Renal Adenosine in Health and Disease

  • H. Thomas LeeEmail author
  • Jurgen Schnermann
Part of the The Receptors book series (REC, volume 34)


Adenosine-dependent regulation of renal function in healthy and diseased kidney is mediated by activation of the four types of P1 purinergic adenosine receptors (A1AR, A2AAR, A2BAR, A3AR). The dominant effect of an elevation of plasma adenosine in the renal vasculature is an A2AAR- and A2BAR-mediated vasodilatation that increases global as well as medullary renal blood flow and is in part endothelium-dependent. In addition, a high expression of A1AR in afferent glomerular arterioles can cause a localized vasoconstriction, especially when accessed from the vessel outside, a reaction most evident in the tubuloglomerular feedback response. Effects of adenosine on tubular transport are most pronounced in the proximal tubule where the nucleoside stimulates NaCl reabsorption in the subnormal concentration range while inhibiting transport at elevated levels. Because adenosine production increases in hypoxia, the issue of a role of the nucleoside in the renal injury following ischemia reperfusion has been studied extensively. Experimental evidence supports the notion that adenosine protects against ischemia-induced acute kidney injury by directly acting on renal endothelial and tubular A1AR. Moreover, adenosine protects against renal ischemic reperfusion injury by the anti-inflammatory effect of enhancing the activity of regulatory T cell and by attenuating the inflammatory injury produced by neutrophils via A2AR activation.


Renal adenosine Adenosine receptors Kidney Renal blood flow regulation Ischemia-induced acute kidney injury 



Work by the authors cited in this review was supported by grants from the National Institutes of Health and Columbia University (HTL) and by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (JS).


  1. Abebe W, Hussain T, Olanrewaju H et al (1995) Role of nitric oxide in adenosine receptor-mediated relaxation of porcine coronary artery. Am J Phys 269:H1672–H1678Google Scholar
  2. Agmon Y, Dinour D, Brezis M (1993) Disparate effects of adenosine A1- and A2-receptor agonists on intrarenal blood flow. Am J Phys 265:F802–F806Google Scholar
  3. Aki Y, Tomohiro A, Nishiyama A et al (1997) Effects of KW-3902, a selective and potent adenosine A1 receptor antagonist, on renal hemodynamics and urine formation in anesthetized dogs. Pharmacology 55:193–201PubMedCrossRefPubMedCentralGoogle Scholar
  4. Albinus M, Finkbeiner E, Sosath B et al (1998) Isolated superfused juxtaglomerular cells from rat kidney: a model for study of renin secretion. Am J Phys 275:F991–F997Google Scholar
  5. Al-Mashhadi RH, Skott O, Vanhoutte PM et al (2009) Activation of A(2) adenosine receptors dilates cortical efferent arterioles in mouse. Kidney Int 75:793–799PubMedCrossRefPubMedCentralGoogle Scholar
  6. Awad AS, Huang L, Ye H et al (2006) Adenosine A2A receptor activation attenuates inflammation and injury in diabetic nephropathy. Am J Physiol Renal Physiol 290:F828–F837PubMedCrossRefPubMedCentralGoogle Scholar
  7. Babich V, Vadnagara K, Di Sole F (2015) Dual effect of adenosine a1 receptor activation on renal O2 consumption. J Cell Physiol 230:3093–3104PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bailey MA (2004) Inhibition of bicarbonate reabsorption in the rat proximal tubule by activation of luminal P2Y1 receptors. Am J Physiol Renal Physiol 287:F789–F796PubMedCrossRefPubMedCentralGoogle Scholar
  9. Baranowski RL, Westenfelder C (1994) Estimation of renal interstitial adenosine and purine metabolites by microdialysis. Am J Phys 267:F174–F182Google Scholar
  10. Barrett RJ, Droppleman DA (1993) Interactions of adenosine A1 receptor-mediated renal vasoconstriction with endogenous nitric oxide and ANG II. Am J Phys 265:F651–F659Google Scholar
  11. Bauerle JD, Grenz A, Kim JH et al (2011) Adenosine generation and signaling during acute kidney injury. J Am Soc Nephrol 22:14–20PubMedCrossRefPubMedCentralGoogle Scholar
  12. Beach RE, Good DW (1992) Effects of adenosine on ion transport in rat medullary thick ascending limb. Am J Phys 263:F482–F487Google Scholar
  13. Beach RE, Watts BA 3rd, Good DW et al (1991) Effects of graded oxygen tension on adenosine release by renal medullary and thick ascending limb suspensions. Kidney Int 39:836–842PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bell PD (1985) Cyclic AMP-calcium interaction in the transmission of tubuloglomerular feedback signals. Kidney Int 28:728–732PubMedCrossRefPubMedCentralGoogle Scholar
  15. Beutler JJ, Koomans HA, Bijlsma JA et al (1990) Renal actions of theophylline and atrial natriuretic peptide in humans: a comparison by means of clearance studies. J Pharmacol Exp Ther 255:1314–1319PubMedPubMedCentralGoogle Scholar
  16. Boknam L, Ericson AC, Aberg B et al (1981) Flow resistance of the interlobular artery in the rat kidney. Acta Physiol Scand 111:159–163PubMedCrossRefPubMedCentralGoogle Scholar
  17. Brater DC, Kaojarern S, Chennavasin P (1983) Pharmacodynamics of the diuretic effects of aminophylline and acetazolamide alone and combined with furosemide in normal subjects. J Pharmacol Exp Ther 227:92–97PubMedPubMedCentralGoogle Scholar
  18. Brown NJ, Ryder D, Nadeau J (1993) Caffeine attenuates the renal vascular response to angiotensin II infusion. Hypertension 22:847–52Google Scholar
  19. Brown R, Ollerstam A, Johansson B et al (2001) Abolished tubuloglomerular feedback and increased plasma renin in adenosine A1 receptor-deficient mice. Am J Physiol Regul Integr Comp Physiol 281:R1362–R1367PubMedPubMedCentralGoogle Scholar
  20. Cai H, Batuman V, Puschett DB et al (1994) Effect of KW-3902, a novel adenosine A1 receptor antagonist, on sodium-dependent phosphate and glucose transport by the rat renal proximal tubular cell. Life Sci 55:839–845PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cai H, Puschett DB, Guan S et al (1995) Phosphate transport inhibition by KW-3902, an adenosine A1 receptor antagonist, is mediated by cyclic adenosine monophosphate. Am J Kidney Dis 26:825–830PubMedCrossRefPubMedCentralGoogle Scholar
  22. Cardenas A, Toledo C, Oyarzun C et al (2013) Adenosine A(2B) receptor-mediated VEGF induction promotes diabetic glomerulopathy. Lab Investig 93:135–144PubMedCrossRefPubMedCentralGoogle Scholar
  23. Carlstrom M, Wilcox CS, Welch WJ (2010) Adenosine A(2) receptors modulate tubuloglomerular feedback. Am J Physiol Renal Physiol 299:F412–F417PubMedPubMedCentralCrossRefGoogle Scholar
  24. Carlstrom M, Wilcox CS, Welch WJ (2011) Adenosine A2A receptor activation attenuates Tubuloglomerular feedback responses by stimulation of endothelial nitric oxide synthase. Am J Physiol Renal Physiol 300:F457–F464PubMedCrossRefPubMedCentralGoogle Scholar
  25. Carmines PK, Inscho EW (1994) Renal arteriolar angiotensin responses during varied adenosine receptor activation. Hypertension 23:I114–I119PubMedCrossRefPubMedCentralGoogle Scholar
  26. Castrop H, Huang Y, Hashimoto S et al (2004) Impairment of tubuloglomerular feedback regulation of GFR in ecto-5′-nucleotidase/CD73-deficient mice. J Clin Invest 114:634–642PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chen YF, Li PL, Zou AP (2002) Effect of hyperhomocysteinemia on plasma or tissue adenosine levels and renal function. Circulation 106:1275–1281PubMedCrossRefPubMedCentralGoogle Scholar
  28. Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW (2005) Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol 16:3365–3370PubMedCrossRefPubMedCentralGoogle Scholar
  29. Churchill PC, Churchill MC (1985) A1 and A2 adenosine receptor activation inhibits and stimulates renin secretion of rat renal cortical slices. J Pharmacol Exp Ther 232:589–594PubMedPubMedCentralGoogle Scholar
  30. Cook CB, Churchill PC (1984) Effects of renal denervation on the renal responses of anesthetized rats to cyclohexyladenosine. Can J Physiol Pharmacol 62:934–938PubMedCrossRefPubMedCentralGoogle Scholar
  31. Coulson R, Johnson RA, Olsson RA et al (1991) Adenosine stimulates phosphate and glucose transport in opossum kidney epithelial cells. Am J Phys 260:F921–F928Google Scholar
  32. Coulson R, Proch PS, Olsson RA et al (1996) Upregulated renal adenosine A1 receptors augment PKC and glucose transport but inhibit proliferation. Am J Phys 270:F263–F274Google Scholar
  33. Daly JW, Butts-Lamb P, Padgett W (1983) Subclasses of adenosine receptors in the central nervous system: interaction with caffeine and related methylxanthines. Cell Mol Neurobiol 3:69–80PubMedCrossRefPubMedCentralGoogle Scholar
  34. Davis JO, Shock NW (1949) The effect of theophylline ethylene diamine on renal function in control subjects and in patients with congestive heart failure. J Clin Invest 28:1459–1468PubMedPubMedCentralCrossRefGoogle Scholar
  35. Day YJ, Huang L, McDuffie MJ et al (2003) Renal protection from ischemia mediated by A2A adenosine receptors on bone marrow-derived cells. J Clin Invest 112:883–891PubMedPubMedCentralCrossRefGoogle Scholar
  36. Day YJ, Huang L, Ye H et al (2004) Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: the role of macrophages. Am J Physiol Renal Physiol 288:F722PubMedCrossRefPubMedCentralGoogle Scholar
  37. Day YJ, Huang L, Ye H et al (2006) Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: the role of CD4+ T cells and IFN-gamma. J Immunol 176:3108–3114PubMedCrossRefPubMedCentralGoogle Scholar
  38. Di Sole F (2008) Adenosine and renal tubular function. Curr Opin Nephrol Hypertens 17:399–407PubMedCrossRefPubMedCentralGoogle Scholar
  39. Di Sole F, Cerull R, Petzke S et al (2003) Bimodal acute effects of A1 adenosine receptor activation on Na+/H+ exchanger 3 in opossum kidney cells. J Am Soc Nephrol 14:1720–1730PubMedCrossRefPubMedCentralGoogle Scholar
  40. Dietrich MS, Steinhausen M (1993) Differential reactivity of cortical and juxtamedullary glomeruli to adenosine-1 and adenosine-2 receptor stimulation and angiotensin-converting enzyme inhibition. Microvasc Res 45:122–133PubMedCrossRefPubMedCentralGoogle Scholar
  41. Dietrich MS, Endlich K, Parekh N et al (1991) Interaction between adenosine and angiotensin II in renal microcirculation. Microvasc Res 41:275–288PubMedCrossRefPubMedCentralGoogle Scholar
  42. Elsherbiny NM, Al-Gayyar MM, Abd El Galil KH (2015) Nephroprotective role of dipyridamole in diabetic nephropathy: effect on inflammation and apoptosis. Life Sci 143:8–17PubMedCrossRefPubMedCentralGoogle Scholar
  43. Feng MG, Navar LG (2010) Afferent arteriolar vasodilator effect of adenosine predominantly involves adenosine A2B receptor activation. Am J Physiol Renal Physiol 299:F310–F315PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fenton RA, Poulsen SB, de la Mora Chavez S et al (2015) Caffeine-induced diuresis and natriuresis is independent of renal tubular NHE3. Am J Physiol Renal Physiol 308:F1409–F1420PubMedPubMedCentralCrossRefGoogle Scholar
  45. Fozard JR, Pfannkuche HJ, Schuurman HJ (1996) Mast cell degranulation following adenosine A3 receptor activation in rats. Eur J Pharmacol 298:293–297PubMedCrossRefPubMedCentralGoogle Scholar
  46. Franco M, Bell PD, Navar LG (1989) Effect of adenosine A1 analogue on tubuloglomerular feedback mechanism. Am J Physiol Renal Physiol 257:F231–F236CrossRefGoogle Scholar
  47. Franco M, Bobadilla NA, Suarez J et al (1996) Participation of adenosine in the renal hemodynamic abnormalities of hypothyroidism. Am J Phys 270:F254–F262Google Scholar
  48. Fransen R, Koomans HA (1995) Adenosine and renal sodium handling: direct natriuresis and renal nerve-mediated antinatriuresis. J Am Soc Nephrol 6:1491–1497PubMedPubMedCentralGoogle Scholar
  49. Fredholm BB, Abbracchio MP, Burnstock G et al (1994) Nomenclature and classification of purinoceptors. Pharmacol Rev 46:143–156PubMedPubMedCentralGoogle Scholar
  50. Fredholm BB, Ijzerman AP, Jacobson KA et al (2011) International union of basic and clinical pharmacology. LXXXI. Nomenclature and classification of adenosine receptors - an update. Pharmacol Rev 63:1–34PubMedPubMedCentralCrossRefGoogle Scholar
  51. Fulgraff G (1969) Xanthinderivate als Diuretika. In: Herken H (ed) Handbuch der Experimentellen Pharmakologie, vol XXIV. Springer Verlag, Berlin, pp 596–640Google Scholar
  52. Gabriels G, Endlich K, Rahn KH et al (2000) In vivo effects of diadenosine polyphosphates on rat renal microcirculation. Kidney Int 57:2476–2484PubMedCrossRefPubMedCentralGoogle Scholar
  53. Grbovic L, Radenkovic M, Prostran M et al (2000) Characterization of adenosine action in isolated rat renal artery. Possible role of adenosine A(2A) receptors. Gen Pharmacol 35:29–36PubMedCrossRefPubMedCentralGoogle Scholar
  54. Grenz A, Osswald H, Eckle T et al (2008) The reno-vascular A2B adenosine receptor protects the kidney from ischemia. PLoS Med 5:e137PubMedPubMedCentralCrossRefGoogle Scholar
  55. Grunberger C, Obermayer B, Klar J et al (2006) The calcium paradoxon of renin release: calcium suppresses renin exocytosis by inhibition of calcium-dependent adenylate cyclases AC5 and AC6. Circ Res 99:1197–1206PubMedCrossRefPubMedCentralGoogle Scholar
  56. Guan Z, Osmond DA, Inscho EW (2007) Purinoceptors in the kidney. Exp Biol Med (Maywood) 232:715–726Google Scholar
  57. Hall JE, Granger JP, Hester RL (1985) Interactions between adenosine and angiotensin II in controlling glomerular filtration. Amer J Physiol Renal Physiol 248:F340–F346CrossRefGoogle Scholar
  58. Hansen PB, Castrop H, Briggs J et al (2003) Adenosine induces vasoconstriction through Gi-dependent activation of phospholipase C in isolated perfused afferent arterioles of mice. J Am Soc Nephrol 14:2457–2465PubMedCrossRefPubMedCentralGoogle Scholar
  59. Hansen PB, Hashimoto S, Oppermann M et al (2005) Vasoconstrictor and vasodilator effects of adenosine in the mouse kidney due to preferential activation of A1 or A2 adenosine receptors. J Pharmacol Exp Ther 315:1150–1157PubMedCrossRefPubMedCentralGoogle Scholar
  60. Hansen PB, Friis UG, Uhrenholt TR et al (2007) Intracellular signalling pathways in the vasoconstrictor response of mouse afferent arterioles to adenosine. Acta Physiol (Oxf) 191:89–97CrossRefGoogle Scholar
  61. Hashimoto K, Kumakura S (1965) The pharmacological features of the coronary, renal, mesenteric, and femoral arteries. Jap. J Physiol 15:540–551Google Scholar
  62. Hasko G, Linden J, Cronstein B et al (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Disc 7:759–770CrossRefGoogle Scholar
  63. Heyeraas KJ, Aukland K (1987) Interlobular arterial resistance: influence of renal arterial pressure and angiotensin II. Kidney Int 31:1291–1298PubMedCrossRefPubMedCentralGoogle Scholar
  64. Heyeraas Tonder KJ, Aukland K (1979/80) Interlobular arterial pressure in the rat kidney. Renal Physiol 2:214–221Google Scholar
  65. Holz FG, Steinhausen M (1987) Renovascular effects of adenosine receptor agonists. Renal Physiol 10:272–282PubMedPubMedCentralGoogle Scholar
  66. Hoste EA, Kellum NM (2007) Incidence, classification, and outcomes of acute kidney injury. Contrib Nephrol 156:32038Google Scholar
  67. Hoste EA, Kellum JA, Katz NM et al (2010) Epidemiology of acute kidney injury. Contrib Nephrol 165:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  68. Huang DY, Vallon V, Zimmermann H et al (2006) Ecto-5′-nucleotidase (cd73)-dependent and -independent generation of adenosine participates in the mediation of tubuloglomerular feedback in vivo. Am J Physiol Renal Physiol 291:F282–F288PubMedCrossRefPubMedCentralGoogle Scholar
  69. Ibarrola AM, Inscho EW, Vari RC et al (1991) Influence of adenosine receptor blockade on renal function and renal autoregulation. J Am Soc Nephrol 2:991–998Google Scholar
  70. Inscho EW, Ohishi K, Navar LG (1992) Effects of ATP on pre- and postglomerular juxtamedullary microvasculature. Am J Phys 263:F886–F893Google Scholar
  71. Itoh S, Carretero OA (1985) Role of the macula densa in renin release. Hypertension 7:I49–I54PubMedCrossRefPubMedCentralGoogle Scholar
  72. Itoh S, Carretero OA, Murray RD (1985) Possible role of adenosine in the macula densa mechanism of renin release in rabbits. J Clin Invest 76:1412–1417PubMedPubMedCentralCrossRefGoogle Scholar
  73. Jackson EK (1991) Adenosine: a physiological brake on renin release. Annu Rev Pharmacol Toxicol 31:1–35PubMedCrossRefPubMedCentralGoogle Scholar
  74. Jackson EK, Zhu C, Tofovic SP (2002) Expression of adenosine receptors in the preglomerular microcirculation. Am J Physiol Renal Physiol 283:F41–F51PubMedCrossRefPubMedCentralGoogle Scholar
  75. Jackson EK, Zacharia LC, Zhang M et al (2006) cAMP-adenosine pathway in the proximal tubule. J Pharmacol Exp Ther 317:1219–1229PubMedCrossRefPubMedCentralGoogle Scholar
  76. Jacobson KA (1998) Adenosine A3 receptors: novel ligands and paradoxical effects. Trends Pharmocol Sci 19:184–191CrossRefGoogle Scholar
  77. Jacobson KA, Muller CE (2016) Medicinal chemistry of adenosine, P2Y, and P2X receptors. Neuropharmacology 104:31–49PubMedCrossRefPubMedCentralGoogle Scholar
  78. Jang HR, Rabb H (2015) Immune cells in experimental acute kidney injury. Nat Rev Nephrol 11:88–101PubMedCrossRefPubMedCentralGoogle Scholar
  79. Jones DR, Lee HT (2008) Perioperative renal protection. Best Pract. Res Clin Anaesthesiol 22:193–208Google Scholar
  80. Joo JD, Kim M, Horst P et al (2007) Acute and delayed renal protection against renal ischemia and reperfusion injury with A1 adenosine receptors. Am J Physiol Renal Physiol 293:F1847–F1857PubMedCrossRefPubMedCentralGoogle Scholar
  81. Joyner WL, Mohama RE, Myers TO et al (1988) The selective response to adenosine of renal microvessels from hamster explants. Microvasc Res 35:122–131PubMedCrossRefPubMedCentralGoogle Scholar
  82. Kim SM, Mizel D, Huang YG et al (2006) Adenosine as a mediator of macula densa-dependent inhibition of renin secretion. Am J Physiol Renal Physiol 290:F1016–F1023PubMedCrossRefPubMedCentralGoogle Scholar
  83. Kim M, Chen SW, Park SW et al (2009) Kidney-specific reconstitution of the A1 adenosine receptor in A1 adenosine receptor knockout mice reduces renal ischemia-reperfusion injury. Kidney Int 75:809–823PubMedPubMedCentralCrossRefGoogle Scholar
  84. Kim JY, Kim M, Ham A et al (2013) IL-11 is required for A1 adenosine receptor-mediated protection against ischemic AKI. J Am Soc Nephrol 24:1558–1570PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kinsey GR, Okusa MD (2014) Expanding role of T cells in acute kidney injury. Curr Opin Nephrol Hypertens 23:9–16PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kinsey GR, Sharma R, Okusa MD (2013) Regulatory T cells in AKI. J Am Soc Nephrol 24:1720–1726PubMedPubMedCentralCrossRefGoogle Scholar
  87. Knight RJ, Bowmer CJ, Yates MS (1993) The diuretic action of 8-cyclopentyl-1,3-dipropylxanthine, a selective A1 adenosine receptor antagonist. Br J Pharmacol 109:271–277PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kohno Y, Sei Y, Koshiba M et al (1996) Induction of apoptosis in HL-60 human promyelocytic leukemia cells by adenosine A(3) receptor agonists. Biochem Biophys Res Comm 219:904–910PubMedCrossRefPubMedCentralGoogle Scholar
  89. Kon V, Harris RC, Ichikawa I (1990) A regulatory role for large vessels in organ circulation. Endothelial cells of the main renal artery modulate intrarenal hemodynamics in the rat. J Clin Invest 85:1728–1733PubMedPubMedCentralCrossRefGoogle Scholar
  90. Kost CK Jr, Jackson EK (1991) Effect of angiotensin II on plasma adenosine concentrations in the rat. J Cardiovasc Pharmacol 17:838–845PubMedCrossRefPubMedCentralGoogle Scholar
  91. Kost CK Jr, Herzer WA, Rominski BR et al (2000) Diuretic response to adenosine A(1) receptor blockade in normotensive and spontaneously hypertensive rats: role of pertussis toxin-sensitive G-proteins. J Pharmacol Exp Ther 292:752–760PubMedPubMedCentralGoogle Scholar
  92. Kreisberg MS, Silldorff EP, Pallone TL (1997) Localization of adenosine-receptor subtype mRNA in rat outer medullary descending vasa recta by RT-PCR. Amer. J. Physiol. Heart Circ. Physiol 272:H1231–H1238Google Scholar
  93. Kuan CJ, Wells JN, Jackson EK (1989) Endogenous adenosine restrains renin release during sodium restriction. J Pharmacol Exp Ther 249:110–116PubMedPubMedCentralGoogle Scholar
  94. Kuan CJ, Wells JN, Jackson EK (1990) Endogenous adenosine restrains renin release in conscious rats. Circ Res 66:637–646PubMedCrossRefPubMedCentralGoogle Scholar
  95. Kuczeriszka M, Dobrowolski L, Walkowska A et al (2013) Adenosine effects on renal function in the rat: role of sodium intake and cytochrome P450. Nephron Physiol 123:1–5PubMedCrossRefPubMedCentralGoogle Scholar
  96. Kurtz A, Della Bruna R, Pfeilschifter J et al (1988) Role of cGMP as second messenger of adenosine in the inhibition of renin release. Kidney Int 33:798–803PubMedCrossRefPubMedCentralGoogle Scholar
  97. Lai EY, Patzak A, Steege A et al (2006) Contribution of adenosine receptors in the control of arteriolar tone and adenosine-angiotensin II interaction. Kidney Int 70:690–698PubMedCrossRefPubMedCentralGoogle Scholar
  98. Lange-Sperandio B, Forbes MS, Thornhill B et al (2005) A2A adenosine receptor agonist and PDE4 inhibition delays inflammation but fails to reduce injury in experimental obstructive nephropathy. Nephron Exp Nephrol 100:e113–e123PubMedCrossRefPubMedCentralGoogle Scholar
  99. Lee J, Ha JH, Kim S et al (2002) Caffeine decreases the expression of Na+/K+-ATPase and the type 3 Na+/H+ exchanger in rat kidney. Clin Exp Pharmacol Physiol 29:559–63Google Scholar
  100. Lee HT, Ota-Setlik A, Xu H et al (2003) A3 adenosine receptor knockout mice are protected against ischemia- and myoglobinuria-induced renal failure. Am J Physiol Renal Physiol 284:F267–F273PubMedCrossRefPubMedCentralGoogle Scholar
  101. Lee HT, Gallos G, Nasr SH et al (2004a) A1 adenosine receptor activation inhibits inflammation, necrosis, and apoptosis after renal ischemia-reperfusion injury in mice. J Am Soc Nephrol 15:102–111PubMedCrossRefPubMedCentralGoogle Scholar
  102. Lee HT, Xu H, Nasr SH et al (2004b) A1 adenosine receptor knockout mice exhibit increased renal injury following ischemia and reperfusion. Am J Physiol Renal Physiol 286:F298–F306PubMedCrossRefPubMedCentralGoogle Scholar
  103. Lee HT, Kim M, Jan M et al (2007) Renal tubule necrosis and apoptosis modulation by A1 adenosine receptor expression. Kidney Int 71:1249–1261PubMedCrossRefPubMedCentralGoogle Scholar
  104. Lee HT, Park M, Kim M et al (2012) Interleukin-11 protects against renal ischemia and reperfusion injury. Am J Physiol Renal Physiol 303:F1216–F1224PubMedPubMedCentralCrossRefGoogle Scholar
  105. Lee JW, Chou CL, Knepper MA (2015) Deep sequencing in microdissected renal tubules identifies nephron segment-specific transcriptomes. J Am Soc Nephrol 26:2669–2677PubMedPubMedCentralCrossRefGoogle Scholar
  106. Levens N, Beil M, Schulz R (1991) Intrarenal actions of the new adenosine agonist CGS 21680A, selective for the A2 receptor. J Pharmacol Exp Ther 257:1013–1019PubMedPubMedCentralGoogle Scholar
  107. Li J, Fenton RA, Wheeler HB et al (1998) Adenosine A2a receptors increase arterial endothelial cell nitric oxide. J Surg Res 80:357–364PubMedCrossRefPubMedCentralGoogle Scholar
  108. Li L, Lai EY, Huang YG et al (2012a) Renal afferent arteriolar and tubuloglomerular feedback reactivity in mice with conditional deletions of adenosine 1 receptors. Am J Physiol Renal Physiol 303:F1166–F1175PubMedPubMedCentralCrossRefGoogle Scholar
  109. Li L, Huang L, Ye H et al (2012b) Dendritic cells tolerized with adenosine A2AR agonist attenuate acute kidney injury. J Clin Invest 122:3931–3942PubMedPubMedCentralCrossRefGoogle Scholar
  110. Linden J (2006) New insights into the regulation of inflammation by adenosine. J Clin Invest 116:1835–1837PubMedPubMedCentralCrossRefGoogle Scholar
  111. Londos C, Cooper DM, Wolff J (1980) Subclasses of external adenosine receptors. Proc Nat Acad Sci USA 77:2551–2554PubMedCrossRefPubMedCentralGoogle Scholar
  112. Lu Y, Zhang R, Ge Y et al (2015) Identification and function of adenosine A3 receptor in afferent arteriole. Am J Physiol Renal Physiol 308:F1020–F1025PubMedPubMedCentralCrossRefGoogle Scholar
  113. Ludens JH, Willis LR, Williamson HE (1970) The effect of aminophylline on renal hemodynamics and sodium excretion. Arch Int Pharmacodyn Ther 185:274–286PubMedPubMedCentralGoogle Scholar
  114. Martin PL, Potts AA (1994) The endothelium of the rat renal artery plays an obligatory role in A2 adenosine receptor-mediated relaxation induced by 5'-N-ethylcarboxamidoadenosine and N6-cyclopentyladenosine. J Pharmacol Exp Ther 270:893–899PubMedPubMedCentralGoogle Scholar
  115. Menzies RI, Tam FW, Unwin RJ et al (2017) Purinergic signaling in kidney disease. Kidney Int 91:315–323PubMedCrossRefPubMedCentralGoogle Scholar
  116. Miyamoto M, Yagil Y, Larson T et al (1988) Effects of intrarenal adenosine on renal function and medullary blood flow in the rat. Am J Phys 255:F1230–F1234Google Scholar
  117. Mizumoto H, Karasawa A (1993) Renal tubular site of action of KW-3902, a novel adenosine A1-receptor antagonist, in anesthetized rats. Jpn J Pharmacol 61:251–253PubMedCrossRefPubMedCentralGoogle Scholar
  118. Moyer BD, McCoy DE, Lee B et al (1995) Adenosine inhibits arginine vasopressin-stimulated chloride secretion in a mouse IMCD cell line (mIMCD-K2). Am J Phys 269:F884–F891CrossRefGoogle Scholar
  119. Mozaffari MS, Abebe W, Warren BK (2000) Renal adenosine A3 receptors in the rat: assessment of functional role. Can J Physiol Pharmacol 78:428–432PubMedCrossRefPubMedCentralGoogle Scholar
  120. Munger KA, Jackson EK (1994) Effects of selective A1 receptor blockade on glomerular hemodynamics: involvement of renin-angiotensin system. Am J Phys 267:F783–F790Google Scholar
  121. Murray RD, Churchill PC (1985) Concentration dependency of the renal vascular and renin secretory responses to adenosine receptor agonists. J Pharmacol Exp Ther 232:189–193PubMedPubMedCentralGoogle Scholar
  122. Nees S, Herzog V, Becker BF et al (1985) The coronary endothelium: a highly active metabolic barrier for adenosine. Basic Res Cardiol 80:515–529PubMedCrossRefPubMedCentralGoogle Scholar
  123. Nishiyama A, Miyatake A, Aki Y et al (1999a) Adenosine A(1) receptor antagonist KW-3902 prevents hypoxia-induced renal vasoconstriction. J Pharmacol Exp Ther 291:988–993PubMedPubMedCentralGoogle Scholar
  124. Nishiyama A, Miura K, Miyatake A et al (1999b) Renal interstitial concentration of adenosine during endotoxin shock. Eur J Pharmacol 385:209–216PubMedCrossRefPubMedCentralGoogle Scholar
  125. Nishiyama A, Inscho EW, Navar LG (2001a) Interactions of adenosine A1 and A2a receptors on renal microvascular reactivity. Am J Physiol Renal Physiol 280:F406–F414PubMedCrossRefPubMedCentralGoogle Scholar
  126. Nishiyama A, Kimura S, He H et al (2001b) Renal interstitial adenosine metabolism during ischemia in dogs. Am J Physiol Renal Physiol 280:F231–F238PubMedCrossRefPubMedCentralGoogle Scholar
  127. Nussberger J, Mooser V, Maridor G et al (1990) Caffeine-induced diuresis and atrial natriuretic peptides. J Cardiovasc Pharmacol 15:685–691PubMedCrossRefPubMedCentralGoogle Scholar
  128. Okumura M, Miura K, Yamashita Y et al (1992) Role of endothelium-derived relaxing factor in the in vivo renal vascular action of adenosine in dogs. J Pharmacol Exp Ther 260:1262–1267PubMedPubMedCentralGoogle Scholar
  129. Okusa MD (2002) A(2A) adenosine receptor: a novel therapeutic target in renal disease. Am J Physiol Renal Physiol 282:F10–F18PubMedCrossRefPubMedCentralGoogle Scholar
  130. Okusa MD, Linden J, Huang L et al (2001) Enhanced protection from renal ischemia-reperfusion injury with A(2A)-adenosine receptor activation and PDE4 inhibition. Kidney Int 59:2114–2125PubMedCrossRefPubMedCentralGoogle Scholar
  131. Olanrewaju HA, Mustafa SJ (2000) Adenosine A(2A) and A(2B) receptors mediated nitric oxide production in coronary artery endothelial cells. Gen Pharmacol 35:171–177PubMedCrossRefPubMedCentralGoogle Scholar
  132. Oppermann M, Friedman DJ, Faulhaber-Walter R et al (2008) Tubuloglomerular feedback and renin secretion in NTPDase1/CD39-deficient mice. Am J Physiol Renal Physiol 294:F965–F970PubMedCrossRefPubMedCentralGoogle Scholar
  133. Oppermann M, Qin Y, Lai EY et al (2009) Enhanced tubuloglomerular feedback in mice with vascular overexpression of A1 adenosine receptors. Am J Physiol Renal Physiol 297:F1256–F1264PubMedPubMedCentralCrossRefGoogle Scholar
  134. Ortiz-Capisano MC, Ortiz PA, Harding P et al (2007) Decreased intracellular calcium stimulates renin release via calcium-inhibitable adenylyl cyclase. Hypertension 49:162–169PubMedCrossRefPubMedCentralGoogle Scholar
  135. Ortiz-Capisano MC, Atchison DK, Harding P et al (2013) Adenosine inhibits renin release from juxtaglomerular cells via an A1 receptor-TRPC-mediated pathway. Am J Physiol Renal Physiol 305:F1209–F1219PubMedPubMedCentralCrossRefGoogle Scholar
  136. Osswald H (1975) Renal effects of adenosine and their inhibition by theophylline in dogs. Naunyn-Schmiedeberg Arch Pharmacol 288:79–86CrossRefGoogle Scholar
  137. Osswald H, Schmitz HJ, Heidenreich O (1975) Adenosine response of the rat kidney after saline loading, sodium restriction and hemorrhagia. Pflugers Arch 357:323–333PubMedCrossRefPubMedCentralGoogle Scholar
  138. Osswald H, Spielman WS, Knox FG (1978) Mechanism of adenosine-mediated decreases in glomerular filtration rate in dogs. Circ Res 43:465–469PubMedCrossRefPubMedCentralGoogle Scholar
  139. Osswald H, Nabakowski G, Hermes H (1980) Adenosine as a possible mediator of metabolic control of glomerular filtration rate. Int J Biochem 12:263–267PubMedCrossRefPubMedCentralGoogle Scholar
  140. Osswald H, Muhlbauer B, Vallon V (1997) Adenosine and tubuloglomerular feedback. Blood Purif 15:243–252PubMedCrossRefPubMedCentralGoogle Scholar
  141. Oyarzun C, Salinas C, Gomez D et al (2015) Increased levels of adenosine and ecto 5′-nucleotidase (CD73) activity precede renal alterations in experimental diabetic rats. Biochem Biophys Res Commun 468:354–359PubMedCrossRefPubMedCentralGoogle Scholar
  142. Passmore AP, Kondowe GB, Johnston GD (1987) Renal and cardiovascular effects of caffeine: a dose-response study. Clin Sci (Lond) 72:749–56Google Scholar
  143. Park SW, Kim M, Kim JY et al (2012) Proximal tubule sphingosine kinase-1 has a critical role in A1 adenosine receptor-mediated renal protection from ischemia. Kidney Int 82:878–891PubMedPubMedCentralCrossRefGoogle Scholar
  144. Patel L, Thaker A (2014) The effects of adenosine A2B receptor inhibition on VEGF and nitric oxide axis-mediated renal function in diabetic nephropathy. Ren Fail 36:916–924PubMedCrossRefPubMedCentralGoogle Scholar
  145. Patinha D, Fasching A, Pinho D et al (2013) Angiotensin II contributes to glomerular hyperfiltration in diabetic rats independently of adenosine type I receptors. Am J Physiol Renal Physiol 304:F614–F622PubMedPubMedCentralCrossRefGoogle Scholar
  146. Persson P, Hansell P, Palm F (2015a) Reduced adenosine A2a receptor-mediated efferent arteriolar vasodilation contributes to diabetes-induced glomerular hyperfiltration. Kidney Int 87:109–115PubMedCrossRefPubMedCentralGoogle Scholar
  147. Persson P, Friederich-Persson M, Fasching A et al (2015b) Adenosine A2 a receptor stimulation prevents proteinuria in diabetic rats by promoting an anti-inflammatory phenotype without affecting oxidative stress. Acta Physiol (Oxf) 214:311–318CrossRefGoogle Scholar
  148. Pflueger AC, Osswald H, Knox FG (1999a) Adenosine-induced renal vasoconstriction in diabetes mellitus rats: role of nitric oxide. Am J Phys 276:F340–F346Google Scholar
  149. Pflueger AC, Gross JM, Knox FG (1999b) Adenosine-induced renal vasoconstriction in diabetes mellitus rats: role of prostaglandins. Am J Phys 277:R1410–R1417Google Scholar
  150. Premen AJ, Hall JE, Mizelle HL et al (1985) Maintenance of renal autoregulation during infusion of aminophylline or adenosine. Am J Physiol 248:F366–73Google Scholar
  151. Pye C, Elsherbiny NM, Ibrahim AS et al (2014) Adenosine kinase inhibition protects the kidney against streptozotocin-induced diabetes through anti-inflammatory and anti-oxidant mechanisms. Pharmacol Res 85:45–54PubMedPubMedCentralCrossRefGoogle Scholar
  152. Rachima-Maoz C, Peleg E, Rosenthal T (1998) The effect of caffeine on ambulatory blood pressure in hypertensive patients. Am J Hypertens 11:1426–1432PubMedCrossRefPubMedCentralGoogle Scholar
  153. Rajagopal M, Pao AC (2010) Adenosine activates a2b receptors and enhances chloride secretion in kidney inner medullary collecting duct cells. Hypertension 55:1123–1128PubMedPubMedCentralCrossRefGoogle Scholar
  154. Rajasekeran H, Lytvyn Y, Bozovic A et al (2017) Urinary adenosine excretion in type 1 diabetes. Am J Physiol Renal Physiol 313:F184–F191PubMedCrossRefPubMedCentralGoogle Scholar
  155. Rakic V, Burke V, Beilin LJ (1999) Effects of coffee on ambulatory blood pressure in older men and women: a randomized controlled trial. Hypertension 33:869–873PubMedCrossRefPubMedCentralGoogle Scholar
  156. Reeves JJ, Jones CA, Sheehan MJ et al (1997) Adenosine A3 receptors promote degranulation of rat mast cells both in vitro and in vivo. Inflamm Res 46:180–184PubMedCrossRefPubMedCentralGoogle Scholar
  157. Ren Y, Garvin JL, Carretero OA (2001) Efferent arteriole tubuloglomerular feedback in the renal nephron. Kidney Int 59:222–229PubMedCrossRefPubMedCentralGoogle Scholar
  158. Ren Y, Arima S, Carretero OA et al (2002) Possible role of adenosine in macula densa control of glomerular hemodynamics. Kidney Int 61:169–176PubMedCrossRefPubMedCentralGoogle Scholar
  159. Ren Y, Garvin JL, Liu R et al (2004) Role of macula densa adenosine triphosphate (ATP) in tubuloglomerular feedback. Kidney Int 66:1479–1485PubMedCrossRefPubMedCentralGoogle Scholar
  160. Rieg T, Steigele H, Schnermann J et al (2005) Requirement of intact adenosine A1 receptors for the diuretic and natriuretic action of the methylxanthines theophylline and caffeine. J Pharmacol Exp Ther 313:403–409PubMedCrossRefPubMedCentralGoogle Scholar
  161. Rump LC, Jabbari TJ, von Kugelgen I et al (1999) Adenosine mediates nitric-oxide-independent renal vasodilation by activation of A2A receptors. J Hypertens 17:1987–1993PubMedCrossRefPubMedCentralGoogle Scholar
  162. Sallstrom J, Eriksson T, Fredholm BB et al (2014) Inhibition of sodium-linked glucose reabsorption normalizes diabetes-induced glomerular hyperfiltration in conscious adenosine A(1)-receptor deficient mice. Acta Physiol (Oxf) 210:440–445CrossRefGoogle Scholar
  163. Schnermann J (2015) Concurrent activation of multiple vasoactive signaling pathways in vasoconstriction caused by tubuloglomerular feedback: a quantitative assessment. Annu Rev Physiol 77:301–322PubMedCrossRefPubMedCentralGoogle Scholar
  164. Schnermann J, Castrop H (2013) Function of the juxtaglomerular apparatus: control of glomerular hemodynamics and renin secretion. In: Alpern RJ, Caplan MJ, Moe OW (eds) The kidney. Physiology and pathophysiology, vol 1. Elsevier Academic Press, London/Waltham/San Diego, pp 757–801Google Scholar
  165. Schnermann J, Osswald H, Hermle M (1977) Inhibitory effect of methylxanthines on feedback control of glomerular filtration rate in the rat. Pflugers Arch 369:39–48PubMedCrossRefPubMedCentralGoogle Scholar
  166. Schnermann J, Weihprecht H, Briggs JP (1990) Inhibition of tubuloglomerular feedback during adenosine1 receptor blockade. Am J Physiol Renal Physiol 258:F553–F561CrossRefGoogle Scholar
  167. Schweda F, Wagner C, Kramer BK et al (2003) Preserved macula densa-dependent renin secretion in A1 adenosine receptor knockout mice. Am J Physiol Renal Physiol 284:F770–F777PubMedCrossRefPubMedCentralGoogle Scholar
  168. Shirley DG, Walter SJ, Noormohamed FH (2002) Natriuretic effect of caffeine: assessment of segmental sodium reabsorption in humans. Clin Sci (Lond) 103:461–466CrossRefGoogle Scholar
  169. Shneyvays V, Nawrath H, Jacobson KA et al (1998) Induction of apoptosis in cardiac myocytes by an A3 adenosine receptor agonist. Exp Cell Res 243:383–397PubMedCrossRefPubMedCentralGoogle Scholar
  170. Silldorff EP, Pallone TL (2001) Adenosine signaling in outer medullary descending vasa recta. Am J Physiol Regul Integr Comp Physiol 280:R854–R861PubMedCrossRefPubMedCentralGoogle Scholar
  171. Silldorff EP, Kreisberg MS, Pallone TL (1996) Adenosine modulates vasomotor tone in outer medullary descending vasa recta of the rat. J Clin Invest 98:18–23PubMedPubMedCentralCrossRefGoogle Scholar
  172. Siragy HM, Linden J (1996) Sodium intake markedly alters renal interstitial fluid adenosine. Hypertension 27:404–407PubMedCrossRefPubMedCentralGoogle Scholar
  173. Smith JA, Sivaprasadarao A, Munsey TS et al (2001) Immunolocalisation of adenosine A(1) receptors in the rat kidney. Biochem Pharmacol 61:237–244PubMedCrossRefPubMedCentralGoogle Scholar
  174. Spielman WS, Britton SL, Fiksen-Olsen MJ (1980) Effect of adenosine on the distribution of renal blood flow in dogs. Circ Res 46:449–456PubMedCrossRefPubMedCentralGoogle Scholar
  175. Srisawat N, Hoste EE, Kellum JA (2010) Modern classification of acute kidney injury. Blood Purif 29:300–307PubMedCrossRefPubMedCentralGoogle Scholar
  176. Steinhorn RH, Morin FC 3rd, Van Wylen DG et al (1994) Endothelium-dependent relaxations to adenosine in juvenile rabbit pulmonary arteries and veins. Am J Phys 266:H2001–H2006Google Scholar
  177. Sun D, Samuelson LC, Yang T et al (2001) Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci U S A 98:9983–9988PubMedPubMedCentralCrossRefGoogle Scholar
  178. Tagawa H, Vander AJ (1970) Effects of adenosine compounds on renal function and renin secretion in dogs. Circ Res 26:327–338PubMedCrossRefPubMedCentralGoogle Scholar
  179. Tak E, Ridyard D, Kim JH et al (2014) CD73-dependent generation of adenosine and endothelial Adora2b signaling attenuate diabetic nephropathy. J Am Soc Nephrol 25:547–563PubMedCrossRefPubMedCentralGoogle Scholar
  180. Takeda M, Yoshitomi K, Imai M (1993) Regulation of Na(+)-3HCO3- cotransport in rabbit proximal convoluted tubule via adenosine A1 receptor. Am J Phys 265:F511–F519Google Scholar
  181. Tang L, Parker M, Fei Q et al (1999) Afferent arteriolar adenosine A2a receptors are coupled to KATP in in vitro perfused hydronephrotic rat kidney. Am J Phys 277:F926–F933CrossRefGoogle Scholar
  182. Taskiran E, Erbas O, Yigitturk G et al (2016) Exogenously administered adenosine attenuates renal damage in streptozotocin-induced diabetic rats. Ren Fail 38:1276–1282PubMedCrossRefPubMedCentralGoogle Scholar
  183. Thompson CI, Spielman WS (1992) Renal hemodynamic effects of exogenously administered adenosine and polyadenylic acid. Am J Phys 263:F816–F823Google Scholar
  184. Thomson S, Bao D, Deng A et al (2000) Adenosine formed by 5′-nucleotidase mediates tubuloglomerular feedback. J Clin Invest 106:289–298PubMedPubMedCentralCrossRefGoogle Scholar
  185. Thomson SC, Rieg T, Miracle C et al (2011) Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. Am J Physiol Regul Integr Comp Physiol 302:R75–R83PubMedPubMedCentralCrossRefGoogle Scholar
  186. Thurau K (1964) Renal hemodynamics. Am J Med 36:850–860CrossRefGoogle Scholar
  187. Vallon V, Osswald H (2009) Adenosine receptors and the kidney. Handb Exp Pharmcol 193:443–470CrossRefGoogle Scholar
  188. Vallon V, Richter K, Huang DY et al (2004) Functional consequences at the single-nephron level of the lack of adenosine A1 receptors and tubuloglomerular feedback in mice. Pflugers Arch 448:214–221PubMedCrossRefPubMedCentralGoogle Scholar
  189. Van Calker D, Muller M, Hamprecht B (1979) Adenosine regulates via two different types of receptors the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33:999–1005PubMedCrossRefPubMedCentralGoogle Scholar
  190. Vitzthum H, Weiss B, Bachleitner W et al (2004) Gene expression of adenosine receptors along the nephron. Kidney Int 65:1180–1190PubMedCrossRefPubMedCentralGoogle Scholar
  191. Wanner C, Inzucchi SE, Lachin JM et al (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375:323–334PubMedCrossRefPubMedCentralGoogle Scholar
  192. Weaver DR, Reppert SM (1992) Adenosine receptor gene expression in rat kidney. Am J Physiol Renal Physiol 263:F991–F995CrossRefGoogle Scholar
  193. Weihprecht H, Lorenz JN, Schnermann J et al (1990) Effect of adenosine1-receptor blockade on renin release from rabbit isolated perfused juxtaglomerular apparatus. J Clin Invest 85:1622–1628PubMedPubMedCentralCrossRefGoogle Scholar
  194. Weihprecht H, Lorenz JN, Briggs JP et al (1992) Vasomotor effects of purinergic agonists in isolated rabbit afferent arterioles. Am J Physiol Renal Physiol 263:F1026–F1033CrossRefGoogle Scholar
  195. Wilcox CS, Welch WJ, Schreiner GF et al (1999) Natriuretic and diuretic actions of a highly selective adenosine A1 receptor antagonist. J Am Soc Nephrol 10:714–720PubMedPubMedCentralGoogle Scholar
  196. Wyatt AW, Steinert JR, Wheeler-Jones CP et al (2002) Early activation of the p42/p44MAPK pathway mediates adenosine-induced nitric oxide production in human endothelial cells: a novel calcium-insensitive mechanism. FASEB J 16:1584–1594PubMedCrossRefPubMedCentralGoogle Scholar
  197. Yagil Y (1990) Interaction of adenosine with vasopressin in the inner medullary collecting duct. Am J Phys 259:F679–F687Google Scholar
  198. Yagil Y (1994) The effects of adenosine on water and sodium excretion. J Pharmacol Exp Ther 268:826–835PubMedPubMedCentralGoogle Scholar
  199. Yagil C, Katni G, Yagil Y (1994) The effects of adenosine on transepithelial resistance and sodium uptake in the inner medullary collecting duct. Pflugers Arch 427:225–232PubMedCrossRefPubMedCentralGoogle Scholar
  200. Yamaguchi S, Umemura S, Tamura K et al (1995) Adenosine A1 receptor mRNA in microdissected rat nephron segments. Hypertension 26:1181–1185PubMedCrossRefPubMedCentralGoogle Scholar
  201. Yap SC, Lee HT (2012) Adenosine and protection from acute kidney injury. Curr Opin Nephrol Hypertens 21:24–32PubMedPubMedCentralCrossRefGoogle Scholar
  202. Yoneyama Y, Suzuki S, Sawa R et al (2000) Plasma adenosine levels increase in women with normal pregnancies. Am J Obstet Gynecol 182:1200–1203PubMedCrossRefPubMedCentralGoogle Scholar
  203. Zanzinger J, Bassenge E (1993) Coronary vasodilation to acetylcholine, adenosine and bradykinin in dogs: effects of inhibition of NO-synthesis and captopril. Eur Heart J 14(Suppl I):164–168PubMedPubMedCentralGoogle Scholar
  204. Zhang YL, Li T, Lautt WW (1994) Adenosine metabolism in vivo. Proc West Pharmacol Soc 37:15–16PubMedPubMedCentralGoogle Scholar
  205. Zhao Z, Yaar R, Ladd D et al (2002) Overexpression of A3 adenosine receptors in smooth, cardiac, and skeletal muscle is lethal to embryos. Microvasc Res 63:61–69PubMedCrossRefPubMedCentralGoogle Scholar
  206. Zou AP, Nithipatikom K, Li PL et al (1999) Role of renal medullary adenosine in the control of blood flow and sodium excretion. Am J Phys 276:R790–R798Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Anesthesiology, Anesthesiology Research LaboratoriesColumbia UniversityNew YorkUSA
  2. 2.National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations