Neuroscience, Brain Imaging, and Body Image in Eating and Weight Disorders

  • Santino Gaudio
  • Antonios Dakanalis
  • Giuseppe Fariello
  • Giuseppe Riva


Several neuroimaging studies have explored structural and functional brain differences in eating and weight disorders (EWDs). Some of them have focused on body image disturbance to elucidate neural correlates of this puzzling feature of EWD patients. To date, the neuroimaging technique most frequently used in EWDs is magnetic resonance imaging (MRI), and the majority of the neuroimaging studies have investigated anorexia nervosa (AN). Overall, it can be assumed that posterior parietal areas, insula, prefrontal cortex, and EBA have a specific and interconnected role in body image distortion in AN. Insula alterations have also been found in bulimia nervosa and obese patients. The areas mentioned above are involved in visual body perception and body awareness in healthy subjects. In particular, event-related fMRI studies, using body-related tasks, and resting-state MRI studies have mainly shown that the alterations of the posterior parietal areas seem to be related to altered visual body perception and the insula alterations seem to be involved in altered body awareness and negative attitudes towards the body. Interestingly, structural MRI studies have also found grey and white matter vulnerability in the posterior parietal areas in AN patients. Neural correlates of body image distortion remain poorly investigated in bulimia nervosa, binge-eating disorder, and obesity. More neuroimaging research is needed to improve our knowledge of the neural correlates of body image distortion in EWDs and enhance the efficacy of the extant treatment approaches and strategies for EWDs. In particular, further neuroimaging studies should also explore spatial reference frames in EWDs.


  1. 1.
    Gaudio S, Quattrocchi CC. Neural basis of a multidimensional model of body image distortion in anorexia nervosa. Neurosci Biobehav Rev. 2012;36(8):1839–47.CrossRefGoogle Scholar
  2. 2.
    Cash TF, Deagle EA. The nature and extent of body-image disturbances in anorexia nervosa and bulimia nervosa: a meta-analysis. Int J Eat Disord. 1997;22:107–25.CrossRefGoogle Scholar
  3. 3.
    Banfield SS, McCabe MP. An evaluation of the construct of body image. Adolescence. 2002;37:373–93.PubMedGoogle Scholar
  4. 4.
    Dakanalis A, Carrà G, Calogero R, Zanetti MA, Gaudio S, Caccialanza R, Riva G, Clerici M. Testing the cognitive behavioural maintenance models across DSM-5 bulimic-type eating disorder diagnostic groups: a multistudy. Eur Arch Psychiatry Clin Neurosci. 2015;265(8):663–76.CrossRefGoogle Scholar
  5. 5.
    Dakanalis A, Clerici M, Carrà G, Riva G. Dysfunctional bodily experiences in anorexia nervosa: where are we? Eat Weight Disord. 2016;21(4):731–2.CrossRefGoogle Scholar
  6. 6.
    Cash TF, Wood KC, Phelps KD, Boyd K. New assessments of weight related body image derived from extant instruments. Percept Mot Skills. 1991;73:235–41.CrossRefGoogle Scholar
  7. 7.
    Slade PD. What is body image? Behav Res Ther. 1994;32:497–502.CrossRefGoogle Scholar
  8. 8.
    Cash TF, Green GK. Body weight and body image among college women: perception, cognition, and affect. J Pers Assess. 1986;50:290–3017.CrossRefGoogle Scholar
  9. 9.
    Gleaves DH, Williamson DA, Eberenz KP, Sebastian SB, Barker SE. Clarifying body-image disturbance: analysis of a multidimensional model using structural modeling. J Pers Assess. 1995;64:478–93.CrossRefGoogle Scholar
  10. 10.
    Dakanalis A, Carrà G, Timko A, Volpato C, Pla-Sanjuanelo J, Zanetti A, Clerici M, Riva G. Mechanisms of influence of body checking on binge eating. Int J Clin Health Psychol. 2015;152:93–104.CrossRefGoogle Scholar
  11. 11.
    Peelen MV, Downing PE. The neural basis of visual body perception. Nat Rev Neurosci. 2007;8:636–48.CrossRefGoogle Scholar
  12. 12.
    Berlucchi G, Aglioti SM. The body in the brain revisited. Exp Brain Res. 2010;200(1):25–35.CrossRefGoogle Scholar
  13. 13.
    Downing PE, Jiang Y, Shuman M, Kanwisher N. A cortical area selective for visual processing of the human body. Science. 2001;293:2470–3.CrossRefGoogle Scholar
  14. 14.
    Hodzic A, Kaas A, Muckli L, Stirn A, Singer W. Distinct cortical networks for the detection and identification of human body. Neuroimage. 2009;45:1264–71.CrossRefGoogle Scholar
  15. 15.
    Hodzic A, Muckli L, Singer W, Stirn A. Cortical responses to self and others. Hum Brain Mapp. 2009;30:951–62.CrossRefGoogle Scholar
  16. 16.
    Vocks S, Busch M, Gronemeyer D, Schulte D, Herpertz S, Suchan B. Differential neuronal responses to the self and others in the extrastriate body area and the fusiform body area. Cogn Affect Behav Neurosci. 2010;10:422–9.CrossRefGoogle Scholar
  17. 17.
    Cazzato V, Mian E, Serino A, Mele S, Urgesi C. Distinct contributions of extrastriate body area and temporoparietal junction in perceiving one’s own and others’ body. Cogn Affect Behav Neurosci. 2015;15(1):211–28.CrossRefGoogle Scholar
  18. 18.
    Craig AD. How do you feel-now? The anterior insula and human awareness. Nat Rev Neurosci. 2009;10:59–70.CrossRefGoogle Scholar
  19. 19.
    Blanke O. Multisensory brain mechanisms of bodily self-consciousness. Nat Rev Neurosci. 2012;13(8):556–71.CrossRefGoogle Scholar
  20. 20.
    David N, Jansen M, Cohen MX, Osswald K, Molnar-Szakacs I, Newen A, Vogeley K, Paus T. Disturbances of self-other distinction after stimulation of the extrastriate body area in the human brain. Soc Neurosci. 2008;21:1–9.Google Scholar
  21. 21.
    Spengler S, von Cramon DY, Brass M. Was it me or was it you? How the sense of agency originates from ideomotor learning revealed by fMRI. Neuroimage. 2009;46:290–8.CrossRefGoogle Scholar
  22. 22.
    Blanke O, Metzinger T. Full-body illusions and minimal phenomenal selfhood. Trends Cogn Sci. 2009;13:7–13.CrossRefGoogle Scholar
  23. 23.
    Aspell JE, Lenggenhager B, Blanke O. Multisensory perception and bodily self-consciousness. In: Murray MT, Wallace MM, editors. The neural bases of multisensory processes. Boca Raton: CRC Press; 2012. p. 467–84.Google Scholar
  24. 24.
    Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98:676–82.CrossRefGoogle Scholar
  25. 25.
    Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006;129:564–83.CrossRefGoogle Scholar
  26. 26.
    Ashburner J, Friston KJ. Voxel-based morphometry – the methods. Neuroimage. 2000;11:805–21.CrossRefGoogle Scholar
  27. 27.
    Kohn MR, Ashtari M, Golden NH, Schebendach J, Patel M, Jacobson MS, Shenker IR. Structural brain changes and malnutrition in anorexia nervosa. Ann N Y Acad Sci. 1997;817:398–9.CrossRefGoogle Scholar
  28. 28.
    Titova OE, Hjorth OC, Schiöth HB, Brooks SJ. Anorexia nervosa is linked to reduced brain structure in reward and somatosensory regions: a meta-analysis of VBM studies. BMC Psychiatry. 2013;13:110.CrossRefGoogle Scholar
  29. 29.
    Castro-Fornieles J, Bargallo N, Lazaro L, Andres S, Falcon C, Plana MT, Junqué C. A cross-sectional and follow-up voxel-based morphometric MRI study in adolescent anorexia nervosa. J Psychiatr Res. 2009;43:331–40.CrossRefGoogle Scholar
  30. 30.
    Lázaro L, Andrés S, Calvo A, Cullell C, Moreno E, Plana MT, Falcón C, Bargalló N, Castro-Fornieles J. Normal gray and white matter volume after weight restoration in adolescents with anorexia nervosa. Int J Eat Disord. 2013;46(8):841–8.CrossRefGoogle Scholar
  31. 31.
    Gaudio S, Nocchi F, Franchin T, Genovese E, Cannatà V, Longo D, Fariello G. Gray matter decrease distribution in the early stages of Anorexia Nervosa restrictive type in adolescents. Psychiatry Res. 2011;191:24–30.CrossRefGoogle Scholar
  32. 32.
    Joos A, Hartmann A, Glauche V, Perlov E, Unterbrink T, Saum B, Tuscher O, Tebartz van Alst L, Zeeck A. Grey matter deficit in long-term recovered anorexia nervosa patients. Eur Eat Disord Rev. 2011;19:59–63.CrossRefGoogle Scholar
  33. 33.
    Van den Eynde F, Suda M, Broadbent H, Guillaume S, Van den Eynde M, Steiger H, Israel M, Berlim M, Giampietro V, Simmons A, Treasure J, Campbell I, Schmidt U. Structural magnetic resonance imaging in eating disorders: a systematic review of voxel-based morphometry studies. Eur Eat Disord Rev. 2012;20:94–105.CrossRefGoogle Scholar
  34. 34.
    Amianto F, Caroppo P, D’Agata F, Spalatro A, Lavagnino L, Caglio M, Righi D, Bergui M, Abbate-Daga G, Rigardetto R, Mortara P, Fassino S. Brain volumetric abnormalities in patients with anorexia and bulimia nervosa: a voxel-based morphometry study. Psychiatry Res. 2013;213(3):210–6.CrossRefGoogle Scholar
  35. 35.
    Pannacciulli N, Del Parigi A, Chen K, Le DSN, Reiman EM, Tataranni PA. Brain abnormalities in human obesity: a voxel-based morphometric study. Neuroimage. 2006;31(4):1419–25.CrossRefGoogle Scholar
  36. 36.
    Brooks SJ, Benedict C, Burgos J, Kempton MJ, Kullberg J, Nordenskjöld R, Kilander L, Nylander R, Larsson EM, Johansson L, Ahlström H, Lind L, Schiöth HB. Late-life obesity is associated with smaller global and regional gray matter volumes: a voxel-based morphometric study. Int J Obes (Lond). 2013;37(2):230–6.CrossRefGoogle Scholar
  37. 37.
    Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging. 2001;13:534–46.CrossRefGoogle Scholar
  38. 38.
    Soares J, Marques P, Alves V, Sousa N. A hitchhiker’s guide to diffusion tensor imaging. Front Neurosci. 2013;7:31.CrossRefGoogle Scholar
  39. 39.
    Frieling H, Fischer J, Wilhelm J, Engelhorn T, Bleich S, Hillemacher T, Dörfler A, Kornhuber J, de Zwaan M, Peschel T. Microstructural abnormalities of the posterior thalamic radiation and the mediodorsal thalamic nuclei in females with anorexia nervosa-a voxel based diffusion tensor imaging (DTI) study. J Psychiatr Res. 2012;46:1237–42.CrossRefGoogle Scholar
  40. 40.
    Frank GK, Shott ME, Hagman JO, Yang TT. Localized brain volume and white matter integrity alterations in adolescent anorexia nervosa. J Am Acad Child Adolesc Psychiatry. 2013;52:1066–75.CrossRefGoogle Scholar
  41. 41.
    Yau WY, Bischoff-Grethe A, Theilmann RJ, Torres L, Wagner A, Kaye WH, Fennema-Notestine C. Alterations in white matter microstructure in women recovered from anorexia nervosa. Int J Eat Disord. 2013;46:701–8.CrossRefGoogle Scholar
  42. 42.
    Via E, Zalesky A, Sánchez I, Forcano L, Harrison BJ, Pujol J, Fernández-Aranda F, Menchón JM, Soriano-Mas C, Cardoner N, Fornito A. Disruption of brain white matter microstructure in women with anorexia nervosa. J Psychiatry Neurosci. 2014;39:367–75.CrossRefGoogle Scholar
  43. 43.
    Travis KE, Golden NH, Feldman HM, Solomon M, Nguyen J, Mezer A, Yeatman JD, Dougherty RF. Abnormal white matter properties in adolescent girls with anorexia nervosa. Neuroimage Clin. 2015;9:648–59.CrossRefGoogle Scholar
  44. 44.
    Gaudio S, Quattrocchi CC, Piervincenzi C, Zobel BB, Montecchi FR, Dakanalis A, Riva G, Carducci F. White matter abnormalities in treatment-naive adolescents at the earliest stages of anorexia nervosa: a diffusion tensor imaging study. Psychiatry Res. 2017;266:138–45.CrossRefGoogle Scholar
  45. 45.
    Kazlouski D, Rollin M, Tregellas J, Shott M, Jappe L, Hagman J, Pryor T, Yang TT, Frank GK. Altered fimbria-fornix white matter integrity in anorexia nervosa predicts harm avoidance. Psychiatry Res. 2011;192:109–16.CrossRefGoogle Scholar
  46. 46.
    Nagahara Y, Nakamae T, Nishizawa S, Mizuhara Y, Moritoki Y, Wada Y, Sakai Y, Yamashita T, Narumoto J, Miyata J, Yamada K, Fukui K. A tract-based spatial statistics study in anorexia nervosa: abnormality in the fornix and the cerebellum. Prog Neuropsychopharmacol Biol Psychiatry. 2014;51:72–7.CrossRefGoogle Scholar
  47. 47.
    He X, Stefan M, Terranova K, Steinglass J, Marsh R. Altered white matter microstructure in adolescents and adults with bulimia nervosa. Neuropsychopharmacology. 2015;41(7):1841–8.CrossRefGoogle Scholar
  48. 48.
    Kullmann S, Schweizer F, Veit R, Fritsche A, Preissl H. Compromised white matter integrity in obesity. Obes Rev. 2015;16(4):273–81.CrossRefGoogle Scholar
  49. 49.
    Kullmann S, Callaghan MF, Heni M, Weiskopf N, Scheffler K, Häring HU, Fritsche A, Veit R, Preissl H. Specific white matter tissue microstructure changes associated with obesity. Neuroimage. 2016;125:36–44.CrossRefGoogle Scholar
  50. 50.
    Frank GKW, Kaye WH. Current status of functional imaging in eating disorders. Int J Eat Disord. 2013;45:723–36.CrossRefGoogle Scholar
  51. 51.
    Sachdev P, Mondraty N, Wen W, Gulliford K. Brains of anorexia nervosa patients process self-images differently from non-self-images: an fMRI study. Neuropsychologia. 2008;46:2161–8.CrossRefGoogle Scholar
  52. 52.
    Vocks S, Busch M, Gronemeyer D, Schulte D, Herpertz S, Suchan B. Neural correlates of viewing photographs of one’s own body and another woman’s body in anorexia and bulimia nervosa: an fMRI study. J Psychiatry Neurosci. 2010;35:163–76.CrossRefGoogle Scholar
  53. 53.
    Vocks S, Busch M, Schulte D, Gronermeyer D, Herpertz S, Suchan B. Effects of body image therapy on the activation of the extrastriate body area in anorexia nervosa: an fMRI study. Psychiatry Res. 2010;183:114–8.CrossRefGoogle Scholar
  54. 54.
    Vocks S, Schulte D, Busch M, Gronemeyer D, Herpertz S, Suchan B. Changes in neuronal correlates of body image processing by means of cognitive behavioural body image therapy for eating disorders: a randomized controlled fMRI study. Psychol Med. 2011;41:1651–63.CrossRefGoogle Scholar
  55. 55.
    Via E, Goldberg X, Sánchez I, Forcano L, Harrison BJ, Davey CG, Pujol J, Martínez-Zalacaín I, Fernández-Aranda F, Soriano-Mas C, Cardoner N, Menchón JM. Self and other body perception in anorexia nervosa: the role of posterior DMN nodes. World J Biol Psychiatry. 2016;22:1–15.Google Scholar
  56. 56.
    Uher R, Murphy T, Friederich HC, Dalgleish T, Brammer MJ, Giampietro V, Phillips ML, Andrew CM, Ng VW, Williams SC, Campbell IC, Treasure J. Functional neuroanatomy of body shape perception in healthy and eating disordered women. Biol Psychiatry. 2005;58:990–7.CrossRefGoogle Scholar
  57. 57.
    Mohr HM, Zimmermann J, Roder C, Lenz C, Overbeck G, Grabhorn R. Separating two components of body image in anorexia nervosa using fMRI. Psychol Med. 2010;40:1519–29.CrossRefGoogle Scholar
  58. 58.
    Wagner A, Ruf M, Braus DF, Schmidt MH. Neuronal activity changes and body image distortion in anorexia nervosa. Neuroreport. 2003;14:2193–7.CrossRefGoogle Scholar
  59. 59.
    Miyake Y, Okamoto Y, Onoda K, Kurosaki M, Shirao N, Yamawaki S. Brain activation during the perception of distorted body images in eating disorders. Psychiatry Res. 2010;181:183–92.CrossRefGoogle Scholar
  60. 60.
    Castellini G, Polito C, Bolognesi E, D’Argenio A, Ginestroni A, Mascalchi M, Pellicanò G, Mazzoni LN, Rotella F, Faravelli C, Pupi A, Ricca V. Looking at my body. Similarities and differences between anorexia nervosa patients and controls in body image visual processing. Eur Psychiatry. 2013;28(7):427–35.CrossRefGoogle Scholar
  61. 61.
    Seeger G, Braus DF, Ruf M, Goldberger U, Schmidt MH. Body image distortion reveals amygdala activation in patients with anorexia nervosa – a functional magnetic resonance imaging study. Neurosci Lett. 2002;326:25–8.CrossRefGoogle Scholar
  62. 62.
    Spangler DL, Allen MD. An fMRI investigation of emotional processing of body shape in bulimia nervosa. Int J Eat Disord. 2012;45(1):17–25.CrossRefGoogle Scholar
  63. 63.
    Mohr HM, Röder C, Zimmermann J, Hummel D, Negele A, Grabhorn R. Body image distortions in bulimia nervosa: investigating body size overestimation and body size satisfaction by fMRI. Neuroimage. 2011;56(3):1822–31.CrossRefGoogle Scholar
  64. 64.
    Friederich HC, Brooks S, Uher R, Campbell IC, Giampietro V, Brammer M, Williams SC, Herzog W, Treasure J. Neural correlates of body dissatisfaction in anorexia nervosa. Neuropsychologia. 2010;48:2878–85.CrossRefGoogle Scholar
  65. 65.
    Miyake Y, Okamoto Y, Onoda K, Shirao N, Otagaki Y, Yamawaki S. Neural processing of negative word stimuli concerning body image in patients with eating disorders: an fMRI study. Neuroimage. 2010;50:1333–9.CrossRefGoogle Scholar
  66. 66.
    Kessler RM, Hutson PH, Herman BK, Potenza MN. The neurobiological basis of binge-eating disorder. Neurosci Biobehav Rev. 2016;63:223–38.CrossRefGoogle Scholar
  67. 67.
    Carnell S, Gibson C, Benson L, Ochner CN, Geliebter A. Neuroimaging and obesity: current knowledge and future directions. Obes Rev. 2012;13(1):43–56.CrossRefGoogle Scholar
  68. 68.
    Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkinsa KE, Torod R, Laird AR, Beckmann CF. Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci U S A. 2009;106:13040–5.CrossRefGoogle Scholar
  69. 69.
    Gaudio S, Wiemerslage L, Brooks SJ, Schiöth HB. A systematic review of resting-state functional-MRI studies in anorexia nervosa: evidence for functional connectivity impairment in cognitive control and visuospatial and body-signal integration. Neurosci Biobehav Rev. 2016;71:578–89.CrossRefGoogle Scholar
  70. 70.
    Boehm I, Geisler D, King JA, Ritschel F, Seidel M, Deza Araujo Y, Petermann J, Lohmeier H, Weiss J, Walter M, Roessner V, Ehrlich S. Increased resting state functional connectivity in the fronto-parietal and default mode network in anorexia nervosa. Front Behav Neurosci. 2014;8:346.CrossRefGoogle Scholar
  71. 71.
    Ehrlich S, Lord AR, Geisler D, Borchardt V, Boehm I, Seidel M, Ritschel F, Schulze A, King JA, Weidner K, Roessner V, Walter M. Reduced functional connectivity in the thalamo-insular subnetwork in patients with acute anorexia nervosa. Hum Brain Mapp. 2015;36:1772–81.CrossRefGoogle Scholar
  72. 72.
    Geisler D, Borchardt V, Lord AR, Boehm I, Ritschel F, Zwipp J, Clas S, King JA, Wolff-Stephan S, Roessner V, Walter M, Ehrlich S. Abnormal functional global and local brain connectivity in female patients with anorexia nervosa. J Psychiatry Neurosci. 2015;41:6–15.CrossRefGoogle Scholar
  73. 73.
    Lord A, Ehrlich S, Borchardt V, Geisler D, Seidel M, Huber S, Murr J, Walter M. Brain parcellation choice affects disease-related topology differences increasingly from global to local network levels. Psychiatry Res Neuroimaging. 2016;249:12–9.CrossRefGoogle Scholar
  74. 74.
    Simmons WK, Rapuano KM, Kallman SJ, Ingeholm JE, Miller B, Gotts SJ, Avery JA, Hall KD, Martin A. Category-specific integration of homeostatic signals in caudal but not rostral human insula. Nat Neurosci. 2013;16:1551–2.CrossRefGoogle Scholar
  75. 75.
    Favaro A, Santonastaso P, Manara R, Bosello R, Bommarito G, Tenconi E, DiSalle F. Disruption of visuospatial and somatosensory functional connectivity in anorexia nervosa. Biol Psychiatry. 2012;72:864–70.CrossRefGoogle Scholar
  76. 76.
    Amianto F, D’Agata F, Lavagnino L, Caroppo P, Abbate-Daga G, Righi D, Scarone S, Bergui M, Mortara P, Fassino S. Intrinsic connectivity networks within cerebellum and beyond in eating disorders. Cerebellum. 2013;12:623–31.CrossRefGoogle Scholar
  77. 77.
    Phillipou A, Abel LA, Castle DJ, Hughes ME, Nibbs RG, Gurvich C, Rossell SL. Resting state functional connectivity in anorexia nervosa. Psychiatry Res Neuroimaging. 2016;251:45–52.CrossRefGoogle Scholar
  78. 78.
    Hogenkamp PS, Zhou W, Dahlberg LS, Stark J, Larsen AL, Olivo G, Wiemerslage L, Larsson EM, Sundbom M, Benedict C, Schiöth HB. Higher resting-state activity in reward-related brain circuits in obese versus normal-weight females independent of food intake. Int J Obes (Lond). 2016;40(11):1687–92.CrossRefGoogle Scholar
  79. 79.
    Geha P, Cecchi G, Todd Constable R, Abdallah C, Small DM. Reorganization of brain connectivity in obesity. Hum Brain Mapp. 2017;38(3):1403–20.CrossRefGoogle Scholar
  80. 80.
    Moreno-Lopez L, Contreras-Rodriguez O, Soriano-Mas C, Stamatakis EA, Verdejo-Garcia A. Disrupted functional connectivity in adolescent obesity. Neuroimage Clin. 2016;12:262–8.CrossRefGoogle Scholar
  81. 81.
    Lavagnino L, Amianto F, D’Agata F, Huang Z, Mortara P, Abbate-Daga G, Marzola E, Spalatro A, Fassino S, Northoff G. Reduced resting-state functional connectivity of the somatosensory cortex predicts psychopathological symptoms in women with bulimia nervosa. Front Behav Neurosci. 2014;8:270.CrossRefGoogle Scholar
  82. 82.
    Zaehle T, Jordan K, Wustenberg T, Baudewig J, Dechent P, Mast FW. The neural basis of the egocentric and allocentric spatial frame of reference. Brain Res. 2007;1137:92–103.CrossRefGoogle Scholar
  83. 83.
    Serino S, Dakanalis A, Gaudio S, Carrà G, Cipresso P, Clerici M, Riva G. Out of body, out of space: impaired reference frame processing in eating disorders. Psychiatry Res. 2015;230(2):732–4.CrossRefGoogle Scholar
  84. 84.
    Riva G, Gaudio S. Allocentric lock in anorexia nervosa: new evidences from neuroimaging studies. Med Hypotheses. 2012;79(1):113–7.CrossRefGoogle Scholar
  85. 85.
    Riva G, Gaudio S, Dakanalis A. I’m in a virtual body: a locked allocentric memory may impair the experience of the body in both obesity and anorexia nervosa. Eat Weight Disord. 2014;19(1):133–4.CrossRefGoogle Scholar
  86. 86.
    Dakanalis A, Gaudio S, Serino S, Clerici M, Carrà G, Riva G. Body-image distortion in anorexia nervosa. Nat Rev Dis Primers. 2016;2:16026.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Santino Gaudio
    • 1
    • 2
  • Antonios Dakanalis
    • 3
    • 4
    • 5
    • 6
  • Giuseppe Fariello
    • 7
  • Giuseppe Riva
    • 8
    • 6
  1. 1.Department of Neuroscience, Functional PharmacologyUppsala UniversityUppsalaSweden
  2. 2.Area of Diagnostic Imaging, Departmental Faculty of Medicine and SurgeryUniversità “Campus Bio-Medico di Roma”RomeItaly
  3. 3.Department of Medicine and SurgeryUniversity of Milano BicoccaMilanItaly
  4. 4.Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
  5. 5.Department of Clinical Psychology and PsychobiologyUniversity of BarcelonaBarcelonaSpain
  6. 6.Applied Technology for Neuro-Psychology LabIstituto Auxologico ItalianoMilanItaly
  7. 7.Department of Diagnostic ImagingOspedale San Pietro FatebenefratelliRomeItaly
  8. 8.Centro Studi e Ricerche di Psicologia della Comunicazione, Università Cattolica del Sacro CuoreMilanItaly

Personalised recommendations