Advertisement

Endocrine-Disrupting Chemicals and Female Fertility

  • Ronit Machtinger
Chapter

Abstract

Exposure to environmental toxins as BPA may impair female fertility as it mimics estradiol. In vitro studies both in animal and human models and in vivo animal studies have shown alterations in oocyte meiosis, steroidogenesis, blastocyst formation, and implantation. Although limited by short exposure time, most of these negative effects in vitro were shown in much higher concentrations than human are exposed to. While early clinical studies have linked exposure to BPA with adverse outcomes in patients undergoing IVF, a recent larger study was not consistent and did not find negative associations between urinary BPA concentrations and fertilization rates, implantation, clinical pregnancy, or live birth rates among a large cohort of women undergoing IVF. This chapter reviews the current literature regarding BPA and female fertility.

Keywords

Endocrine-disrupting chemicals Female fertility Bisphenol A Meiosis Steroidogenesis Implantation IVF outcome 

References

  1. 1.
    Mendola P, Messer LC, Rappazzo K. Science linking environmental contaminant exposures with fertility and reproductive health impacts in the adult female. Fertil Steril. 2008;89(2 Suppl):e81–94.  https://doi.org/10.1016/j.fertnstert.2007.12.036.CrossRefPubMedGoogle Scholar
  2. 2.
    Marques-Pinto A, Carvalho D. Human infertility: are endocrine disruptors to blame? Endocr Connect. 2013;2(3):R15–29.  https://doi.org/10.1530/EC-13-0036.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hunt PA, Hassold TJ. Human female meiosis: what makes a good egg go bad? Trends Genet. 2008;24(2):86–93.  https://doi.org/10.1016/j.tig.2007.11.010.CrossRefPubMedGoogle Scholar
  4. 4.
    Sanderson JT. The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals. Toxicol Sci. 2006;94(1):3–21.  https://doi.org/10.1093/toxsci/kfl051.CrossRefPubMedGoogle Scholar
  5. 5.
    Sweeney T. Is exposure to endocrine disrupting compounds during fetal/post-natal development affecting the reproductive potential of farm animals? Domest Anim Endocrinol. 2002;23(1–2):203–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30(4):293–342.  https://doi.org/10.1210/er.2009-0002.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environ Health Perspect. 2008;116(1):39–44.  https://doi.org/10.1289/ehp.10753.CrossRefPubMedGoogle Scholar
  8. 8.
    Kato K, Silva MJ, Reidy JA, Hurtz D 3rd, Malek NA, Needham LL, Nakazawa H, Barr DB, Calafat AM. Mono(2-ethyl-5-hydroxyhexyl) phthalate and mono-(2-ethyl-5-oxohexyl) phthalate as biomarkers for human exposure assessment to di-(2-ethylhexyl) phthalate. Environ Health Perspect. 2004;112(3):327–30.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, Needham LL. Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ Health Perspect. 2005;113(4):391–5.CrossRefPubMedGoogle Scholar
  10. 10.
    Rochester JR. Bisphenol A and human health: a review of the literature. Reprod Toxicol. 2013;42:132–55.  https://doi.org/10.1016/j.reprotox.2013.08.008.CrossRefPubMedGoogle Scholar
  11. 11.
    Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. Human exposure to bisphenol A (BPA). Reprod Toxicol. 2007;24(2):139–77.  https://doi.org/10.1016/j.reprotox.2007.07.010.CrossRefPubMedGoogle Scholar
  12. 12.
    Vandenberg LN, Maffini MV, Wadia PR, Sonnenschein C, Rubin BS, Soto AM. Exposure to environmentally relevant doses of the xenoestrogen bisphenol-A alters development of the fetal mouse mammary gland. Endocrinology. 2007;148(1):116–27.  https://doi.org/10.1210/en.2006-0561.CrossRefPubMedGoogle Scholar
  13. 13.
    Schettler T. Human exposure to phthalates via consumer products. Int J Androl. 2006;29(1):134–9. discussion 181-135.  https://doi.org/10.1111/j.1365-2605.2005.00567.x.CrossRefPubMedGoogle Scholar
  14. 14.
    Du YY, Fang YL, Wang YX, Zeng Q, Guo N, Zhao H, Li YF. Follicular fluid and urinary concentrations of phthalate metabolites among infertile women and associations with in vitro fertilization parameters. Reprod Toxicol. 2016;61:142–50.  https://doi.org/10.1016/j.reprotox.2016.04.005.CrossRefPubMedGoogle Scholar
  15. 15.
    Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y, Taketani Y. Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod. 2002;17(11):2839–41.CrossRefPubMedGoogle Scholar
  16. 16.
    Krotz SP, Carson SA, Tomey C, Buster JE. Phthalates and bisphenol do not accumulate in human follicular fluid. J Assist Reprod Genet. 2012;29(8):773–7.  https://doi.org/10.1007/s10815-012-9775-1.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rodrigues P, Limback D, McGinnis LK, Plancha CE, Albertini DF. Oogenesis: prospects and challenges for the future. J Cell Physiol. 2008;216(2):355–65.  https://doi.org/10.1002/jcp.21473.CrossRefPubMedGoogle Scholar
  18. 18.
    Susiarjo M, Hassold TJ, Freeman E, Hunt PA. Bisphenol A exposure in utero disrupts early oogenesis in the mouse. PLoS Genet. 2007;3(1):e5.  https://doi.org/10.1371/journal.pgen.0030005.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hunt PA, Lawson C, Gieske M, Murdoch B, Smith H, Marre A, Hassold T, VandeVoort CA. Bisphenol A alters early oogenesis and follicle formation in the fetal ovary of the rhesus monkey. Proc Natl Acad Sci U S A. 2012;109(43):17525–30.  https://doi.org/10.1073/pnas.1207854109.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Brieno-Enriquez MA, Robles P, Camats-Tarruella N, Garcia-Cruz R, Roig I, Cabero L, Martinez F, Caldes MG. Human meiotic progression and recombination are affected by bisphenol A exposure during in vitro human oocyte development. Hum Reprod. 2011;26(10):2807–18.  https://doi.org/10.1093/humrep/der249.CrossRefPubMedGoogle Scholar
  21. 21.
    Brieno-Enriquez MA, Reig-Viader R, Cabero L, Toran N, Martinez F, Roig I, Garcia Caldes M. Gene expression is altered after bisphenol A exposure in human fetal oocytes in vitro. Mol Hum Reprod. 2012;18(4):171–83.  https://doi.org/10.1093/molehr/gar074.CrossRefPubMedGoogle Scholar
  22. 22.
    Eichenlaub-Ritter U, Vogt E, Cukurcam S, Sun F, Pacchierotti F, Parry J. Exposure of mouse oocytes to bisphenol A causes meiotic arrest but not aneuploidy. Mutat Res. 2008;651(1–2):82–92.  https://doi.org/10.1016/j.mrgentox.2007.10.014.CrossRefPubMedGoogle Scholar
  23. 23.
    Hodges CA, Ilagan A, Jennings D, Keri R, Nilson J, Hunt PA. Experimental evidence that changes in oocyte growth influence meiotic chromosome segregation. Hum Reprod. 2002;17(5):1171–80.CrossRefPubMedGoogle Scholar
  24. 24.
    Lenie S, Cortvrindt R, Eichenlaub-Ritter U, Smitz J. Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities. Mutat Res. 2008;651(1–2):71–81.  https://doi.org/10.1016/j.mrgentox.2007.10.017.CrossRefPubMedGoogle Scholar
  25. 25.
    Can A, Semiz O, Cinar O. Bisphenol-A induces cell cycle delay and alters centrosome and spindle microtubular organization in oocytes during meiosis. Mol Hum Reprod. 2005;11(6):389–96.  https://doi.org/10.1093/molehr/gah179.CrossRefPubMedGoogle Scholar
  26. 26.
    Hunt PA, Koehler KE, Susiarjo M, Hodges CA, Ilagan A, Voigt RC, Thomas S, Thomas BF, Hassold TJ. Bisphenol a exposure causes meiotic aneuploidy in the female mouse. Curr Biol. 2003;13(7):546–53.CrossRefPubMedGoogle Scholar
  27. 27.
    Machtinger R, Combelles CM, Missmer SA, Correia KF, Williams P, Hauser R, Racowsky C. Bisphenol-A and human oocyte maturation in vitro. Hum Reprod. 2013;28(10):2735–45.  https://doi.org/10.1093/humrep/det312.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bloom MS, Mok-Lin E, Fujimoto VY. Bisphenol A and ovarian steroidogenesis. Fertil Steril. 2016;106(4):857–63.  https://doi.org/10.1016/j.fertnstert.2016.08.021.CrossRefPubMedGoogle Scholar
  29. 29.
    Mansur A, Adir M, Yerushalmi G, Hourvitz A, Gitman H, Yung Y, Orvieto R, Machtinger R. Does BPA alter steroid hormone synthesis in human granulosa cells in vitro? Hum Reprod. 2016;31(7):1562–9.  https://doi.org/10.1093/humrep/dew088.CrossRefPubMedGoogle Scholar
  30. 30.
    Pan X, Wang X, Sun Y, Dou Z, Li Z. Inhibitory effects of preimplantation exposure to bisphenol-A on blastocyst development and implantation. Int J Clin Exp Med. 2015;8(6):8720–9.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Choi BI, Harvey AJ, Green MP. Bisphenol A affects early bovine embryo development and metabolism that is negated by an oestrogen receptor inhibitor. Sci Rep. 2016;6:29318.  https://doi.org/10.1038/srep29318.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ferris J, Mahboubi K, MacLusky N, King WA, Favetta LA. BPA exposure during in vitro oocyte maturation results in dose-dependent alterations to embryo development rates, apoptosis rate, sex ratio and gene expression. Reprod Toxicol. 2016;59:128–38.  https://doi.org/10.1016/j.reprotox.2015.12.002.CrossRefPubMedGoogle Scholar
  33. 33.
    Berger RG, Shaw J, deCatanzaro D. Impact of acute bisphenol-A exposure upon intrauterine implantation of fertilized ova and urinary levels of progesterone and 17beta-estradiol. Reprod Toxicol. 2008;26(2):94–9.  https://doi.org/10.1016/j.reprotox.2008.06.007.CrossRefPubMedGoogle Scholar
  34. 34.
    Xiao S, Diao H, Smith MA, Song X, Ye X. Preimplantation exposure to bisphenol A (BPA) affects embryo transport, preimplantation embryo development, and uterine receptivity in mice. Reprod Toxicol. 2011;32(4):434–41.  https://doi.org/10.1016/j.reprotox.2011.08.010.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Li Q, Davila J, Kannan A, Flaws JA, Bagchi MK, Bagchi IC. Chronic exposure to bisphenol A affects uterine function during early pregnancy in mice. Endocrinology. 2016;157(5):1764–74.  https://doi.org/10.1210/en.2015-2031.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Martinez-Pena AA, Rivera-Banos J, Mendez-Carrillo LL, Ramirez-Solano MI, Galindo-Bustamante A, Paez-Franco JC, Morimoto S, Gonzalez-Mariscal L, Cruz ME, Mendoza-Rodriguez CA. Perinatal administration of bisphenol A alters the expression of tight junction proteins in the uterus and reduces the implantation rate. Reprod Toxicol. 2017;69:106–20.  https://doi.org/10.1016/j.reprotox.2017.02.009.CrossRefPubMedGoogle Scholar
  37. 37.
    Souter I, Smith KW, Dimitriadis I, Ehrlich S, Williams PL, Calafat AM, Hauser R. The association of bisphenol-A urinary concentrations with antral follicle counts and other measures of ovarian reserve in women undergoing infertility treatments. Reprod Toxicol. 2013;42:224–31.  https://doi.org/10.1016/j.reprotox.2013.09.008.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bloom MS, Kim D, Vom Saal FS, Taylor JA, Cheng G, Lamb JD, Fujimoto VY. Bisphenol A exposure reduces the estradiol response to gonadotropin stimulation during in vitro fertilization. Fertil Steril. 2011;96(3):672–7. e672.  https://doi.org/10.1016/j.fertnstert.2011.06.063.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhou W, Fang F, Zhu W, Chen ZJ, Du Y, Zhang J. Bisphenol A and ovarian reserve among infertile women with polycystic ovarian syndrome. Int J Environ Res Public Health. 2017;14(1):18.  https://doi.org/10.3390/ijerph14010018.CrossRefGoogle Scholar
  40. 40.
    Mok-Lin E, Ehrlich S, Williams PL, Petrozza J, Wright DL, Calafat AM, Ye X, Hauser R. Urinary bisphenol A concentrations and ovarian response among women undergoing IVF. Int J Androl. 2010;33(2):385–93.  https://doi.org/10.1111/j.1365-2605.2009.01014.x.CrossRefPubMedGoogle Scholar
  41. 41.
    Ehrlich S, Williams PL, Missmer SA, Flaws JA, Ye X, Calafat AM, Petrozza JC, Wright D, Hauser R. Urinary bisphenol A concentrations and early reproductive health outcomes among women undergoing IVF. Hum Reprod. 2012;27(12):3583–92.  https://doi.org/10.1093/humrep/des328.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Fujimoto VY, Kim D, vom Saal FS, Lamb JD, Taylor JA, Bloom MS. Serum unconjugated bisphenol A concentrations in women may adversely influence oocyte quality during in vitro fertilization. Fertil Steril. 2011;95(5):1816–9.  https://doi.org/10.1016/j.fertnstert.2010.11.008.CrossRefPubMedGoogle Scholar
  43. 43.
    Machtinger R, Orvieto R. Bisphenol A, oocyte maturation, implantation, and IVF outcome: review of animal and human data. Reprod Biomed Online. 2014;29(4):404–10.  https://doi.org/10.1016/j.rbmo.2014.06.013.CrossRefPubMedGoogle Scholar
  44. 44.
    Volkel W, Colnot T, Csanady GA, Filser JG, Dekant W. Metabolism and kinetics of bisphenol a in humans at low doses following oral administration. Chem Res Toxicol. 2002;15(10):1281–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Matthews JB, Twomey K, Zacharewski TR. In vitro and in vivo interactions of bisphenol A and its metabolite, bisphenol A glucuronide, with estrogen receptors alpha and beta. Chem Res Toxicol. 2001;14(2):149–57.CrossRefPubMedGoogle Scholar
  46. 46.
    Ehrlich S, Williams PL, Missmer SA, Flaws JA, Berry KF, Calafat AM, Ye X, Petrozza JC, Wright D, Hauser R. Urinary bisphenol A concentrations and implantation failure among women undergoing in vitro fertilization. Environ Health Perspect. 2012;120(7):978–83.  https://doi.org/10.1289/ehp.1104307.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Minguez-Alarcon L, Souter I, Chiu YH, Williams PL, Ford JB, Ye X, Calafat AM, Hauser R, Earth Study T. Urinary concentrations of cyclohexane-1,2-dicarboxylic acid monohydroxy isononyl ester, a metabolite of the non-phthalate plasticizer di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH), and markers of ovarian response among women attending a fertility center. Environ Res. 2016;151:595–600.  https://doi.org/10.1016/j.envres.2016.08.012.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Rochester JR, Bolden AL. Bisphenol S and F: a systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environ Health Perspect. 2015;123(7):643–50.  https://doi.org/10.1289/ehp.1408989.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Liao C, Liu F, Alomirah H, Loi VD, Mohd MA, Moon HB, Nakata H, Kannan K. Bisphenol S in urine from the United States and seven Asian countries: occurrence and human exposures. Environ Sci Technol. 2012;46(12):6860–6.  https://doi.org/10.1021/es301334j.CrossRefPubMedGoogle Scholar
  50. 50.
    Zalmanova T, Hoskova K, Nevoral J, Adamkova K, Kott T, Sulc M, Kotikova Z, Prokesova S, Jilek F, Kralickova M, Petr J. Bisphenol S negatively affects the meiotic maturation of pig oocytes. Sci Rep. 2017;7(1):485.  https://doi.org/10.1038/s41598-017-00570-5.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Giudice LC. Environmental toxicants: hidden players on the reproductive stage. Fertil Steril. 2016;106(4):791–4.  https://doi.org/10.1016/j.fertnstert.2016.08.019.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Obstetrics, Gynecology, and Reproductive BiologySheba Medical Center, Sackler School of MedicineRamat GanIsrael

Personalised recommendations