Advertisement

Adenosine Receptors: Structure, Distribution, and Signal Transduction

  • Stefania Merighi
  • Stefania Gessi
  • Pier Andrea Borea
Chapter
Part of the The Receptors book series (REC, volume 34)

Abstract

Adenosine receptors A1, A2A, A2B, and A3 are effector proteins triggered by the endogenous nucleoside adenosine to exert its numerous vital physiological effects, behaving like a guardian angel. This chapter offers an overview of the updated knowledge concerning the structure, distribution, and signal transduction of adenosine receptors. They are a family of G protein-coupled receptors widely distributed through the body, from central nervous system to peripheral organs, important and ubiquitous regulators of numerous cellular signaling. Their presence on every cell renders them an attractive opportunity for the pharmacological research and development of new drugs but also a challenge in the difficulty to produce tissue-selective ligands avoided of side effects. To aid this process, several efforts have been invested to reveal the molecular structure and the consequent mechanism of ligand binding of these receptors, and until now more than 30 structures have been published for the human A2A subtype. Finally, the principal adenosine receptor signaling pathways including adenylyl cyclase, phospholipase C, inositol triphosphate, diacylglycerol, phosphatidylinositol 3-kinase, and mitogen-activated protein kinases determining their effects on several transcription factors, such as hypoxia-inducible factor 1, cyclic AMP (cAMP)-responsive elements, nuclear factor-kB, and exchange protein directly activated by cAMP as the most relevant, are presented.

Keywords

Adenosine receptors Signal transduction cAMP Distribution Kinases 

References

  1. Aherne CM, Kewley EM, Eltzschig HK (2011) The resurgence of A2B adenosine receptor signaling. Biochim Biophys Acta Biomembr 1808:1329–1339CrossRefGoogle Scholar
  2. Ansari HR, Teng B, Nadeem A et al (2009) A1 adenosine receptor-mediated PKC and p42/p44 MAPK signaling in mouse coronary artery smooth muscle cells. Am J Physiol Heart Circ Physiol 297:H1032–H1039PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arellano RO, Garay E, Vázquez-Cuevas F (2009) Functional interaction between native G protein-coupled purinergic receptors in Xenopus follicles. Proc Natl Acad Sci U S A 106:16680–16685PubMedPubMedCentralCrossRefGoogle Scholar
  4. Avlani VA, Gregory KJ, Morton CJ et al (2007) Critical role for the second extracellular loop in the binding of both Orthosteric and allosteric G protein-coupled receptor ligands. J Biol Chem 282:25677–25686PubMedCrossRefGoogle Scholar
  5. Ballesteros-Yáñez I, Castillo CA, Merighi S, Gessi S (2018) The role of adenosine receptors in psychostimulant addiction. Front Pharmacol 8:985PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baraldi PG, Tabrizi MA, Gessi S, Borea PA (2008) Adenosine receptor antagonists: translating medicinal chemistry and pharmacology into clinical utility. Chem Rev 108:238–263PubMedCrossRefGoogle Scholar
  7. Bar-Yehuda S, Stemmer SM, Madi L et al (2008) The A3 adenosine receptor agonist CF102 induces apoptosis of hepatocellular carcinoma via de-regulation of the Wnt and NF-kappaB signal transduction pathways. Int J Oncol 33:287–295PubMedPubMedCentralGoogle Scholar
  8. Beukers MW, den Dulk H, van Tilburg EW et al (2000) Why are A(2B) receptors low-affinity adenosine receptors? Mutation of Asn273 to Tyr increases affinity of human A(2B) receptor for 2-(1-Hexynyl)adenosine. Mol Pharmacol 58:1349–1356PubMedCrossRefGoogle Scholar
  9. Beukers MW, van Oppenraaij J, van der Hoorn PPW et al (2004) Random mutagenesis of the human adenosine A2B receptor followed by growth selection in yeast. Identification of constitutively active and gain of function mutations. Mol Pharmacol 65:702–710PubMedCrossRefGoogle Scholar
  10. Biber K, Klotz KN, Berger M, Gebicke-Härter PJ, van Calker D (1997) Adenosine A1 receptor-mediated activation of phospholipase C in cultured astrocytes depends on the level of receptor expression. J Neurosci 17:4956–4964PubMedCrossRefGoogle Scholar
  11. Boison D, Singer P, Shen H-Y et al (2012) Adenosine hypothesis of schizophrenia – opportunities for pharmacotherapy. Neuropharmacology 62:1527–1543PubMedCrossRefGoogle Scholar
  12. Borea PA, Varani K, Vincenzi F et al (2015) The A3 adenosine receptor: history and perspectives. Pharmacol Rev 67:74–102PubMedCrossRefPubMedCentralGoogle Scholar
  13. Borea PA, Gessi S, Merighi S, Varani K (2016) Adenosine as a multi-Signalling Guardian angel in human diseases: when, where and how does it exert its protective effects? Trends Pharmacol Sci 37:419–434CrossRefPubMedGoogle Scholar
  14. Borea PA, Gessi S, Merighi S et al (2017) Pathological overproduction: the bad side of adenosine. Br J Pharmacol 174:1945–1960PubMedCrossRefPubMedCentralGoogle Scholar
  15. Boros D, Thompson J, Larson D (2016) Adenosine regulation of the immune response initiated by ischemia reperfusion injury. Perfusion 31:103–110PubMedCrossRefPubMedCentralGoogle Scholar
  16. Brugarolas M, Navarro G, Martínez-Pinilla E et al (2014) G-protein-coupled receptor Heteromers as key players in the molecular architecture of the central nervous system. CNS Neurosci Ther 20:703–709PubMedCrossRefGoogle Scholar
  17. Brust TB, Cayabyab FS, Zhou N, MacVicar BA (2006) p38 mitogen-activated protein kinase contributes to adenosine A1 receptor-mediated synaptic depression in area CA1 of the rat Hippocampus. J Neurosci 26:12427–12438PubMedCrossRefGoogle Scholar
  18. Carpenter B, Lebon G (2017) Human adenosine A2A receptor: molecular mechanism of ligand binding and activation. Front Pharmacol 8:898PubMedPubMedCentralCrossRefGoogle Scholar
  19. Carpenter B, Nehmé R, Warne T et al (2016) Structure of the adenosine A2A receptor bound to an engineered G protein. Nature 536:104–107PubMedPubMedCentralCrossRefGoogle Scholar
  20. Carriba P, Ortiz O, Patkar K, Justinova Z, Stroik J, Themann A, Müller C, Woods AS, Hope BT, Ciruela F, Casadó V, Canela EI, Lluis C, Goldberg SR, Moratalla R, Franco R, Ferré S (2007) Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology 32:2249–2259PubMedCrossRefPubMedCentralGoogle Scholar
  21. Chan ESL, Fernandez P, Merchant AA et al (2006) Adenosine A2A receptors in diffuse dermal fibrosis: pathogenic role in human dermal fibroblasts and in a murine model of scleroderma. Arthritis Rheum 54:2632–2642PubMedCrossRefGoogle Scholar
  22. Che J, Chan ESL, Cronstein BN (2007) Adenosine A2A receptor occupancy stimulates collagen expression by hepatic stellate cells via pathways involving protein kinase A, Src, and extracellular signal-regulated kinases 1/2 signaling Cascade or p38 mitogen-activated protein kinase signaling path. Mol Pharmacol 72:1626–1636PubMedCrossRefGoogle Scholar
  23. Chen JF, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets--what are the challenges? Nat Rev Drug Discov 12:265–286PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chen Z, Xiong C, Pancyr C et al (2014) Prolonged adenosine A1 receptor activation in hypoxia and Pial vessel disruption focal cortical ischemia facilitates Clathrin-mediated AMPA receptor endocytosis and long-lasting synaptic inhibition in rat hippocampal CA3-CA1 synapses: differential Regulat. J Neurosci 34:9621–9643PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cheng RKY, Segala E, Robertson N et al (2017) Structures of human A1 and A2A adenosine receptors with Xanthines reveal determinants of selectivity. Structure 25:1275–1285.e4PubMedCrossRefGoogle Scholar
  26. Chin A, Svejda B, Gustafsson BI et al (2012) The role of mechanical forces and adenosine in the regulation of intestinal enterochromaffin cell serotonin secretion. Am J Physiol Gastrointest Liver Physiol 302:G397–G405PubMedCrossRefGoogle Scholar
  27. Ciruela F, Casadó V, Rodrigues RJ et al (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor Heteromers. J Neurosci 26:2080–2087PubMedCrossRefPubMedCentralGoogle Scholar
  28. Ciruela F, Escriche M, Burgueno J, Angulo E, Casado V, Soloviev MM, Canela EI, Mallol J, Chan WY, Lluis C, McIlhinney RA, Franco R (2001) Metabotropic glutamate 1alpha and adenosine A1 receptors assemble into functionally interacting complexes. J Biol Chem 276:18345–18351PubMedCrossRefPubMedCentralGoogle Scholar
  29. Congreve M, Andrews SP, Doré AS et al (2012) Discovery of 1,2,4-Triazine derivatives as adenosine A2A antagonists using structure based drug design. J Med Chem 55:1898–1903PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cristóvão-Ferreira S, Navarro G, Brugarolas M et al (2013) A1R–A2AR heteromers coupled to Gs and Gi/0 proteins modulate GABA transport into astrocytes. Purinergic Signal 9:433–449PubMedPubMedCentralCrossRefGoogle Scholar
  31. da Rocha Lapa F, Macedo-Júnior SJ, Luiz Cerutti M, Santos ARS (2014) Pharmacology of adenosine receptors and their signaling role in immunity and inflammation. In: Gowder SJT (ed) Pharmacology and therapeutics. InTech, Rijeka, pp 85–130Google Scholar
  32. Dammen R, Haugen M, Svejda B et al (2013) The stimulatory adenosine receptor ADORA2B regulates serotonin (5-HT) synthesis and release in oxygen-depleted EC cells in inflammatory bowel disease. PLoS One 8:e62607PubMedCrossRefGoogle Scholar
  33. Darashchonak N, Sarisin A, Kleppa M-J et al (2014) Activation of adenosine A2B receptor impairs properties of trophoblast cells and involves mitogen-activated protein (MAP) kinase signaling. Placenta 35:763–771PubMedCrossRefGoogle Scholar
  34. de Lera Ruiz M, Lim Y-H, Zheng J (2014) Adenosine A2A receptor as a drug discovery target. J Med Chem 57:3623–3650PubMedCrossRefGoogle Scholar
  35. Dennis SH, Jaafari N, Cimarosti H et al (2011) Oxygen/glucose deprivation induces a reduction in synaptic AMPA receptors on hippocampal CA3 neurons mediated by mGluR1 and adenosine A3 receptors. J Neurosci 31:11941–11952PubMedPubMedCentralCrossRefGoogle Scholar
  36. DeOliveira CC, Paiva Caria CR, Ferreira Gotardo EM et al (2017) Role of A1 and A2A adenosine receptor agonists in adipose tissue inflammation induced by obesity in mice. Eur J Pharmacol 799:154–159PubMedCrossRefGoogle Scholar
  37. Doré AS, Robertson N, Errey JC et al (2011) Structure of the adenosine A(2A) receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 19:1283–1293PubMedPubMedCentralCrossRefGoogle Scholar
  38. Dubey RK, Fingerle J, Gillespie DG et al (2015) Adenosine attenuates human coronary artery smooth muscle cell proliferation by inhibiting multiple signaling pathways that converge on cyclin D. Hypertension 66:1207–1219PubMedPubMedCentralGoogle Scholar
  39. Eltzschig HK (2009) Adenosine: an old drug newly discovered. Anesthesiology 111:904–915PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fang Y, Olah ME (2007) Cyclic AMP-dependent, protein kinase A-independent activation of extracellular signal-regulated kinase 1/2 following adenosine receptor stimulation in human umbilical vein endothelial cells: role of exchange protein activated by cAMP 1 (Epac1). J Pharmacol Exp Ther 322:1189–1200PubMedCrossRefGoogle Scholar
  41. Fenton RA, Shea LG, Doddi C, Dobson JG (2010) Myocardial adenosine A1 -receptor-mediated adenoprotection involves phospholipase C, PKC-ε, and p38 MAPK, but not HSP27. Am J Physiol Circ Physiol 298:H1671–H1678CrossRefGoogle Scholar
  42. Ferré S, Karcz-Kubicha M, Hope BT, Popoli P, Burgueño J, Gutiérrez MA, Casadó V, Fuxe K, Goldberg SR, Lluis C, Franco R, Ciruela F (2002) Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function. Proc Natl Acad Sci U S A 99:11940–11945PubMedPubMedCentralCrossRefGoogle Scholar
  43. Ferré S, Lluís C, Justinova Z et al (2010a) Adenosine-cannabinoid receptor interactions. Implications for striatal function. Br J Pharmacol 160:443–453PubMedPubMedCentralCrossRefGoogle Scholar
  44. Ferré S, Navarro G, Casadó V et al (2010b) G protein-coupled receptor heteromers as new targets for drug development. Prog Mol Biol Transl Sci 91:41–52PubMedCrossRefGoogle Scholar
  45. Fishman P, Bar-Yehuda S, Madi L, Cohn I (2002) A3 adenosine receptor as a target for cancer therapy. Anti-Cancer Drugs 13:437–443PubMedCrossRefPubMedCentralGoogle Scholar
  46. Fishman P, Bar-Yehuda S, Ohana G et al (2004) An agonist to the A3 adenosine receptor inhibits colon carcinoma growth in mice via modulation of GSK-3 beta and NF-kappa B. Oncogene 23:2465–2471PubMedCrossRefPubMedCentralGoogle Scholar
  47. Fishman P, Bar-Yehuda S, Madi L et al (2006) The PI3K-NF-kappaB signal transduction pathway is involved in mediating the anti-inflammatory effect of IB-MECA in adjuvant-induced arthritis. Arthritis Res Ther 8:R33PubMedPubMedCentralCrossRefGoogle Scholar
  48. Fredholm BB, Arslan G, Halldner L et al (2000) Structure and function of adenosine receptors and their genes. Naunyn Schmiedeberg’s Arch Pharmacol 362:364–374CrossRefGoogle Scholar
  49. Fredholm BB, IJzerman AP, Jacobson KA et al (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552PubMedPubMedCentralGoogle Scholar
  50. Fredholm BB, IJzerman AP, Jacobson KA et al (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors--an update. Pharmacol Rev 63:1–34PubMedPubMedCentralCrossRefGoogle Scholar
  51. Fresco P, Diniz C, Gonçalves J (2004) Facilitation of noradrenaline release by activation of adenosine A2A receptors triggers both phospholipase C and adenylate cyclase pathways in rat tail artery. Cardiovasc Res 63:739–746PubMedCrossRefGoogle Scholar
  52. Fuxe K, Ferré S, Canals M et al (2005) Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function. J Mol Neurosci 26:209–220PubMedCrossRefPubMedCentralGoogle Scholar
  53. Fuxe K, Ferré S, Genedani S et al (2007) Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol Behav 92:210–217PubMedCrossRefGoogle Scholar
  54. Gao Z, Li BS, Day YJ, Linden J (2001) A3 adenosine receptor activation triggers phosphorylation of protein kinase B and protects rat basophilic leukemia 2H3 mast cells from apoptosis. Mol Pharmacol 59:76–82PubMedCrossRefGoogle Scholar
  55. Gao Z-G, Chen A, Barak D et al (2002) Identification by site-directed mutagenesis of residues involved in ligand recognition and activation of the human A3 adenosine receptor. J Biol Chem 277:19056–19063PubMedPubMedCentralCrossRefGoogle Scholar
  56. Gessi S, Varani K, Merighi S et al (2000) A2A adenosine receptors in human peripheral blood cells. Br J Pharmacol 129:2–11PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gessi S, Merighi S, Varani K et al (2008) The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 117:123–140PubMedCrossRefPubMedCentralGoogle Scholar
  58. Gessi S, Fogli E, Sacchetto V et al (2010a) Adenosine modulates HIF-1{alpha}, VEGF, IL-8, and foam cell formation in a human model of hypoxic foam cells. Arterioscler Thromb Vasc Biol 30:90–97PubMedCrossRefPubMedCentralGoogle Scholar
  59. Gessi S, Sacchetto V, Fogli E et al (2010b) Modulation of metalloproteinase-9 in U87MG glioblastoma cells by A3 adenosine receptors. Biochem Pharmacol 79:1483–1495PubMedCrossRefPubMedCentralGoogle Scholar
  60. Gessi S, Merighi S, Fazzi D et al (2011) Adenosine receptor targeting in health and disease. Expert Opin Investig Drugs 20:1591–1609PubMedCrossRefGoogle Scholar
  61. Gessi S, Merighi S, Stefanelli A et al (2013) A1 and A3 adenosine receptors inhibit LPS-induced hypoxia-inducible factor-1 accumulation in murine astrocytes. Pharmacol Res 76:157–170PubMedCrossRefPubMedCentralGoogle Scholar
  62. Gessi S, Bencivenni S, Battistello E et al (2017) Inhibition of A2A adenosine receptor signaling in Cancer cells proliferation by the novel antagonist TP455. Front Pharmacol 8:888PubMedPubMedCentralCrossRefGoogle Scholar
  63. Giambelluca MS, Pouliot M (2017) Early tyrosine phosphorylation events following adenosine A2A receptor in human neutrophils: identification of regulated pathways. J Leukoc Biol 102:829–836PubMedCrossRefPubMedCentralGoogle Scholar
  64. Ginés S, Hillion J, Torvinen M, Le Crom S, Casadó V, Canela EI, Rondin S, Lew JY, Watson S, Zoli M, Agnati LF, Verniera P, Lluis C, Ferré S, Fuxe K, Franco R (2000) Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci U S A 97:8606–8611PubMedPubMedCentralCrossRefGoogle Scholar
  65. Glukhova A, Thal DM, Nguyen AT et al (2017) Structure of the adenosine A1 receptor reveals the basis for subtype selectivity. Cell 168:867–877.e13PubMedCrossRefGoogle Scholar
  66. Guinzberg R, Díaz-Cruz A, Acosta-Trujillo C et al (2017) Newly synthesized cAMP is integrated at a membrane protein complex signalosome to ensure receptor response specificity. FEBS J 284:258–276PubMedCrossRefGoogle Scholar
  67. Hammarberg C, Schulte G, Fredholm BB (2003) Evidence for functional adenosine A3 receptors in microglia cells. J Neurochem 86:1051–1054PubMedCrossRefGoogle Scholar
  68. Haskó G, Németh ZH, Vizi ES et al (1998) An agonist of adenosine A3 receptors decreases interleukin-12 and interferon-gamma production and prevents lethality in endotoxemic mice. Eur J Pharmacol 358:261–268PubMedCrossRefGoogle Scholar
  69. Headrick JP, Ashton KJ, Rose’Meyer RB, Peart JN (2013) Cardiovascular adenosine receptors: expression, actions and interactions. Pharmacol Ther 140:92–111PubMedCrossRefPubMedCentralGoogle Scholar
  70. Hill SJ, May LT, Kellam B, Woolard J (2014) Allosteric interactions at adenosine A1 and A3 receptors: new insights into the role of small molecules and receptor dimerization. Br J Pharmacol 171:1102–1113PubMedPubMedCentralCrossRefGoogle Scholar
  71. Hino T, Arakawa T, Iwanari H et al (2012) G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 482:237–240PubMedPubMedCentralCrossRefGoogle Scholar
  72. Hussain A, Gharanei AM, Nagra AS, Maddock HL (2014) Caspase inhibition via A3 adenosine receptors: a new Cardioprotective mechanism against myocardial infarction. Cardiovasc Drugs Ther 28:19–32PubMedCrossRefGoogle Scholar
  73. Jaakola V-P, IJzerman AP (2010) The crystallographic structure of the human adenosine A2A receptor in a high-affinity antagonist-bound state: implications for GPCR drug screening and design. Curr Opin Struct Biol 20:401–414PubMedCrossRefGoogle Scholar
  74. Jaakola V-P, Griffith MT, Hanson MA et al (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217PubMedPubMedCentralCrossRefGoogle Scholar
  75. Jacobson KA, Merighi S, Varani K et al (2018) A3 adenosine receptors as modulators of inflammation: from medicinal chemistry to therapy. Med Res Rev 38:1031–1072Google Scholar
  76. Jajoo S, Mukherjea D, Watabe K, Ramkumar V (2009) Adenosine A(3) receptor suppresses prostate cancer metastasis by inhibiting NADPH oxidase activity. Neoplasia 11:1132–1145PubMedPubMedCentralCrossRefGoogle Scholar
  77. Janes K, Esposito E, Doyle T et al (2014) A3 adenosine receptor agonist prevents the development of paclitaxel-induced neuropathic pain by modulating spinal glial-restricted redox-dependent signaling pathways. Pain 155:2560–2567PubMedPubMedCentralCrossRefGoogle Scholar
  78. Jazayeri A, Andrews SP, Marshall FH (2017) Structurally enabled discovery of adenosine A2A receptor antagonists. Chem Rev 117:21–37PubMedCrossRefPubMedCentralGoogle Scholar
  79. Jespers W, Oliveira A, Prieto-Díaz R et al (2017) Structure-based design of potent and selective ligands at the four adenosine receptors. Molecules 22:1945CrossRefGoogle Scholar
  80. Jespers W, Schiedel AC, Heitman LH et al (2018) Structural mapping of adenosine receptor mutations: ligand binding and signaling mechanisms. Trends Pharmacol Sci 39:75–89PubMedCrossRefGoogle Scholar
  81. Katoh-Semba R, Kaneko R, Kitajima S et al (2009) Activation of p38 mitogen-activated protein kinase is required for in vivo brain-derived neurotrophic factor production in the rat hippocampus. Neuroscience 163:352–361PubMedCrossRefGoogle Scholar
  82. Kaur T, Borse V, Sheth S et al (2016) Adenosine A1 receptor protects against cisplatin ototoxicity by suppressing the NOX3/STAT1 inflammatory pathway in the cochlea. J Neurosci 36:3962–3977PubMedPubMedCentralCrossRefGoogle Scholar
  83. Kim S-K, Jacobson KA (2006) Computational prediction of homodimerization of the A3 adenosine receptor. J Mol Graph Model 25:549–561PubMedCrossRefPubMedCentralGoogle Scholar
  84. Kim TH, Kim YK, Woo JS (2012) The adenosine A3 receptor agonist cl-IB-MECA induces cell death through Ca2+/ROS-dependent down regulation of ERK and Akt in A172 human glioma cells. Neurochem Res 37:2667–2677PubMedCrossRefGoogle Scholar
  85. Kim GD, Oh J, Jeong LS, Lee SK (2013) Thio-Cl-IB-MECA, a novel A3 adenosine receptor agonist, suppresses angiogenesis by regulating PI3K/AKT/mTOR and ERK signaling in endothelial cells. Biochem Biophys Res Commun 437:79–86PubMedCrossRefGoogle Scholar
  86. Kim BH, Oh JH, Lee NK (2017) The inactivation of ERK1/2, p38 and NF-kB is involved in the down-regulation of Osteoclastogenesis and function by A2B adenosine receptor stimulation. Mol Cells 40:752–760PubMedPubMedCentralGoogle Scholar
  87. Koda K, Salazar-Rodriguez M, Corti F et al (2010) Aldehyde dehydrogenase activation prevents reperfusion arrhythmias by inhibiting local renin release from cardiac mast cells. Circulation 122:771–781PubMedPubMedCentralCrossRefGoogle Scholar
  88. Koscso B, Csoka B, Selmeczy Z et al (2012) Adenosine augments IL-10 production by microglial cells through an A2B adenosine receptor-mediated process. J Immunol 188:445–453PubMedCrossRefGoogle Scholar
  89. Koupenova M, Johnston-Cox H, Vezeridis A et al (2012) A2b adenosine receptor regulates hyperlipidemia and atherosclerosis. Circulation 125:354–363PubMedCrossRefGoogle Scholar
  90. Kull B, Svenningsson P, Fredholm BB (2000) Adenosine A(2A) receptors are colocalized with and activate g(olf) in rat striatum. Mol Pharmacol 58:771–777PubMedCrossRefGoogle Scholar
  91. la Sala A, Gadina M, Kelsall BL (2005) G(i)-protein-dependent inhibition of IL-12 production is mediated by activation of the phosphatidylinositol 3-kinase-protein 3 kinase B/Akt pathway and JNK. J Immunol 175:2994–2999PubMedCrossRefGoogle Scholar
  92. Lebon G, Warne T, Edwards PC et al (2011) Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474:521–525PubMedPubMedCentralCrossRefGoogle Scholar
  93. Lebon G, Edwards PC, Leslie AGW, Tate CG (2015) Molecular determinants of CGS21680 binding to the human adenosine A2A receptor. Mol Pharmacol 87:907–915PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lee JY, Jhun BS, Oh YT et al (2006) Activation of adenosine A3 receptor suppresses lipopolysaccharide-induced TNF-α production through inhibition of PI 3-kinase/Akt and NF-κB activation in murine BV2 microglial cells. Neurosci Lett 396:1–6PubMedCrossRefGoogle Scholar
  95. Lee H-S, Chung H-J, Lee HW et al (2011) Suppression of inflammation response by a novel A3 adenosine receptor agonist thio-Cl-IB-MECA through inhibition of Akt and NF-κB signaling. Immunobiology 216:997–1003PubMedCrossRefGoogle Scholar
  96. Leshem-Lev D, Hochhauser E, Chanyshev B et al (2010) Adenosine A1 and A3 receptor agonists reduce hypoxic injury through the involvement of P38 MAPK. Mol Cell Biochem 345:153–160PubMedCrossRefGoogle Scholar
  97. Liang Y-C, Huang C-C, Hsu K-S (2008) A role of p38 mitogen-activated protein kinase in adenosine A1 receptor-mediated synaptic depotentiation in area CA1 of the rat hippocampus. Mol Brain 1:13PubMedPubMedCentralCrossRefGoogle Scholar
  98. Liu W, Chun E, Thompson AA et al (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:232–236PubMedPubMedCentralCrossRefGoogle Scholar
  99. Liu T, Wang X, Bai Y et al (2014) The HIF-2alpha dependent induction of PAP and adenosine synthesis regulates glioblastoma stem cell function through the A2B adenosine receptor. Int J Biochem Cell Biol 49:8–16PubMedCrossRefGoogle Scholar
  100. Ma Y, Gao Z, Xu F et al (2018) A novel combination of astilbin and low-dose methotrexate respectively targeting A2AAR and its ligand adenosine for the treatment of collagen-induced arthritis. Biochem Pharmacol 153:269–281PubMedCrossRefGoogle Scholar
  101. Madi L, Bar-Yehuda S, Barer F et al (2003) A3 adenosine receptor activation in melanoma cells: association between receptor fate and tumor growth inhibition. J Biol Chem 278:42121–42130PubMedCrossRefPubMedCentralGoogle Scholar
  102. Madi L, Cohen S, Ochayin A et al (2007) Overexpression of A3 adenosine receptor in peripheral blood mononuclear cells in rheumatoid arthritis: involvement of nuclear factor-kappaB in mediating receptor level. J Rheumatol 34:20–26PubMedGoogle Scholar
  103. Madi L, Rosenberg-Haggen B, Nyska A, Korenstein R (2013) Enhancing pigmentation via activation of A3 adenosine receptors in B16 melanoma cells and in human skin explants. Exp Dermatol 22:74–77PubMedCrossRefGoogle Scholar
  104. Martin L, Pingle SC, Hallam DM et al (2006) Activation of the adenosine A3 receptor in RAW 264.7 cells inhibits lipopolysaccharide-stimulated tumor necrosis factor-alpha release by reducing calcium-dependent activation of nuclear factor-kappaB and extracellular signal-regulated kinase 1/2. J Pharmacol Exp Ther 316:71–78PubMedCrossRefGoogle Scholar
  105. Mayer P, Hinze AV, Harst A, von Kügelgen I (2011) A2B receptors mediate the induction of early genes and inhibition of arterial smooth muscle cell proliferation via Epac. Cardiovasc Res 90:148–156PubMedCrossRefGoogle Scholar
  106. Mediero A, Perez-Aso M, Cronstein BN (2013) Activation of adenosine A(2A) receptor reduces osteoclast formation via PKA- and ERK1/2-mediated suppression of NFκB nuclear translocation. Br J Pharmacol 169:1372–1388PubMedPubMedCentralCrossRefGoogle Scholar
  107. Mei H-F, Poonit N, Zhang Y-C et al (2018) Activating adenosine A1 receptor accelerates PC12 cell injury via ADORA1/PKC/KATP pathway after intermittent hypoxia exposure. Mol Cell Biochem:1–10. https://doi.org/10.1007/s11010-018-3283-2
  108. Merighi S, Benini A, Mirandola P et al (2005a) A3 adenosine receptor activation inhibits cell proliferation via phosphatidylinositol 3-kinase/Akt-dependent inhibition of the extracellular signal-regulated kinase 1/2 phosphorylation in A375 human melanoma cells. J Biol Chem 280:19516–19526PubMedCrossRefPubMedCentralGoogle Scholar
  109. Merighi S, Benini A, Mirandola P et al (2005b) A3 adenosine receptors modulate hypoxia-inducible factor-1a expression in human A375 melanoma cells. Neoplasia 7:894–903PubMedPubMedCentralCrossRefGoogle Scholar
  110. Merighi S, Benini A, Mirandola P et al (2006) Adenosine modulates vascular endothelial growth factor expression via hypoxia-inducible factor-1 in human glioblastoma cells. Biochem Pharmacol 72:19–31PubMedCrossRefPubMedCentralGoogle Scholar
  111. Merighi S, Benini A, Mirandola P et al (2007a) Hypoxia inhibits paclitaxel-induced apoptosis through adenosine-mediated phosphorylation of bad in glioblastoma cells. Mol Pharmacol 72:162–172PubMedCrossRefGoogle Scholar
  112. Merighi S, Benini A, Mirandola P et al (2007b) Caffeine inhibits adenosine-induced accumulation of hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and interleukin-8 expression in hypoxic human colon cancer cells. Mol Pharmacol 72:395–406PubMedCrossRefGoogle Scholar
  113. Merighi S, Simioni C, Lane R, Ijzerman AP (2010) Regulation of second messenger systems and intracellular pathways. In: A3 adenosine receptors from cell biology to pharmacology and therapeutics. Springer, Dordrecht, pp 61–73CrossRefGoogle Scholar
  114. Merighi S, Borea PA, Stefanelli A et al (2015) A2A and A2B adenosine receptors affect HIF-1α signaling in activated primary microglial cells. Glia 63:1933–1952PubMedCrossRefGoogle Scholar
  115. Merighi S, Bencivenni S, Vincenzi F et al (2017) A2B adenosine receptors stimulate IL-6 production in primary murine microglia through p38 MAPK kinase pathway. Pharmacol Res 117:9–19PubMedCrossRefGoogle Scholar
  116. Meriño M, Briones L, Palma V et al (2017) Rol de los receptores de adenosina en la interacción adipocito-macrófago durante la obesidad. Endocrinol Diabetes Nutr 64:317–327PubMedCrossRefGoogle Scholar
  117. Mohamed RA, Agha AM, Abdel-Rahman AA, Nassar NN (2016) Role of adenosine A2A receptor in cerebral ischemia reperfusion injury: signaling to phosphorylated extracellular signal-regulated protein kinase (pERK1/2). Neuroscience 314:145–159PubMedCrossRefPubMedCentralGoogle Scholar
  118. Moriyama K, Sitkovsky MV (2010) Adenosine A2A receptor is involved in cell surface expression of A2B receptor. J Biol Chem 285:39271–39288PubMedPubMedCentralCrossRefGoogle Scholar
  119. Narlawar R, Lane JR, Doddareddy M et al (2010) Hybrid ortho/allosteric ligands for the adenosine A(1) receptor. J Med Chem 53:3028–3037PubMedCrossRefGoogle Scholar
  120. Navarro G, Ferré S, Cordomi A et al (2010a) Interactions between intracellular domains as key determinants of the quaternary structure and function of receptor heteromers. J Biol Chem 285:27346–27359PubMedPubMedCentralCrossRefGoogle Scholar
  121. Navarro G, Moreno E, Aymerich M et al (2010b) Direct involvement of sigma-1 receptors in the dopamine D1 receptor-mediated effects of cocaine. Proc Natl Acad Sci U S A 107:18676–18681PubMedPubMedCentralCrossRefGoogle Scholar
  122. Navarro G, Borroto-Escuela DO, Fuxe K, Franco R (2016a) Purinergic signaling in Parkinson’s disease. Relevance for treatment. Neuropharmacology 104:161–168PubMedCrossRefPubMedCentralGoogle Scholar
  123. Navarro G, Cordomí A, Zelman-Femiak M et al (2016b) Quaternary structure of a G-protein-coupled receptor heterotetramer in complex with Gi and Gs. BMC Biol 14:26PubMedPubMedCentralCrossRefGoogle Scholar
  124. Neary JT, McCarthy M, Kang Y, Zuniga S (1998) Mitogenic signaling from P1 and P2 purinergic receptors to mitogen-activated protein kinase in human fetal astrocyte cultures. Neurosci Lett 242:159–162PubMedCrossRefGoogle Scholar
  125. Nguyen ATN, Baltos J-A, Thomas T et al (2016a) Extracellular loop 2 of the adenosine A1 receptor has a key role in Orthosteric ligand affinity and agonist efficacy. Mol Pharmacol 90:703–714PubMedCrossRefGoogle Scholar
  126. Nguyen ATN, Vecchio EA, Thomas T et al (2016b) Role of the second extracellular loop of the adenosine A1 receptor on allosteric modulator binding, signaling, and cooperativity. Mol Pharmacol 90:715–725PubMedCrossRefGoogle Scholar
  127. Ochaion A, Bar-Yehuda S, Cohen S et al (2008) The A3 adenosine receptor agonist CF502 inhibits the PI3K, PKB/Akt and NF-kappaB signaling pathway in synoviocytes from rheumatoid arthritis patients and in adjuvant-induced arthritis rats. Biochem Pharmacol 76:482–494PubMedPubMedCentralCrossRefGoogle Scholar
  128. Ohsawa K, Sanagi T, Nakamura Y et al (2012) Adenosine A3 receptor is involved in ADP-induced microglial process extension and migration. J Neurochem 121:217–227PubMedCrossRefGoogle Scholar
  129. Palani CD, Ramanathapuram L, Lam-ubol A, Kurago ZB (2018) Toll-like receptor 2 induces adenosine receptor A2A and promotes human squamous carcinoma cell growth via extracellular signal regulated kinases 1/2. Oncotarget 9:6814–6829PubMedCrossRefGoogle Scholar
  130. Palmer TM, Stiles GL (2000) Identification of threonine residues controlling the agonist-dependent phosphorylation and desensitization of the rat A(3) adenosine receptor. Mol Pharmacol 57:539–545PubMedCrossRefGoogle Scholar
  131. Pedata F, Dettori I, Coppi E et al (2016) Purinergic signalling in brain ischemia. Neuropharmacology 104:105–130PubMedCrossRefPubMedCentralGoogle Scholar
  132. Peeters MC, Wisse LE, Dinaj A et al (2012) The role of the second and third extracellular loops of the adenosine A1 receptor in activation and allosteric modulation. Biochem Pharmacol 84:76–87PubMedCrossRefGoogle Scholar
  133. Peleli M, Fredholm BB, Sobrevia L, Carlström M (2017) Pharmacological targeting of adenosine receptor signaling. Mol Asp Med 55:4–8CrossRefGoogle Scholar
  134. Perez-Aso M, Chiriboga L, Cronstein BN (2012) Pharmacological blockade of adenosine A2A receptors diminishes scarring. FASEB J 26:4254–4263PubMedPubMedCentralCrossRefGoogle Scholar
  135. Perez-Aso M, Fernandez P, Mediero A et al (2014) Adenosine 2A receptor promotes collagen production by human fibroblasts via pathways involving cyclic AMP and AKT but independent of Smad2/3. FASEB J 28:802–812PubMedPubMedCentralCrossRefGoogle Scholar
  136. Phosri S, Arieyawong A, Bunrukchai K et al (2017) Stimulation of adenosine A2B receptor inhibits Endothelin-1-induced cardiac fibroblast proliferation and α-smooth muscle actin synthesis through the cAMP/Epac/PI3K/Akt-signaling pathway. Front Pharmacol 8:428PubMedPubMedCentralCrossRefGoogle Scholar
  137. Phosri S, Bunrukchai K, Parichatikanond W et al (2018) Epac is required for exogenous and endogenous stimulation of adenosine A2B receptor for inhibition of angiotensin II-induced collagen synthesis and myofibroblast differentiation. Purinergic Signal 14(2):141–156PubMedPubMedCentralCrossRefGoogle Scholar
  138. Piirainen H, Ashok Y, Nanekar RT, Jaakola V-P (2011) Structural features of adenosine receptors: from crystal to function. Biochim Biophys Acta 1808:1233–1244PubMedCrossRefGoogle Scholar
  139. Preti D, Baraldi PG, Moorman AR et al (2015) History and perspectives of A2A adenosine receptor antagonists as potential therapeutic agents. Med Res Rev 35:790–848PubMedCrossRefGoogle Scholar
  140. Pugliese AM, Coppi E, Volpini R et al (2007) Role of adenosine A3 receptors on CA1 hippocampal neurotransmission during oxygen-glucose deprivation episodes of different duration. Biochem Pharmacol 74:768–779PubMedPubMedCentralCrossRefGoogle Scholar
  141. Rosenberger P, Schwab JM, Mirakaj V et al (2009) Hypoxia-inducible factor–dependent induction of netrin-1 dampens inflammation caused by hypoxia. Nat Immunol 10:195–202PubMedCrossRefGoogle Scholar
  142. Rouviere E, Arnarez C, Yang L, Lyman E (2017) Identification of two new cholesterol interaction sites on the A2A adenosine receptor. Biophys J 113:2415–2424PubMedCrossRefGoogle Scholar
  143. Sachdeva S, Gupta M (2013) Adenosine and its receptors as therapeutic targets: an overview. Saudi Pharm J 21:245–253PubMedCrossRefGoogle Scholar
  144. Schiedel AC, Hinz S, Thimm D et al (2011) The four cysteine residues in the second extracellular loop of the human adenosine A2B receptor: role in ligand binding and receptor function. Biochem Pharmacol 82:389–399PubMedCrossRefPubMedCentralGoogle Scholar
  145. Schulte G, Fredholm BB (2000) Human adenosine A(1), A(2A), A(2B), and A(3) receptors expressed in Chinese hamster ovary cells all mediate the phosphorylation of extracellular-regulated kinase 1/2. Mol Pharmacol 58:477–482PubMedCrossRefGoogle Scholar
  146. Schulte G, Fredholm BB (2002) Signaling pathway from the human adenosine A(3) receptor expressed in Chinese hamster ovary cells to the extracellular signal-regulated kinase 1/2. Mol Pharmacol 62:1137–1146PubMedCrossRefGoogle Scholar
  147. Seibt BF, Schiedel AC, Thimm D et al (2013) The second extracellular loop of GPCRs determines subtype-selectivity and controls efficacy as evidenced by loop exchange study at A2 adenosine receptors. Biochem Pharmacol 85:1317–1329PubMedCrossRefGoogle Scholar
  148. Shaikh G, Cronstein B (2016) Signaling pathways involving adenosine A2A and A2B receptors in wound healing and fibrosis. Purinergic Signal 12:191–197PubMedPubMedCentralCrossRefGoogle Scholar
  149. Sitaraman SV, Wang L, Wong M et al (2002) The adenosine 2b receptor is recruited to the plasma membrane and associates with E3KARP and Ezrin upon agonist stimulation. J Biol Chem 277:33188–33195PubMedCrossRefGoogle Scholar
  150. Soares AS, Costa VM, Diniz C, Fresco P (2014) The combination of Cl-IB-MECA with paclitaxel: a new anti-metastatic therapeutic strategy for melanoma. Cancer Chemother Pharmacol 74:847–860PubMedCrossRefGoogle Scholar
  151. Soni H, Peixoto-Neves D, Buddington RK, Adebiyi A (2017) Adenosine A1 receptor-operated calcium entry in renal afferent arterioles is dependent on postnatal maturation of TRPC3 channels. Am J Physiol Ren Physiol 313:F1216–F1222CrossRefGoogle Scholar
  152. Stoddart LA, Kellam B, Briddon SJ, Hill SJ (2014) Effect of a toggle switch mutation in TM6 of the human adenosine A3 receptor on Gi protein-dependent signalling and Gi-independent receptor internalization. Br J Pharmacol 171:3827–3844PubMedPubMedCentralCrossRefGoogle Scholar
  153. Stoddart LA, Vernall AJ, Briddon SJ et al (2015) Direct visualisation of internalization of the adenosine A3 receptor and localization with arrestin3 using a fluorescent agonist. Neuropharmacology 98:68–77PubMedCrossRefGoogle Scholar
  154. Storme J, Cannaert A, Van Craenenbroeck K, Stove CP (2018) Molecular dissection of the human A 3 adenosine receptor coupling with β-arrestin2. Biochem Pharmacol 148:298–307PubMedCrossRefGoogle Scholar
  155. Sun Y, Huang P (2016) Adenosine A2B receptor: from cell biology to human diseases. Front Chem 4:37PubMedPubMedCentralCrossRefGoogle Scholar
  156. Sun C-X, Young HW, Molina JG et al (2005) A protective role for the A1 adenosine receptor in adenosine-dependent pulmonary injury. J Clin Invest 115:35–43PubMedPubMedCentralCrossRefGoogle Scholar
  157. Sun Y, Duan Y, Eisenstein AS et al (2012) A novel mechanism of control of NFκB activation and inflammation involving A2B adenosine receptors. J Cell Sci 125:4507–4517PubMedPubMedCentralCrossRefGoogle Scholar
  158. Thimm D, Schiedel AC, Sherbiny FF et al (2013) Ligand-specific binding and activation of the human adenosine a 2B receptor. Biochemistry 52:726–740PubMedCrossRefGoogle Scholar
  159. Torres A, Vargas Y, Uribe D et al (2016) Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget 7:67373–67386PubMedPubMedCentralGoogle Scholar
  160. Trincavelli ML, Tuscano D, Marroni M et al (2002a) Involvement of mitogen protein kinase cascade in agonist-mediated human A3 adenosine receptor regulation. Biochim Biophys Acta, Mol Cell Res 1591:55–62PubMedCrossRefGoogle Scholar
  161. Trincavelli ML, Tuscano D, Marroni M et al (2002b) A3 adenosine receptors in human astrocytoma cells: agonist-mediated desensitization, internalization, and down-regulation. Mol Pharmacol 62:1373–1384PubMedPubMedCentralCrossRefGoogle Scholar
  162. Uribe D, Torres Á, Rocha JD et al (2017) Multidrug resistance in glioblastoma stem-like cells: role of the hypoxic microenvironment and adenosine signaling. Mol Asp Med 55:140–151CrossRefGoogle Scholar
  163. Varani K, Vincenzi F, Tosi A et al (2010) Expression and functional role of adenosine receptors in regulating inflammatory responses in human synoviocytes. Br J Pharmacol 160:101–115PubMedPubMedCentralCrossRefGoogle Scholar
  164. Varani K, Maniero S, Vincenzi F et al (2011) A3 receptors are overexpressed in pleura from patients with mesothelioma and reduce cell growth via Akt/nuclear factor-κB pathway. Am J Respir Crit Care Med 183:522–530PubMedCrossRefGoogle Scholar
  165. Varani K, Vincenzi F, Merighi S et al (2017) Biochemical and pharmacological role of A1 adenosine receptors and their modulation as novel therapeutic strategy. Adv Exp Med Biol 1051:193–232PubMedCrossRefGoogle Scholar
  166. Vyas FS, Hargreaves AJ, Bonner PLR et al (2016) A1 adenosine receptor-induced phosphorylation and modulation of transglutaminase 2 activity in H9c2 cells: a role in cell survival. Biochem Pharmacol 107:41–58PubMedCrossRefGoogle Scholar
  167. Wang L, Kolachala V, Walia B et al (2004) Agonist-induced polarized trafficking and surface expression of the adenosine 2b receptor in intestinal epithelial cells: role of SNARE proteins. Am J Physiol Gastrointest Liver Physiol 287:G1100–G1107PubMedCrossRefGoogle Scholar
  168. Wu W, He Y, Feng X et al (2016) MicroRNA-206 is involved in the pathogenesis of ulcerative colitis via regulation of adenosine A3 receptor. Oncotarget 8:705–721PubMedCentralPubMedGoogle Scholar
  169. Xu F, Wu H, Katritch V et al (2011) Structure of an agonist-bound human A2A adenosine receptor. Science 332:322–327PubMedPubMedCentralCrossRefGoogle Scholar
  170. Xu X, Zheng S, Xiong Y et al (2017) Adenosine effectively restores endotoxin-induced inhibition of human neutrophil chemotaxis via A1 receptor-p38 pathway. Inflamm Res 66:353–364PubMedCrossRefGoogle Scholar
  171. Yago T, Tsukamoto H, Liu Z et al (2015) Multi-inhibitory effects of a 2A adenosine receptor signaling on neutrophil adhesion under flow. J Immunol 195:3880–3889PubMedPubMedCentralCrossRefGoogle Scholar
  172. Yang X, Xin W, Yang X-M et al (2011) A 2B adenosine receptors inhibit superoxide production from mitochondrial complex I in rabbit cardiomyocytes via a mechanism sensitive to pertussis toxin. Br J Pharmacol 163:995–1006PubMedPubMedCentralCrossRefGoogle Scholar
  173. Yoshioka K, Saitoh O, Nakata H (2001) Heteromeric association creates a P2Y-like adenosine receptor. Proc Natl Acad Sci U S A 98:7617–7622PubMedPubMedCentralCrossRefGoogle Scholar
  174. Zhai W, Chen D, Shen H et al (2016) A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway. Mol Brain 9:66PubMedPubMedCentralCrossRefGoogle Scholar
  175. Zhao TC, Kukreja RC (2003) Protein kinase C-delta mediates adenosine A3 receptor-induced delayed cardioprotection in mouse. Am J Physiol Heart Circ Physiol 285:H434–H441PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Stefania Merighi
    • 1
  • Stefania Gessi
    • 1
  • Pier Andrea Borea
    • 1
  1. 1.Department of Medical SciencesUniversity of FerraraFerraraItaly

Personalised recommendations