar
  4. Chowdhury, I. (1984). Dynamic soil structure interaction of turbo-genrator foundation. M.Tech thesis. Kharagpur: Indian Institute of Technlogy.Google Scholar
  5. Chowdhury, I., & Dasgupta, S. P. (2002). Earthquake response of soil-structure system. Indian Geotechnical Journal, 32(2), 309–328.Google Scholar
  6. Chowdhury, I., & Dasgupta, S. P. (2007). Dynamic earth pressure on rigid unyielding walls under earthquake forces. Indian Geotechnical Journal, 37(2), 81–93.Google Scholar
  7. Chowdhury, I., & Singh, J. P. (2010). Do DSSI attenuate dynamic response of Buildings? In Proceedings 14th International Symposium on Earthquake Engineering. Roorkee, India.Google Scholar
  8. Chowdhury, I., & Som, P. K. (1993). Dynamic pile structure interaction of boiler feed pump frame foundation. Indian Geotechnical Conference, 1, 411–414.Google Scholar
  9. Chowdhury, I., Ghosh, A., & Dasgupta, S. P. (2015a, May). Dynamic soil structure interaction of structures under earthquake motion. Journal of Indian Geotechnical Society.Google Scholar
  10. Chowdhury, I., Tarafdar, R., & Ghosh, A. (2015b). An analytical solution to kinematic andinertial interaction of building with deep basements. In Proceedings, 23rd International Conference in Structural Mechanics in Reactor Technology. Manchester, U.K.Google Scholar
  11. Clough, R. W., & Penzien, J. (1975). Dynamics of structure. New York: McGraw-Hill Kogakusha Ltd.Google Scholar
  12. Dasgupta, S. P. (1976). Finite element solutions to some problems in the dynamics of footings. Ph.D Thesis, Indian Institute of Technology, Kanpur, India, August.Google Scholar
  13. Dasgupta, S. P., & Kameswara Rao, N. S. V. (1976). Some finite element solutions in the dynamics of circular footings. In Proceedings of the 2nd International Conference on Numerical Methods in Geo-mechanics, Blacksburg, USA.Google Scholar
  14. Dasgupta, S. P., & Kameswara Rao, N. S. V. (1978). Dynamics of rectangular footings by finite elements. Journal of GT Division, ASCE, 104(5).Google Scholar
  15. Dowrick, D. J. (2003). Earthquake risk reduction. UK: Willey.CrossRefGoogle Scholar
  16. Ehlers, G. (1942). The effect of soil flexibility on vibrating systems. Beton und Eisen, 41(21/22), 197–203.Google Scholar
  17. Ghosh, D., Chakroborty, D., Batavyal, H. (1984). Dynamic response and static analysis of RCC frames supporting high speed centrifugal machines with Soil Structure Interaction. In International Conference on Case Histories in Geo-technical Engineering St. Louis University of Missouri Rolla, USA.Google Scholar
  18. Ghosh, D. K., & Batavayal, H. N. (1985). Analysis of structural response to earthquake for 150M high RCC Chimney with soil-structure interaction. In Proceedings of National Seminar on Tall Chimneys Vigyan Bhavan, New Delhi.Google Scholar
  19. Gazetas, G. (1983). Analysis of machine foundation a state of the art. Journal of Soil Dynamics and Earthquake Engineering, 2(1), 2–42.Google Scholar
  20. Gazetas, G., & Tassoulas, A. L. (1987). Horizontal stiffness of arbitrarily shaped embedded foundation. Journal of GT Division ASCE, 113(5).CrossRefGoogle Scholar
  21. Hall, J. R., & Kissenpfennig, J. F. (1976). Special topics on soil-structure interaction. Nuclear Engineering Design, 38, 273–287.CrossRefGoogle Scholar
  22. Hurty, W. C., & Rubenstein, M. F. (1967). Dynamics of structure. New Delhi: Prentice-Hall of India Pvt. Ltd.Google Scholar
  23. Jennings, P. C., & Bielak, J. (1973). Dynamics of building-soil interaction. Bulletin of Seismological Society of America, 63(1), 9–48.Google Scholar
  24. Kameswara Rao, N. S. V. (1977). Dynamic soil structure system—a brief review. Journal of Structural Engineering India, 4.Google Scholar
  25. Kausel, E. (1974). Forced vibrations of circular foundations on layered media. Research Report. USA: MIT.Google Scholar
  26. Kausel, E. (2010). Early history of soil-structure interaction. Soil Dynamics and Earthquake Engineering, 30, 822–832.CrossRefGoogle Scholar
  27. Kausel, E., & Pais, A. (1998). Formulas for dynamics stiffness of rigid foundation. Journal of Soil Dynamics and Earthquake Engineering, 7. Google Scholar
  28. Kramer, S. (1998). Geotechnical Earthquake Engineering. New Delhi, India: Pearson Education.Google Scholar
  29. Lamb, H. (1904). On propagation of tremors over the surface of an elastic solid. Philosophical Transactions of the Royal Society of London, 203, 1–42.CrossRefGoogle Scholar
  30. Luco, J. E., & Hadijian, A. H. (1974). Two dimensional approximation to three dimensional soil-structure interaction problem. Nuclear Engineering Design, 31, 195–23.Google Scholar
  31. Lysmer, J. (1965). Vertical motion of rigid footings, Contract Report No. 3-115, U.S. Army Engineer, WES, Vicksburg, Miss., S. 1–130.Google Scholar
  32. Lysmer, J., & Richart, F. E. Jr. (1966, January). Dynamic response of footings to vertical loading. Journal of Soil Mechanics and Foundations Division, ASCE, 92(SM1), 65–91.Google Scholar
  33. Marguerre, K. (1931). Druckverteilung durch eine elastische Schicht auf starrer rauer Unterlage. Ingenieur Archiv Band II, S108–117.Google Scholar
  34. Margurre, K. (1933). Spannungsvertilung und Wellenausbreitung in der kontinuierlich gestutzten Platte. Ingenieur Archiv Band IV, S332–353.Google Scholar
  35. Martel, R. R. (1940). Effect of foundation on earthquake motion. Civil Engineering ASCE, 10(1), 7–10.Google Scholar
  36. Newmark, N. M. (1959). A method of computation for structural dynamics. Journal of the engineering mechanics division, ASCE, 85, 67–94.Google Scholar
  37. Newmark, N. M., & Rosenblueth, E. (1971). Fundamentals of earthquake engineering. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  38. Novak, M. (1974, November). Dynamic stiffness and damping of piles. Canadian Geotechnical Journal, 11(4), 574–598.CrossRefGoogle Scholar
  39. Novak, M., & Beredugo, Y. O. (1972a). Coupled horizontal and rocking vibration of embedded footings. Canadian Geotechnical Journal, 9, 477–497.CrossRefGoogle Scholar
  40. Novak, M., & Beredugo, Y. O. (1972b). Vertical vibration of embedded footings. Journal of Soil Mechanics and Foundation Divisons, ASCE, 12, 1291–1310.Google Scholar
  41. Novak, M., & El Sharnouby, B. (1983). Stiffness and damping constants for single piles. Journal of Geotechnical Engineering Division, ASCE, 109, 961–974.CrossRefGoogle Scholar
  42. Novak, M., & Hifnawy, L. E. (1983). Vibration of hammer foundation. Journal of Soil Dynamics and Earthquake Engineering, 2(1), 43–53.CrossRefGoogle Scholar
  43. Pekeris, C. L. (1955). The seismic surface pulse. Proceedings of the National Academy of Science USA, 41, 469–480.CrossRefGoogle Scholar
  44. Pekeris, C. L., & Lifson, H. (1957). Motion of the surface of a uniform elastic half space produced by a Buried Pulse. Journal of Acoustical Society of America, 29(11), 1233–1238.CrossRefGoogle Scholar
  45. Quinlan, P. M. (1953). Elastic theory of soil dynamics. In ASTM Special Technical Publication No 156, Symposium on Soil Dynamics, pp. 3–34.Google Scholar
  46. Reissner, E. (1936, December). Staionare axilasymmetriche durch eine schuterende Masse erregte Schwingungen eines homogenen elastischen Halbraumes. Ingenieur Archiv, 22, 381–396.CrossRefGoogle Scholar
  47. Reissner, E. (1937). Frie und erzwungene Torsionschwingungen des elastischen Halbraume. Ingenieur Archiv VIII Band 4 Heft S229–245.Google Scholar
  48. Richart, F. E., Jr. (1966). Foundation vibration. Transactions ASCE, 127, Part 1, 863–898.Google Scholar
  49. Richart, F. E. Jr., Hall, Jr. J. R., & Woods, R. D. (1970). Vibrations of soils and foundations. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  50. Seed, H. B., & Idriss, I. M. (1970a). Soil moduli and damping factors for dynamic response analysis. Report No. 70-1, EERC Berkley, California.Google Scholar
  51. Seed, H. B., & Idriss, I. M. (1970b). Soil moduli and damping factors for dynamic response analysis. University of California Berkley; Earthquake Engineering Research Center Report No EERC 70-10.Google Scholar
  52. Sung, T. Y. (1953, July). Vibrations in semi infinite solids due to periodic surface loading. ASTM Special Technical Publication No.156, Symposium on soil dynamics, pp. 35–64.Google Scholar
  53. Veletsos, A. S., & Meek, J. W. (1974). Dynamic behavior of building-foundation systems. Earthquake Engineering and Structural Dynamics, 3(2), 121–138.CrossRefGoogle Scholar
  54. Whitman, R. V. (1972). Analysis of soil structure interaction-a state of the art review. Soil Publication No 300 M.I.T.Google Scholar
  55. Wolf, J. P. (1985). Dynamic soil-structure interaction. Englewood-Cliffs: Prentice-Hall.Google Scholar
  56. Wolf, J. P. (1988). Dynamic soil structure interaction in time domain. New Jersey, USA: Prentice Hall Publication.Google Scholar
  57. Wolf, J. P. (1994). Foundation vibration analysis, using simple physical model. Englewood-Cliffs: Prentice-Hall.Google Scholar
  58. Wolf, J., & Zhang, C. (Ed.). (1999). Dynmaic soil structure interaction. USA: Elsevier Publication.Google Scholar
  59. Whitman, R. V. (1970). Soil structure interaction, seismic design for nuclear power plants. Cambridge: The MIT Press.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Civil Engineering DepartmentFuture Institute of TechnologyKolkataIndia
  2. 2.Civil Engineering DepartmentIIT KharagpurKharagpurIndia

Personalised recommendations