Advertisement

Is There an Optimum System for Culturing Human Embryos?

  • Jason E. Swain
Chapter

Abstract

Processes within the IVF laboratory are critical in achieving high success rates from assisted reproduction. These various processes make up the “culture system,” and optimizing each of these variables is crucial. Importantly, within the context of the entire culture system, “optimal” conditions may vary slightly from laboratory to laboratory. However, initial gamete quality aside and accounting for laboratory-specific considerations, there are critical components of the culture system that are important to maximizing resulting embryo development. Items such as incubator type and management, strict monitoring, and control of environmental variables like use of low oxygen, temperature, pH, and osmolality are of paramount importance. Careful screening and use of culture media, protein, and oil are all required to avoid potentially harmful conditions for embryo development.

Keywords

Optimal Culture Embryo Blastocyst IVF 

References

  1. 1.
    Hyun CS, Cha JH, Son WY, Yoon SH, Kim KA, Lim JH. Optimal ICSI timing after the first polar body extrusion in in vitro matured human oocytes. Hum Reprod. 2007;22(7):1991–5.  https://doi.org/10.1093/humrep/dem124; [pii]: dem124.PubMedCrossRefGoogle Scholar
  2. 2.
    Rienzi L, Ubaldi F, Anniballo R, Cerulo G, Greco E. Preincubation of human oocytes may improve fertilization and embryo quality after intracytoplasmic sperm injection. Hum Reprod. 1998;13(4):1014–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Hassan HA. Cumulus cell contribution to cytoplasmic maturation and oocyte developmental competence in vitro. J Assist Reprod Genet. 2001;18(10):539–43.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Sakkas D. Novel technologies for selecting the best sperm for in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril. 2013;99(4):1023–9.  https://doi.org/10.1016/j.fertnstert.2012.12.025.PubMedCrossRefGoogle Scholar
  5. 5.
    Said TM, Land JA. Effects of advanced selection methods on sperm quality and ART outcome: a systematic review. Hum Reprod Update. 2011;17(6):719–33.  https://doi.org/10.1093/humupd/dmr032.PubMedCrossRefGoogle Scholar
  6. 6.
    Simon L, Murphy K, Aston KI, Emery BR, Hotaling JM, Carrell DT. Optimization of microelectrophoresis to select highly negatively charged sperm. J Assist Reprod Genet. 2016;33(6):679–88.  https://doi.org/10.1007/s10815-016-0700-x.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Smith GD, Takayama S. Application of microfluidic technologies to human assisted reproduction. Mol Hum Reprod. 2017;23(4):257–68.  https://doi.org/10.1093/molehr/gaw076.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Shirota K, Yotsumoto F, Itoh H, Obama H, Hidaka N, Nakajima K, Miyamoto S. Separation efficiency of a microfluidic sperm sorter to minimize sperm DNA damage. Fertil Steril. 2016;105(2):315–21.e1.  https://doi.org/10.1016/j.fertnstert.2015.10.023.PubMedCrossRefGoogle Scholar
  9. 9.
    Seiringer M, Maurer M, Shebl O, Dreier K, Tews G, Ziehr S, Schappacher-Tilp G, Petek E, Ebner T. Efficacy of a sperm-selection chamber in terms of morphology, aneuploidy and DNA packaging. Reprod Biomed Online. 2013;27(1):81–8.  https://doi.org/10.1016/j.rbmo.2013.03.013.PubMedCrossRefGoogle Scholar
  10. 10.
    Jayaraman V, Upadhya D, Narayan PK, Adiga SK. Sperm processing by swim-up and density gradient is effective in elimination of sperm with DNA damage. J Assist Reprod Genet. 2012;29(6):557–63.  https://doi.org/10.1007/s10815-012-9742-x.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Lin SP, Lee RK, Su JT, Lin MH, Hwu YM. The effects of brief gamete co-incubation in human in vitro fertilization. J Assist Reprod Genet. 2000;17(6):344–8.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Swenson K, Check JH, Summers-Chase D, Choe JK, Check ML. A randomized study comparing the effect of standard versus short incubation of sperm and oocyte on subsequent pregnancy and implantation rates following in vitro fertilization embryo transfer. Arch Androl. 2000;45(1):73–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Le Bras A, Hesters L, Gallot V, Tallet C, Tachdjian G, Frydman N. Shortening gametes co-incubation time improves live birth rate for couples with a history of fragmented embryos. Syst Biol Reprod Med. 2017;63:1–7.  https://doi.org/10.1080/19396368.2017.1336581.CrossRefGoogle Scholar
  14. 14.
    Teixeira DM, Barbosa MA, Ferriani RA, Navarro PA, Raine-Fenning N, Nastri CO, Martins WP. Regular (ICSI) versus ultra-high magnification (IMSI) sperm selection for assisted reproduction. Cochrane Database Syst Rev. 2013;(7):CD010167.  https://doi.org/10.1002/14651858.CD010167.pub2.
  15. 15.
    Leandri RD, Gachet A, Pfeffer J, Celebi C, Rives N, Carre-Pigeon F, Kulski O, Mitchell V, Parinaud J. Is intracytoplasmic morphologically selected sperm injection (IMSI) beneficial in the first ART cycle? A multicentric randomized controlled trial. Andrology. 2013;1(5):692–7.  https://doi.org/10.1111/j.2047-2927.2013.00104.x.PubMedCrossRefGoogle Scholar
  16. 16.
    De Vos A, Van de Velde H, Bocken G, Eylenbosch G, Franceus N, Meersdom G, Tistaert S, Vankelecom A, Tournaye H, Verheyen G. Does intracytoplasmic morphologically selected sperm injection improve embryo development? A randomized sibling-oocyte study. Hum Reprod. 2013;28(3):617–26.  https://doi.org/10.1093/humrep/des435.PubMedCrossRefGoogle Scholar
  17. 17.
    Delaroche L, Yazbeck C, Gout C, Kahn V, Oger P, Rougier N. Intracytoplasmic morphologically selected sperm injection (IMSI) after repeated IVF or ICSI failures: a prospective comparative study. Eur J Obstet Gynecol Reprod Biol. 2013;167(1):76–80.  https://doi.org/10.1016/j.ejogrb.2012.11.011.PubMedCrossRefGoogle Scholar
  18. 18.
    Worrilow KC, Eid S, Woodhouse D, Perloe M, Smith S, Witmyer J, Ivani K, Khoury C, Ball GD, Elliot T, Lieberman J. Use of hyaluronan in the selection of sperm for intracytoplasmic sperm injection (ICSI): significant improvement in clinical outcomes—multicenter, double-blinded and randomized controlled trial. Hum Reprod. 2013;28(2):306–14.  https://doi.org/10.1093/humrep/des417.PubMedCrossRefGoogle Scholar
  19. 19.
    Majumdar G, Majumdar A. A prospective randomized study to evaluate the effect of hyaluronic acid sperm selection on the intracytoplasmic sperm injection outcome of patients with unexplained infertility having normal semen parameters. J Assist Reprod Genet. 2013;30(11):1471–5.  https://doi.org/10.1007/s10815-013-0108-9.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Swain JE. Decisions for the IVF laboratory: comparative analysis of embryo culture incubators. Reprod Biomed Online. 2014;28(5):535–47.  https://doi.org/10.1016/j.rbmo.2014.01.004.PubMedCrossRefGoogle Scholar
  21. 21.
    Gardner DK, Lane M. Alleviation of the ‘2-cell block’ and development to the blastocyst of CF1 mouse embryos: role of amino acids, EDTA and physical parameters. Hum Reprod. 1996;11(12):2703–12.PubMedCrossRefGoogle Scholar
  22. 22.
    Hyslop L, Prathalingam N, Nowak L, Fenwick J, Harbottle S, Byerley S, Rhodes J, Watson B, Henderson R, Murdoch A, Herbert M. A novel isolator-based system promotes viability of human embryos during laboratory processing. PLoS One. 2012;7(2):e31010.  https://doi.org/10.1371/journal.pone.0031010; [pii]: PONE-D-11-18079.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Zhang JQ, Li XL, Peng Y, Guo X, Heng BC, Tong GQ. Reduction in exposure of human embryos outside the incubator enhances embryo quality and blastulation rate. Reprod Biomed Online. 2010;20(4):510–5.  https://doi.org/10.1016/j.rbmo.2009.12.027; [pii]: S1472-6483(09)00340-X.PubMedCrossRefGoogle Scholar
  24. 24.
    Park H, Bergh C, Selleskog U, Thurin-Kjellberg A, Lundin K. No benefit of culturing embryos in a closed system compared with a conventional incubator in terms of number of good quality embryos: results from an RCT. Hum Reprod. 2015;30(2):268–75.  https://doi.org/10.1093/humrep/deu316.PubMedCrossRefGoogle Scholar
  25. 25.
    Kirkegaard K, Hindkjaer JJ, Grondahl ML, Kesmodel US, Ingerslev HJ. A randomized clinical trial comparing embryo culture in a conventional incubator with a time-lapse incubator. J Assist Reprod Genet. 2012;29(6):565–72.  https://doi.org/10.1007/s10815-012-9750-x.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Wu YG, Lazzaroni-Tealdi E, Wang Q, Zhang L, Barad DH, Kushnir VA, Darmon SK, Albertini DF, Gleicher N. Different effectiveness of closed embryo culture system with time-lapse imaging (EmbryoScope(TM)) in comparison to standard manual embryology in good and poor prognosis patients: a prospectively randomized pilot study. Reprod Biol Endocrinol. 2016;14(1):49.  https://doi.org/10.1186/s12958-016-0181-x.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Lonergan P, Rizos D, Gutierrez-Adan A, Fair T, Boland MP. Oocyte and embryo quality: effect of origin, culture conditions and gene expression patterns. Reprod Domest Anim. 2003;38(4):259–67.PubMedCrossRefGoogle Scholar
  28. 28.
    Kelley RL, Gardner DK. Combined effects of individual culture and atmospheric oxygen on preimplantation mouse embryos in vitro. Reprod Biomed Online. 2016;33:537.  https://doi.org/10.1016/j.rbmo.2016.08.003.PubMedCrossRefGoogle Scholar
  29. 29.
    Preis KA, Seidel GE Jr, Gardner DK. Reduced oxygen concentration improves the developmental competence of mouse oocytes following in vitro maturation. Mol Reprod Dev. 2007;74(7):893–903.  https://doi.org/10.1002/mrd.20655.PubMedCrossRefGoogle Scholar
  30. 30.
    Thompson JG, Simpson AC, Pugh PA, Donnelly PE, Tervit HR. Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos. J Reprod Fertil. 1990;89(2):573–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Wale PL, Gardner DK. The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Hum Reprod Update. 2016;22(1):2–22.  https://doi.org/10.1093/humupd/dmv034.PubMedCrossRefGoogle Scholar
  32. 32.
    Lonergan P, O’Kearney-Flynn M, Boland MP. Effect of protein supplementation and presence of an antioxidant on the development of bovine zygotes in synthetic oviduct fluid medium under high or low oxygen tension. Theriogenology. 1999;51(8):1565–76.PubMedCrossRefGoogle Scholar
  33. 33.
    Tervit HR, Whittingham DG, Rowson LE. Successful culture in vitro of sheep and cattle ova. J Reprod Fertil. 1972;30(3):493–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Kovacic B, Vlaisavljevic V. Influence of atmospheric versus reduced oxygen concentration on development of human blastocysts in vitro: a prospective study on sibling oocytes. Reprod Biomed Online. 2008;17(2):229–36.PubMedCrossRefGoogle Scholar
  35. 35.
    Kovacic B, Sajko MC, Vlaisavljevic V. A prospective, randomized trial on the effect of atmospheric versus reduced oxygen concentration on the outcome of intracytoplasmic sperm injection cycles. Fertil Steril. 2010;94(2):511–9.  https://doi.org/10.1016/j.fertnstert.2009.03.077; [pii] S0015–0282(09)00747-X.PubMedCrossRefGoogle Scholar
  36. 36.
    Waldenstrom U, Engstrom AB, Hellberg D, Nilsson S. Low-oxygen compared with high-oxygen atmosphere in blastocyst culture, a prospective randomized study. Fertil Steril. 2009;91(6):2461–5.  https://doi.org/10.1016/j.fertnstert.2008.03.051; [pii]: S0015-0282(08)00714-0.PubMedCrossRefGoogle Scholar
  37. 37.
    Kea B, Gebhardt J, Watt J, Westphal LM, Lathi RB, Milki AA, Behr B. Effect of reduced oxygen concentrations on the outcome of in vitro fertilization. Fertil Steril. 2007;87(1):213–6.  https://doi.org/10.1016/j.fertnstert.2006.05.066; [pii]: S0015-0282(06)03160-8.PubMedCrossRefGoogle Scholar
  38. 38.
    Dumoulin JC, Meijers CJ, Bras M, Coonen E, Geraedts JP, Evers JL. Effect of oxygen concentration on human in-vitro fertilization and embryo culture. Hum Reprod. 1999;14(2):465–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Catt JW, Henman M. Toxic effects of oxygen on human embryo development. Hum Reprod. 2000;15(Suppl 2):199–206.PubMedCrossRefGoogle Scholar
  40. 40.
    Ciray HN, Aksoy T, Yaramanci K, Karayaka I, Bahceci M. In vitro culture under physiologic oxygen concentration improves blastocyst yield and quality: a prospective randomized survey on sibling oocytes. Fertil Steril. 2009;91(4 Suppl):1459–61.  https://doi.org/10.1016/j.fertnstert.2008.07.1707; [pii]: S0015-0282(08)01482-9.PubMedCrossRefGoogle Scholar
  41. 41.
    Bahceci M, Ciray HN, Karagenc L, Ulug U, Bener F. Effect of oxygen concentration during the incubation of embryos of women undergoing ICSI and embryo transfer: a prospective randomized study. Reprod Biomed Online. 2005;11(4):438–43.PubMedCrossRefGoogle Scholar
  42. 42.
    Nanassy L, Peterson CA, Wilcox AL, Peterson CM, Hammoud A, Carrell DT. Comparison of 5% and ambient oxygen during days 3-5 of in vitro culture of human embryos. Fertil Steril. 2010;93(2):579–85.  https://doi.org/10.1016/j.fertnstert.2009.02.048.PubMedCrossRefGoogle Scholar
  43. 43.
    Gomes Sobrinho DB, Oliveira JB, Petersen CG, Mauri AL, Silva LF, Massaro FC, Baruffi RL, Cavagna M, Franco JG Jr. IVF/ICSI outcomes after culture of human embryos at low oxygen tension: a meta-analysis. Reprod Biol Endocrinol. 2011;9:143.  https://doi.org/10.1186/1477-7827-9-143.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Petersen A, Mikkelsen AL, Lindenberg S. The impact of oxygen tension on developmental competence of post-thaw human embryos. Acta Obstet Gynecol Scand. 2005;84(12):1181–4.  https://doi.org/10.1111/j.0001-6349.2005.00630.x.PubMedCrossRefGoogle Scholar
  45. 45.
    Bedaiwy MA, Mahfouz RZ, Goldberg JM, Sharma R, Falcone T, Abdel Hafez MF, Agarwal A. Relationship of reactive oxygen species levels in day 3 culture media to the outcome of in vitro fertilization/intracytoplasmic sperm injection cycles. Fertil Steril. 2010;94(6):2037–42.  https://doi.org/10.1016/j.fertnstert.2009.12.020; [pii]: S0015-0282(09)04206-X.PubMedCrossRefGoogle Scholar
  46. 46.
    Meintjes M, Chantilis SJ, Douglas JD, Rodriguez AJ, Guerami AR, Bookout DM, Barnett BD, Madden JD. A controlled randomized trial evaluating the effect of lowered incubator oxygen tension on live births in a predominantly blastocyst transfer program. Hum Reprod. 2009;24(2):300–7.  https://doi.org/10.1093/humrep/den368; [pii]: den368.PubMedCrossRefGoogle Scholar
  47. 47.
    Kaser DJ. On developing a thesis for reproductive endocrinology and infertility fellowship: a case study of ultra-low (2%) oxygen tension for extended culture of human embryos. J Assist Reprod Genet. 2017;34(3):303–8.  https://doi.org/10.1007/s10815-017-0887-5.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Morin SJ. Oxygen tension in embryo culture: does a shift to 2% O2 in extended culture represent the most physiologic system? J Assist Reprod Genet. 2017;34(3):309–14.  https://doi.org/10.1007/s10815-017-0880-z.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Quinn P, Wales RG. Fixation of carbon dioxide by preimplantation rabbit embryos in vitro. J Reprod Fertil. 1974;36(1):29–39.PubMedCrossRefGoogle Scholar
  50. 50.
    Quinn P, Wales RG. Fixation of carbon dioxide by pre-implantation mouse embryos in vitro and the activities of enzymes involved in the process. Aust J Biol Sci. 1971;24(6):1277–90.PubMedCrossRefGoogle Scholar
  51. 51.
    Wales RG, Quinn P, Murdoch RN. The fixation of carbon dioxide by the eight-cell mouse embryo. J Reprod Fertil. 1969;20(3):541–3.PubMedCrossRefGoogle Scholar
  52. 52.
    Swain J. Embryo culture and pH. Fertil Steril. 2011;95(8):e67; author reply e68.  https://doi.org/10.1016/j.fertnstert.2011.04.024.PubMedCrossRefGoogle Scholar
  53. 53.
    Swain JE. Optimizing the culture environment in the IVF laboratory: impact of pH and buffer capacity on gamete and embryo quality. Reprod Biomed Online. 2010;21(1):6–16.  https://doi.org/10.1016/j.rbmo.2010.03.012.PubMedCrossRefGoogle Scholar
  54. 54.
    Swain JE. Is there an optimal pH for culture media used in clinical IVF? Hum Reprod Update. 2012;18(3):333–9.  https://doi.org/10.1093/humupd/dmr053.PubMedCrossRefGoogle Scholar
  55. 55.
    Adolfsson E, Meintjes M, Guerami A, Mehta R, Davidson K, Qing Y. Shift in pH during transition to the embryonic genome impacts embryo development. Hum Reprod. 2016;31(1).Google Scholar
  56. 56.
    Sun XF, Wang WH, Keefe DL. Overheating is detrimental to meiotic spindles within in vitro matured human oocytes. Zygote. 2004;12(1):65–70.PubMedCrossRefGoogle Scholar
  57. 57.
    Wang WH, Meng L, Hackett RJ, Oldenbourg R, Keefe DL. Rigorous thermal control during intracytoplasmic sperm injection stabilizes the meiotic spindle and improves fertilization and pregnancy rates. Fertil Steril. 2002;77(6):1274–7; [pii]: S0015028202031175.PubMedCrossRefGoogle Scholar
  58. 58.
    Wang WH, Meng L, Hackett RJ, Odenbourg R, Keefe DL. Limited recovery of meiotic spindles in living human oocytes after cooling-rewarming observed using polarized light microscopy. Hum Reprod. 2001;16(11):2374–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Leese HJ, Baumann CG, Brison DR, McEvoy TG, Sturmey RG. Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod. 2008;14(12):667–72.  https://doi.org/10.1093/molehr/gan065; [pii]: gan065.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Pollard JW, Martino A, Rumph ND, Songsasen N, Plante C, Leibo SP. Effect of ambient temperatures during oocyte recovery on in vitro production of bovine embryos. Theriogenology. 1996;46(5):849–58.PubMedCrossRefGoogle Scholar
  61. 61.
    Lane M, Mitchell M, Cashman KS, Feil D, Wakefield S, Zander-Fox DL. To QC or not to QC: the key to a consistent laboratory? Reprod Fertil Dev. 2008;20(1):23–32.PubMedCrossRefGoogle Scholar
  62. 62.
    Grinsted J, Kjer JJ, Blendstrup K, Pedersen JF. Is low temperature of the follicular fluid prior to ovulation necessary for normal oocyte development? Fertil Steril. 1985;43(1):34–9.PubMedCrossRefGoogle Scholar
  63. 63.
    David A, Vilensky A, Nathan H. Temperature changes in different parts of the rabbit oviduct. Preliminary report. Harefuah. 1971;80(4):180–2.PubMedGoogle Scholar
  64. 64.
    Hunter RH, Bogh IB, Einer-Jensen N, Muller S, Greve T. Pre-ovulatory graafian follicles are cooler than neighbouring stroma in pig ovaries. Hum Reprod. 2000;15(2):273–83.PubMedCrossRefGoogle Scholar
  65. 65.
    Hunter RH, Grondahl C, Greve T, Schmidt M. Graafian follicles are cooler than neighbouring ovarian tissues and deep rectal temperatures. Hum Reprod. 1997;12(1):95–100.PubMedCrossRefGoogle Scholar
  66. 66.
    Hunter RH, Nichol R. A preovulatory temperature gradient between the isthmus and ampulla of pig oviducts during the phase of sperm storage. J Reprod Fertil. 1986;77(2):599–606.PubMedCrossRefGoogle Scholar
  67. 67.
    Hunter RH. Temperature gradients in female reproductive tissues. Reprod Biomed online. 2012;24(4):377–80.  https://doi.org/10.1016/j.rbmo.2011.12.007; [pii]: S1472-6483(12)00009-0.PubMedCrossRefGoogle Scholar
  68. 68.
    Hong K, Forman E, Lee H, Ferry K, Treff N, Scott R. Optimizing the temperature for embyo culture in IVF: a randomized controlled trial (RCT) comparing standard culture temperature of 37C to the reduced more physiologic temperature of 36C. Fertil Steril. 2012;98(3):s167.CrossRefGoogle Scholar
  69. 69.
    Mains LM, Christenson L, Yang B, Sparks AE, Mathur S, Van Voorhis BJ. Identification of apolipoprotein A1 in the human embryonic secretome. Fertil Steril. 2011;96(2):422–7. e422.  https://doi.org/10.1016/j.fertnstert.2011.05.049.PubMedCrossRefGoogle Scholar
  70. 70.
    Cortezzi SS, Garcia JS, Ferreira CR, Braga DP, Figueira RC, Iaconelli A Jr, Souza GH, Borges E Jr, Eberlin MN. Secretome of the preimplantation human embryo by bottom-up label-free proteomics. Anal Bioanal Chem. 2011;401(4):1331–9.  https://doi.org/10.1007/s00216-011-5202-1.PubMedCrossRefGoogle Scholar
  71. 71.
    Beardsley AJ, Li Y, O'Neill C. Characterization of a diverse secretome generated by the mouse preimplantation embryo in vitro. Reprod Biol Endocrinol. 2010;8:71.  https://doi.org/10.1186/1477-7827-8-71; [pii]: 1477-7827-8-71.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Brison DR, Hollywood K, Arnesen R, Goodacre R. Predicting human embryo viability: the road to non-invasive analysis of the secretome using metabolic footprinting. Reprod Biomed Online. 2007;15(3):296–302.PubMedCrossRefGoogle Scholar
  73. 73.
    Katz-Jaffe MG, Schoolcraft WB, Gardner DK. Analysis of protein expression (secretome) by human and mouse preimplantation embryos. Fertil Steril. 2006;86(3):678–85.PubMedCrossRefGoogle Scholar
  74. 74.
    Bormann C, Swain J, Ni Q, Kennedy R, Smith G. Preimplantation embryo secretome identification. Fertil Steril. 2006;86(Suppl 2):s116.CrossRefGoogle Scholar
  75. 75.
    Giacomini E, Vago R, Sanchez AM, Podini P, Zarovni N, Murdica V, Rizzo R, Bortolotti D, Candiani M, Vigano P. Secretome of in vitro cultured human embryos contains extracellular vesicles that are uptaken by the maternal side. Sci Rep. 2017;7(1):5210.  https://doi.org/10.1038/s41598-017-05549-w.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Butler SA, Luttoo J, Freire MO, Abban TK, Borrelli PT, Iles RK. Human chorionic gonadotropin (hCG) in the secretome of cultured embryos: hyperglycosylated hCG and hCG-free beta subunit are potential markers for infertility management and treatment. Reprod Sci. 2013;20(9):1038–45.  https://doi.org/10.1177/1933719112472739.PubMedCrossRefGoogle Scholar
  77. 77.
    Katz-Jaffe MG, McCallie BR, Janesch A, Filipovits JA, Schoolcraft WB, Gardner DK. Blastocysts from patients with polycystic ovaries exhibit altered transcriptome and secretome. Reprod Biomed Online. 2010;21(4):520–6.  https://doi.org/10.1016/j.rbmo.2010.05.010.PubMedCrossRefGoogle Scholar
  78. 78.
    Katz-Jaffe MG, McReynolds S, Gardner DK, Schoolcraft WB. The role of proteomics in defining the human embryonic secretome. Mol Hum Reprod. 2009;15(5):271–7.  https://doi.org/10.1093/molehr/gap012.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Canseco RS, Sparks AE, Pearson RE, Gwazdauskas FC. Embryo density and medium volume effects on early murine embryo development. J Assist Reprod Genet. 1992;9(5):454–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Lane M, Gardner DK. Effect of incubation volume and embryo density on the development and viability of mouse embryos in vitro. Hum Reprod. 1992;7(4):558–62.PubMedCrossRefGoogle Scholar
  81. 81.
    Kato Y, Tsunoda Y. Effects of the culture density of mouse zygotes on the development in vitro and in vivo. Theriogenology. 1994;41(6):1315–22.PubMedCrossRefGoogle Scholar
  82. 82.
    Salahuddin S, Ookutsu S, Goto K, Nakanishi Y, Nagata Y. Effects of embryo density and co-culture of unfertilized oocytes on embryonic development of in-vitro fertilized mouse embryos. Hum Reprod. 1995;10(9):2382–5.PubMedCrossRefGoogle Scholar
  83. 83.
    Teruel M, Smith R. Effect of embryo density and growth factors on in vitro preimplantation development of mouse embryos. Acta Physiol Pharmacol Ther Latinoam. 1997;47(2):87–96.PubMedGoogle Scholar
  84. 84.
    Gardner DK, Lane M, Spitzer A, Batt PA. Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids, vitamins, and culturing embryos in groups stimulate development. Biol Reprod. 1994;50(2):390–400.PubMedCrossRefGoogle Scholar
  85. 85.
    Donnay I, Van Langendonckt A, Auquier P, Grisart B, Vansteenbrugge A, Massip A, Dessy F. Effects of co-culture and embryo number on the in vitro development of bovine embryos. Theriogenology. 1997;47(8):1549–61.PubMedCrossRefGoogle Scholar
  86. 86.
    O’Doherty EM, Wade MG, Hill JL, Boland MP. Effects of culturing bovine oocytes either singly or in groups on development to blastocysts. Theriogenology. 1997;48(1):161–9.  https://doi.org/10.1016/S0093-691X(97)00199-4; [pii]: S0093-691X(97)00199-4.PubMedCrossRefGoogle Scholar
  87. 87.
    Fujita T, Umeki H, Shimura H, Kugumiya K, Shiga K. Effect of group culture and embryo-culture conditioned medium on development of bovine embryos. J Reprod Dev. 2006;52(1):137–42.PubMedCrossRefGoogle Scholar
  88. 88.
    Keefer CL, Stice SL, Paprocki AM, Golueke P. In vitro culture of bovine IVM-IVF embryos: cooperative interaction among embryos and the role of growth factors. Theriogenology. 1994;41(6):1323–31.PubMedCrossRefGoogle Scholar
  89. 89.
    Khurana NK, Niemann H. Effects of oocyte quality, oxygen tension, embryo density, cumulus cells and energy substrates on cleavage and morula/blastocyst formation of bovine embryos. Theriogenology. 2000;54(5):741–56.  https://doi.org/10.1016/S0093-691X(00)00387-3.PubMedCrossRefGoogle Scholar
  90. 90.
    Nagao Y, Iijima R, Saeki K. Interaction between embryos and culture conditions during in vitro development of bovine early embryos. Zygote. 2008;16(2):127–33.  https://doi.org/10.1017/S0967199408004644.PubMedCrossRefGoogle Scholar
  91. 91.
    Larson MA, Kubisch HM. The effects of group size on development and interferon-tau secretion by in-vitro fertilized and cultured bovine blastocysts. Hum Reprod. 1999;14(8):2075–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Reed M, Woodward B, Swain J. Single versus group culture of mammalian embryos: the verdict of the literature. J Reprod Stem Cell Biotechnol. 2011;2(2):77–87.CrossRefGoogle Scholar
  93. 93.
    Moessner J, Dodson WC. The quality of human embryo growth is improved when embryos are cultured in groups rather than separately. Fertil Steril. 1995;64(5):1034–5.PubMedCrossRefGoogle Scholar
  94. 94.
    Almagor M, Bejar C, Kafka I, Yaffe H. Pregnancy rates after communal growth of preimplantation human embryos in vitro. Fertil Steril. 1996;66(3):394–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Rebollar-Lazaro I, Matson P. The culture of human cleavage stage embryos alone or in groups: effect upon blastocyst utilization rates and implantation. Reprod Biol. 2010;10(3):227–34.PubMedCrossRefGoogle Scholar
  96. 96.
    Spyropoulou I, Karamalegos C, Bolton VN. A prospective randomized study comparing the outcome of in-vitro fertilization and embryo transfer following culture of human embryos individually or in groups before embryo transfer on day 2. Hum Reprod. 1999;14(1):76–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Smith GD, Takayama S, Swain JE. Rethinking in vitro embryo culture: new developments in culture platforms and potential to improve assisted reproductive technologies. Biol Reprod. 2012;86(3):62.  https://doi.org/10.1095/biolreprod.111.095778.PubMedCrossRefGoogle Scholar
  98. 98.
    Swain JE, Smith GD. Advances in embryo culture platforms: novel approaches to improve preimplantation embryo development through modifications of the microenvironment. Hum Reprod Update. 2011;17(4):541–57.  https://doi.org/10.1093/humupd/dmr006.PubMedCrossRefGoogle Scholar
  99. 99.
    Vajta G, Korosi T, Du Y, Nakata K, Ieda S, Kuwayama M, Nagy ZP. The well-of-the-well system: an efficient approach to improve embryo development. Reprod Biomed Online. 2008;17(1):73–81.PubMedCrossRefGoogle Scholar
  100. 100.
    Morbeck DE. Importance of supply integrity for in vitro fertilization and embryo culture. Semin Reprod Med. 2012;30(3):182–90.  https://doi.org/10.1055/s-0032-1311520.PubMedCrossRefGoogle Scholar
  101. 101.
    Lee BE, Boone WR, Brackelsberg PO, Carmichael RA. Development of screening systems for evaluation of materials used in mammalian embryo transfer. Theriogenology. 1988;30(3):605–12; [pii]: 0093-691X(88)90210-5.PubMedCrossRefGoogle Scholar
  102. 102.
    Scott LF, Sundaram SG, Smith S. The relevance and use of mouse embryo bioassays for quality control in an assisted reproductive technology program. Fertil Steril. 1993;60(3):559–68.PubMedCrossRefGoogle Scholar
  103. 103.
    Esterhuizen AD, Bosman E, Botes AD, Groenewald OA, Giesteira MV, Labuschagne GP, Lindeque HW, Rodriques FA, van Rensburg JJ, van Schouwenburg JA. A comparative study on the diagnostic sensitivity of rodent sperm and embryos in the detection of endotoxin in Earle’s balanced salt solution. J Assist Reprod Genet. 1994;11(1):38–42.PubMedCrossRefGoogle Scholar
  104. 104.
    Rinehart JS, Bavister BD, Gerrity M. Quality control in the in vitro fertilization laboratory: comparison of bioassay systems for water quality. J In Vitro Fert Embryo Transf. 1988;5(6):335–42.PubMedCrossRefGoogle Scholar
  105. 105.
    van den Bergh M, Baszo I, Biramane J, Bertrand E, Devreker F, Englert Y. Quality control in IVF with mouse bioassays: a four years’ experience. J Assist Reprod Genet. 1996;13(9):733–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Gardner DK, Reed L, Linck D, Sheehan C, Lane M. Quality control in human in vitro fertilization. Semin Reprod Med. 2005;23(4):319–24.  https://doi.org/10.1055/s-2005-923389.PubMedCrossRefGoogle Scholar
  107. 107.
    Punt-van der Zalm JP, Hendriks JC, Westphal JR, Kremer JA, Teerenstra S, Wetzels AM. Toxicity testing of human assisted reproduction devices using the mouse embryo assay. Reprod Biomed Online. 2009;18(4):529–35.PubMedCrossRefGoogle Scholar
  108. 108.
    Morimoto Y, Hayashi E, Ohno T, Kawata A, Horikoshi Y, Kanzaki H. Quality control of human IVF/ICSI program using endotoxin measurement and sperm survival test. Hum Cell. 1997;10(4):271–6.PubMedGoogle Scholar
  109. 109.
    Fleetham JA, Pattinson HA, Mortimer D. The mouse embryo culture system: improving the sensitivity for use as a quality control assay for human in vitro fertilization. Fertil Steril. 1993;59(1):192–6.PubMedCrossRefGoogle Scholar
  110. 110.
    Davidson A, Vermesh M, Lobo RA, Paulson RJ. Mouse embryo culture as quality control for human in vitro fertilization: the one-cell versus the two-cell model. Fertil Steril. 1988;49(3):516–21.PubMedCrossRefGoogle Scholar
  111. 111.
    Khan Z, Wolff HS, Fredrickson JR, Walker DL, Daftary GS, Morbeck DE. Mouse strain and quality control testing: improved sensitivity of the mouse embryo assay with embryos from outbred mice. Fertil Steril. 2013;99(3):847–854.e2.  https://doi.org/10.1016/j.fertnstert.2012.10.046; [pii]: S0015-0282(12)02390-4PubMedCrossRefGoogle Scholar
  112. 112.
    Wolff HS, Fredrickson JR, Walker DL, Morbeck DE. Advances in quality control: mouse embryo morphokinetics are sensitive markers of in vitro stress. Hum Reprod. 2013;28(7):1776–82.  https://doi.org/10.1093/humrep/det102.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Pool TB, Schoolfield J, Han D. Human embryo culture media comparisons. Methods Mol Biol. 2012;912:367–86.  https://doi.org/10.1007/978-1-61779-971-6_21.PubMedCrossRefGoogle Scholar
  114. 114.
    Mantikou E, Youssef MA, van Wely M, van der Veen F, Al-Inany HG, Repping S, Mastenbroek S. Embryo culture media and IVF/ICSI success rates: a systematic review. Hum Reprod Update. 2013;19(3):210–20.  https://doi.org/10.1093/humupd/dms061.PubMedCrossRefGoogle Scholar
  115. 115.
    Mauri AL, Petersen CG, Baruffi RL, Franco JG Jr. A prospective, randomized comparison of two commercial media for ICSI and embryo culture. J Assist Reprod Genet. 2001;18(7):378–81.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Ben-Yosef D, Amit A, Azem F, Schwartz T, Cohen T, Mei-Raz N, Carmon A, Lessing JB, Yaron Y. Prospective randomized comparison of two embryo culture systems: P1 medium by Irvine scientific and the Cook IVF medium. J Assist Reprod Genet. 2004;21(8):291–5.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Van Langendonckt A, Demylle D, Wyns C, Nisolle M, Donnez J. Comparison of G1.2/G2.2 and Sydney IVF cleavage/blastocyst sequential media for the culture of human embryos: a prospective, randomized, comparative study. Fertil Steril. 2001;76(5):1023–31.PubMedCrossRefGoogle Scholar
  118. 118.
    Balaban B, Urman B. Comparison of two sequential media for culturing cleavage-stage embryos and blastocysts: embryo characteristics and clinical outcome. Reprod Biomed Online. 2005;10(4):485–91.PubMedCrossRefGoogle Scholar
  119. 119.
    Zollner KP, Zollner U, Schneider M, Dietl J, Steck T. Comparison of two media for sequential culture after IVF and ICSI shows no differences in pregnancy rates: a randomized trial. Med Sci Monit. 2004;10(1):CR1–7.PubMedGoogle Scholar
  120. 120.
    Hambiliki F, Sandell P, Yaldir F, Stavreus-Evers A. A prospective randomized sibling-oocyte study of two media systems for culturing cleavage-stage embryos-impact on fertilization rate. J Assist Reprod Genet. 2011;28(4):335–41.  https://doi.org/10.1007/s10815-010-9518-0.PubMedCrossRefGoogle Scholar
  121. 121.
    Sifer C, Handelsman D, Grange E, Porcher R, Poncelet C, Martin-Pont B, Benzacken B, Wolf JP. An auto-controlled prospective comparison of two embryos culture media (G III series versus ISM) for IVF and ICSI treatments. J Assist Reprod Genet. 2009;26(11–12):575–81.  https://doi.org/10.1007/s10815-009-9357-z.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Paternot G, Debrock S, D'Hooghe TM, Spiessens C. Early embryo development in a sequential versus single medium: a randomized study. Reprod Biol Endocrinol. 2010;8:83.  https://doi.org/10.1186/1477-7827-8-83.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Sepulveda S, Garcia J, Arriaga E, Diaz J, Noriega-Portella L, Noriega-Hoces L. In vitro development and pregnancy outcomes for human embryos cultured in either a single medium or in a sequential media system. Fertil Steril. 2009;91(5):1765–70.  https://doi.org/10.1016/j.fertnstert.2008.02.169.PubMedCrossRefGoogle Scholar
  124. 124.
    Basile N, Morbeck D, Garcia-Velasco J, Bronet F, Meseguer M. Type of culture media does not affect embryo kinetics: a time-lapse analysis of sibling oocytes. Hum Reprod. 2013;28(3):634–41.  https://doi.org/10.1093/humrep/des462.PubMedCrossRefGoogle Scholar
  125. 125.
    Ciray HN, Aksoy T, Goktas C, Ozturk B, Bahceci M. Time-lapse evaluation of human embryo development in single versus sequential culture media--a sibling oocyte study. J Assist Reprod Genet. 2012;29(9):891–900.  https://doi.org/10.1007/s10815-012-9818-7.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Reed ML, Hamic A, Thompson DJ, Caperton CL. Continuous uninterrupted single medium culture without medium renewal versus sequential media culture: a sibling embryo study. Fertil Steril. 2009;92(5):1783–6.  https://doi.org/10.1016/j.fertnstert.2009.05.008.PubMedCrossRefGoogle Scholar
  127. 127.
    Werner MD, Hong KH, Franasiak JM, Forman EJ, Reda CV, Molinaro TA, Upham KM, Scott RT Jr. Sequential versus monophasic media impact trial (SuMMIT): a paired randomized controlled trial comparing a sequential media system to a monophasic medium. Fertil Steril. 2016;105(5):1215–21.  https://doi.org/10.1016/j.fertnstert.2016.01.005.PubMedCrossRefGoogle Scholar
  128. 128.
    Lane M, Gardner DK. Differential regulation of mouse embryo development and viability by amino acids. J Reprod Fertil. 1997;109(1):153–64.PubMedCrossRefGoogle Scholar
  129. 129.
    Lane M, Hooper K, Gardner DK. Effect of essential amino acids on mouse embryo viability and ammonium production. J Assist Reprod Genet. 2001;18(9):519–25.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Summers MC, McGinnis LK, Lawitts JA, Biggers JD. Mouse embryo development following IVF in media containing either L-glutamine or glycyl-L-glutamine. Hum Reprod. 2005;20(5):1364–71.  https://doi.org/10.1093/humrep/deh756; [pii]:deh756.PubMedCrossRefGoogle Scholar
  131. 131.
    Hammer MA, Kolajova M, Leveille M, Claman P, Baltz JM. Glycine transport by single human and mouse embryos. Hum Reprod. 2000;15(2):419–26.PubMedCrossRefGoogle Scholar
  132. 132.
    Devreker F, Van den Bergh M, Biramane J, Winston RL, Englert Y, Hardy K. Effects of taurine on human embryo development in vitro. Hum Reprod. 1999;14(9):2350–6.PubMedCrossRefGoogle Scholar
  133. 133.
    Devreker F, Winston RM, Hardy K. Glutamine improves human preimplantation development in vitro. Fertil Steril. 1998;69(2):293–9.PubMedCrossRefGoogle Scholar
  134. 134.
    Lane M, Gardner DK. Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse. Biol Reprod. 2003;69(4):1109–17.  https://doi.org/10.1095/biolreprod.103.018093.PubMedCrossRefGoogle Scholar
  135. 135.
    Biggers JD, McGinnis LK, Lawitts JA. Enhanced effect of glycyl-L-glutamine on mouse preimplantation embryos in vitro. Reprod Biomed Online. 2004;9(1):59–69.PubMedCrossRefGoogle Scholar
  136. 136.
    Lane M. Mechanisms for managing cellular and homeostatic stress in vitro. Theriogenology. 2001;55(1):225–36.PubMedCrossRefGoogle Scholar
  137. 137.
    McKiernan SH, Clayton MK, Bavister BD. Analysis of stimulatory and inhibitory amino acids for development of hamster one-cell embryos in vitro. Mol Reprod Dev. 1995;42(2):188–99.  https://doi.org/10.1002/mrd.1080420208.PubMedCrossRefGoogle Scholar
  138. 138.
    Virant-Klun I, Tomazevic T, Vrtacnik-Bokal E, Vogler A, Krsnik M, Meden-Vrtovec H. Increased ammonium in culture medium reduces the development of human embryos to the blastocyst stage. Fertil Steril. 2006;85(2):526–8.  https://doi.org/10.1016/j.fertnstert.2005.10.018.PubMedCrossRefGoogle Scholar
  139. 139.
    Zhu J, Li M, Chen L, Liu P, Qiao J. The protein source in embryo culture media influences birthweight: a comparative study between G1 v5 and G1-PLUS v5. Hum Reprod. 2014;29(7):1387–92.  https://doi.org/10.1093/humrep/deu103.PubMedCrossRefGoogle Scholar
  140. 140.
    Leonard PH, Charlesworth MC, Benson L, Walker DL, Fredrickson JR, Morbeck DE. Variability in protein quality used for embryo culture: embryotoxicity of the stabilizer octanoic acid. Fertil Steril. 2013;100(2):544–9.  https://doi.org/10.1016/j.fertnstert.2013.03.034.PubMedCrossRefGoogle Scholar
  141. 141.
    Morbeck DE, Paczkowski M, Fredrickson JR, Krisher RL, Hoff HS, Baumann NA, Moyer T, Matern D. Composition of protein supplements used for human embryo culture. J Assist Reprod Genet. 2014;31(12):1703–11.  https://doi.org/10.1007/s10815-014-0349-2.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Meintjes M. Media composition: macromolecules and embryo growth. Methods Mol Biol. 2012;912:107–27.  https://doi.org/10.1007/978-1-61779-971-6_8.PubMedCrossRefGoogle Scholar
  143. 143.
    Dyrlund TF, Kirkegaard K, Poulsen ET, Sanggaard KW, Hindkjaer JJ, Kjems J, Enghild JJ, Ingerslev HJ. Unconditioned commercial embryo culture media contain a large variety of non-declared proteins: a comprehensive proteomics analysis. Hum Reprod. 2014;29(11):2421–30.  https://doi.org/10.1093/humrep/deu220.PubMedCrossRefGoogle Scholar
  144. 144.
    Borini A, Bulletti C, Cattoli M, Serrao L, Polli V, Alfieri S, Flamigni C. Use of recombinant leukemia inhibitory factor in embryo implantation. Ann N Y Acad Sci. 1997;828:157–61.PubMedCrossRefGoogle Scholar
  145. 145.
    Sjoblom C, Wikland M, Robertson SA. Granulocyte-macrophage colony-stimulating factor promotes human blastocyst development in vitro. Hum Reprod. 1999;14(12):3069–76.PubMedCrossRefGoogle Scholar
  146. 146.
    O’Neill C, Ryan JP, Collier M, Saunders DM, Ammit AJ, Pike IL. Supplementation of in-vitro fertilisation culture medium with platelet activating factor. Lancet. 1989;2(8666):769–72.PubMedCrossRefGoogle Scholar
  147. 147.
    Hegde A, Behr B. Media composition: growth factors. Methods Mol Biol. 2012;912:177–98.  https://doi.org/10.1007/978-1-61779-971-6_11.PubMedCrossRefGoogle Scholar
  148. 148.
    Weathersbee PS, Pool TB, Ord T. Synthetic serum substitute (SSS): a globulin-enriched protein supplement for human embryo culture. J Assist Reprod Genet. 1995;12(6):354–60.PubMedCrossRefGoogle Scholar
  149. 149.
    Pool TB, Martin JE. High continuing pregnancy rates after in vitro fertilization-embryo transfer using medium supplemented with a plasma protein fraction containing alpha- and beta-globulins. Fertil Steril. 1994;61(4):714–9.PubMedCrossRefGoogle Scholar
  150. 150.
    Schneider EG, Hayslip CC. Globulin-enriched protein supplements shorten the pre-compaction mitotic interval and promote hatching of murine embryos. Am J Reprod Immunol. 1996;36(2):101–6.PubMedCrossRefGoogle Scholar
  151. 151.
    Desai NN, Sheean LA, Martin D, Gindlesperger V, Austin CM, Lisbonna H, Peskin B, Goldfarb JM. Clinical experience with synthetic serum substitute as a protein supplement in IVF culture media: a retrospective study. J Assist Reprod Genet. 1996;13(1):23–31.PubMedCrossRefGoogle Scholar
  152. 152.
    Tucker KE, Hurst BS, Guadagnoli S, Dymecki C, Mendelsberg B, Awoniyi CA, Schlaff WD. Evaluation of synthetic serum substitute versus serum as protein supplementation for mouse and human embryo culture. J Assist Reprod Genet. 1996;13(1):32–7.PubMedCrossRefGoogle Scholar
  153. 153.
    Meintjes M, Chantilis SJ, Ward DC, Douglas JD, Rodriguez AJ, Guerami AR, Bookout DM, Barnett BD, Madden JD. A randomized controlled study of human serum albumin and serum substitute supplement as protein supplements for IVF culture and the effect on live birth rates. Hum Reprod. 2009;24(4):782–9.  https://doi.org/10.1093/humrep/den396; [pii]: den396.PubMedCrossRefGoogle Scholar
  154. 154.
    Bungum M, Humaidan P, Bungum L. Recombinant human albumin as protein source in culture media used for IVF: a prospective randomized study. Reprod Biomed Online. 2002;4(3):233–6.PubMedCrossRefGoogle Scholar
  155. 155.
    Ben-Yosef D, Yovel I, Schwartz T, Azem F, Lessing JB, Amit A. Increasing synthetic serum substitute (SSS) concentrations in P1 glucose/phosphate-free medium improves implantation rate: a comparative study. J Assist Reprod Genet. 2001;18(11):588–92.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Morbeck DE, Khan Z, Barnidge DR, Walker DL. Washing mineral oil reduces contaminants and embryotoxicity. Fertil Steril. 2010;94(7):2747–52.  https://doi.org/10.1016/j.fertnstert.2010.03.067; [pii]: S0015-0282(10)00528-5.PubMedCrossRefGoogle Scholar
  157. 157.
    Otsuki J, Nagai Y, Chiba K. Damage of embryo development caused by peroxidized mineral oil and its association with albumin in culture. Fertil Steril. 2009;91(5):1745–9.  https://doi.org/10.1016/j.fertnstert.2008.03.001.PubMedCrossRefGoogle Scholar
  158. 158.
    Otsuki J, Nagai Y, Chiba K. Peroxidation of mineral oil used in droplet culture is detrimental to fertilization and embryo development. Fertil Steril. 2007;88(3):741–3.  https://doi.org/10.1016/j.fertnstert.2006.11.144.PubMedCrossRefGoogle Scholar
  159. 159.
    Hughes PM, Morbeck DE, Hudson SB, Fredrickson JR, Walker DL, Coddington CC. Peroxides in mineral oil used for in vitro fertilization: defining limits of standard quality control assays. J Assist Reprod Genet. 2010;27(2–3):87–92.  https://doi.org/10.1007/s10815-009-9383-x.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Chen M, Wei S, Hu J, Yuan J, Liu F. Does time-lapse imaging have favorable results for embryo incubation and selection compared with conventional methods in clinical in vitro fertilization? A meta-analysis and systematic review of randomized controlled trials. PLoS One. 2017;12(6):e0178720.  https://doi.org/10.1371/journal.pone.0178720.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Kaser DJ, Racowsky C. Clinical outcomes following selection of human preimplantation embryos with time-lapse monitoring: a systematic review. Hum Reprod Update. 2014;20(5):617–31.  https://doi.org/10.1093/humupd/dmu023.PubMedCrossRefGoogle Scholar
  162. 162.
    Goodman LR, Goldberg J, Falcone T, Austin C, Desai N. Does the addition of time-lapse morphokinetics in the selection of embryos for transfer improve pregnancy rates? A randomized controlled trial. Fertil Steril. 2016;105(2):275–85. e210.  https://doi.org/10.1016/j.fertnstert.2015.10.013.PubMedCrossRefGoogle Scholar
  163. 163.
    Kaser DJ, Bormann CL, Missmer SA, Farland LV, Ginsburg ES, Racowsky C. A pilot randomized controlled trial of day 3 single embryo transfer with adjunctive time lapse selection versus day 5 single embryo transfer with or without adjunctive time lapse selection. Hum Reprod. 2017;32(8):1598–603.PubMedCrossRefGoogle Scholar
  164. 164.
    Meseguer M, Rubio I, Cruz M, Basile N, Marcos J, Requena A. Embryo incubation and selection in a time-lapse monitoring system improves pregnancy outcome compared with a standard incubator: a retrospective cohort study. Fertil Steril. 2012;98(6):1481–9. e1410.  https://doi.org/10.1016/j.fertnstert.2012.08.016.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jason E. Swain
    • 1
  1. 1.CCRM IVF NetworkLone TreeUSA

Personalised recommendations