Reading and Dyslexia pp 103-134 | Cite as
The Magnocellular Theory of Developmental Dyslexia
Abstract
The late 19th neurological concept of dyslexia had 3 crucial elements: selectively poor reading, with unaffected other cognitive skills and a genetic background. The contemporary ‘phonological theory’ has undermined the selectivity criterion because all poor readers, dyslexic or otherwise, have phonological problems. Here I argue that the phonological theory is pitched at too high a cognitive level so that it does not illuminate the mechanisms that cause reading problems in dyslexia. Recent genetic and imaging studies have confirmed their biological basis. In children with visual reading problems there is strong evidence that they suffer impaired development of the visual magnocellular (M-) system which is vital for tracking shifts of the focus of visual attention and of eye movements. This can often be ameliorated by viewing text through deep yellow or blue filters because they can facilitate the M- system. Likewise children with phonological problems seem to suffer an analogous impairment of sound sequencing, which can be ameliorated by musical training, particularly in rhythm; whilst those with impaired motor sequencing can often be helped by motor training. Thus in dyslexics the neural sub system which is required for rapid and accurate temporal processing and is distributed throughout the brain, appears to be compromised. This system’s ‘M-’ neurones express a specific surface marker that renders them susceptible to autoimmune attack, and the rapidity with which they have to respond, makes them particularly vulnerable to lack of omega 3 long chain polyunsaturated fatty acids in the diet. But its weaknesses for temporal processing may be balanced by exceptional talents for other kinds of cognitive task.
Keywords
Temporal processing Vision Magnocellular Colored filters Audition Embodied cognition Genetics Handedness Omega 3s Dyslexia talentsReferences
- Asbury, K., & Plomin, R. (2013). G is for genes: The impact of genetics on education and achievement (understanding children’s worlds). Hoboken, USA: Wiley.Google Scholar
- Attree, E. A., Turner, M. J., & Cowell, N. (2009). A virtual reality test identifies the visuospatial strengths of adolescents with dyslexia. Cyberpsychology & Behavior, 12(2), 163–168. https://doi.org10.1089/cpb.2008.0204Google Scholar
- Bashir, S., & Al-Ayadhi, L. (2015). Endothelial antibody levels in the sera of children with autism spectrum disorders. Journal of the Chinese Medical Association, 78(7), 414–417. https://doi.org10.1016/j.jcma.2015.01.008Google Scholar
- Bednarek, D. B., & Grabowska, A. (2002). Luminance and chromatic contrast sensitivity in dyslexia: The magnocellular deficit hypothesis revisited. Neuroreport, 13(18), 2521–2525. https://doi.org10.1097/01.wnr.0000048921.00321.35Google Scholar
- Ben-Yehudah, G., Sackett, E., Malchi-Ginzberg, L., & Ahissar, M. (2001). Impaired temporal contrast sensitivity in dyslexics is specific to retain-and-compare paradigms. Brain, 124(7), 1381–1395. https://doi.org10.1093/brain/124.7.1381Google Scholar
- Bradley, L., & Bryant, P. E. (1978). Difficulties in auditory organisation as a possible cause of reading backwardness. Nature, 271(5647), 746–747. https://doi.org10.1038/271746a0Google Scholar
- Brandler, W. M., Morris, A. P., Evans, D. M., Scerri, T. S., Kemp, J. P., Timpson, N. J., … Paracchini, S. (2013). Common variants in left/right asymmetry genes and pathways are associated with relative hand skill. PLoS genetics, 9(9), e1003751. https://doi.org10.1371/journal.pgen.1003751Google Scholar
- Centanni, T. M., Booker, A. B., Sloan, A. M., Chen, F., Maher, B. J., Carraway, R. S., … Kilgard, M. P. (2014). Knockdown of the dyslexia-associated gene KIAA0319 impairs temporal responses to speech stimuli in rat primary auditory cortex. Cerebral Cortex, 24(7), 1753–1766. https://doi.org10.1093/cercor/bht028Google Scholar
- Cestnick, L., & Coltheart, M. (1999). The relationship between language-processing and visual-processing deficits in developmental dyslexia. Cognition, 71(3), 231–255. https://doi.org10.1016/S0010-0277(99)00023-2Google Scholar
- Chase, C., & Jenner, A. R. (1993). Magnocellular visual deficits affect temporal processing of dyslexics. Annals of the New York Academy of Sciences, 682(1), 326–329. https://doi.org10.1111/j.1749-6632.1993.tb22983.xGoogle Scholar
- Cheng, A., Eysel, U. T., & Vidyasagar, T. R. (2004). The role of the magnocellular pathway in serial deployment of visual attention. The European Journal of Neuroscience, 20(8), 2188–2192. https://doi.org10.1111/j.1460-9568.2004.03675.xGoogle Scholar
- Chomsky, N. (1957). Syntactic structures. Paris: Mouton.Google Scholar
- Clisby, C., Fowler, M. S., Hebb, G. S., Walters, J., Southcott, P., & Stein, J. F. (2000). Outcome of treatment of visual problems of children with reading difficulties. Professional Association of Teachers in Special Situations (PATOSS).Google Scholar
- Corballis, M. C. (2003). From mouth to hand: Gesture, speech, and the evolution of right-handedness. The Behavioral and Brain Sciences, 26(2), 199–208. https://doi.org10.1017/S0140525X03000062
- Corballis, M. C. (2009). The evolution and genetics of cerebral asymmetry. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1519), 867–879. https://doi.org10.1098/rstb.2008.0232Google Scholar
- Cornelissen, P., Richardson, A., Mason, A., Fowler, S., & Stein, J. F. (1995). Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls. Vision Research, 35(10), 1483–1494. https://doi.org10.1016/0042-6989(95)98728-RGoogle Scholar
- Corrigan, F., Gray, R., Strathdee, A., Skinner, R., van Rhijn, A., & Horrobin, D. (1994). Fatty acid analysis of blood from violent offenders. The Journal of Forensic Psychiatry, 5(1), 83–92. https://doi.org10.1080/09585189408410899Google Scholar
- Corriveau, R. A., Huh, G. S., & Shatz, C. J. (1998). Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron, 21(3), 505–520. https://doi.org10.1016/S0896-6273(00)80562-0Google Scholar
- Crawford, T. J., & Higham, S. (2001). Dyslexia and the centre-of-gravity effect. Experimental Brain Research, 137(1), 122–126. https://doi.org10.1007/s002210000659Google Scholar
- Dain, S. J., Floyd, R. A., & Elliot, R. T. (2008). Color and luminance increment thresholds in poor readers. Visual Neuroscience, 25(3), 481–486. https://doi.org10.1017/S0952523808080565Google Scholar
- Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Nunes Filho, G., Jobert, A., … Cohen, L. (2010). How learning to read changes the cortical networks for vision and language. Science, 330(6009), 1359–1364. https://doi.org10.1126/science.1194140Google Scholar
- Demb, J. B., Boynton, G. M., Best, M., & Heeger, D. J. (1998). Psychophysical evidence for a magnocellular pathway deficit in dyslexia. Vision Research, 38(11), 1555–1559. https://doi.org10.1016/S0042-6989(98)00075-3Google Scholar
- Denison, R. N., Vu, A. T., Yacoub, E., Feinberg, D. A., & Silver, M. A. (2014). Functional mapping of the magnocellular and parvocellular subdivisions of human LGN. NeuroImage, 102(2), 358–369. https://doi.org10.1016/j.neuroimage.2014.07.019Google Scholar
- Downie, A. L. S., Jakobson, L. S., Frisk, V., & Ushycky, I. (2003). Periventricular brain injury, visual motion processing, and reading and spelling abilities in children who were extremely low birthweight. Journal of the International Neuropsychological Society, 9(3), 440–449. https://doi.org10.1017/S1355617703930098
- Eckert, M. A., Leonard, C. M., Wilke, M., Eckert, M., Richards, T., Richards, A., & Berninger, V. (2005). Anatomical signatures of dyslexia in children: Unique information from manual and voxel based morphometry brain measures. Cortex, 41(3), 304–315. https://doi.org10.1016/S0010-9452(08)70268-5Google Scholar
- Eden, G. F., Stein, J. F., Wood, H. M., & Wood, F. B. (1994). Differences in eye movements and reading problems in dyslexic and normal children. Vision Research, 34(10), 1345–1358. https://doi.org10.1016/0042-6989(94)90209-7Google Scholar
- Eden, G. F., VanMeter, J. W., Rumsey, J. M., Maisog, J. M., Woods, R. P., & Zeffiro, T. A. (1996). Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature, 382(6586), 66–69. https://doi.org10.1038/382066a0Google Scholar
- Elliott, J., & Grigorenko, E. L. (2014). The dyslexia debate (Vol. 14). New York, NY: Cambridge University Press.Google Scholar
- Everatt, J., Steffert, B., & Smythe, I. (1999). An eye for the unusual: Creative thinking in dyslexics. Dyslexia, 5(1), 28–46. https://doi.org10.1002/(sici)1099-0909(199903)5:1<28::aid-dys126>3.0.co;2-kGoogle Scholar
- Facoetti, A., Ruffino, M., Gori, S., Bigoni, A., Benassi, M., Bolzani, R., … Cecchini, P. (2010). On the relationship between magnocellular pathway and automatic attentional orienting: Evidences from developmental dyslexia. Journal of Vision, 10(7), 281. https://doi.org10.1167/10.7.281Google Scholar
- Fawcett, A. J., Nicolson, R. I., & Dean, P. (1996). Impaired performance of children with dyslexia on a range of cerebellar tasks. Annals of Dyslexia, 46(1), 259–283. https://doi.org10.1007/BF02648179Google Scholar
- Felmingham, K. L., & Jakobson, L. S. (1995). Visual and visuomotor performance in dyslexic children. Experimental Brain Research, 106(3), 467–474. https://doi.org10.1007/BF00231069
- Fischer, B., & Hartnegg, K. (2000). Stability of gaze control in dyslexia. Strabismus, 8(2), 119–122. https://doi.org10.1076/0927-3972(200006)821-2FT119Google Scholar
- Fisher, S. E., Francks, C., Marlow, A. J., MacPhie, I. L., Newbury, D. F., Cardon, L. R., … Monaco, A. P. (2002). Independent genome-wide scans identify a chromosome 18 quantitative-trait locus influencing dyslexia. Nature Genetics, 30(1), 86–91. https://doi.org10.1038/ng792Google Scholar
- Francks, C., Paracchini, S., Smith, S. D., Richardson, A. J., Scerri, T. S., Cardon, L. R., … Monaco, A. P. (2004). A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the united kingdom and from the united states. American Journal of Human Genetics, 75(6), 1046–1058. https://doi.org10.1086/426404Google Scholar
- Galaburda, A. M. (1993). Dyslexia and development: Neurobiological aspects of extra-ordinary brains. Cambridge, MA: Harvard University Press.Google Scholar
- Galaburda, A. M., Menard, M. T., & Rosen, G. D. (1994). Evidence for aberrant auditory anatomy in developmental dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 91(17), 8010–8013. https://doi.org10.1073/pnas.91.17.8010Google Scholar
- Galaburda, A. M., Sherman, G. F., Rosen, G. D., Aboitiz, F., & Geschwind, N. (1985). Developmental dyslexia: Four consecutive patients with cortical anomalies. Annals of Neurology, 18(2), 222–233. https://doi.org10.1002/ana.410180210Google Scholar
- Geiger, G., & Lettvin, J. Y. (1987). Peripheral vision in persons with dyslexia. The New England Journal of Medicine, 316(20), 1238–1243. https://doi.org10.1056/NEJM198705143162003Google Scholar
- Gesch, C. B., Hammond, S. M., Hampson, S. E., Eves, A., & Crowder, M. J. (2002). Influence of supplementary vitamins, minerals and essential fatty acids on the antisocial behaviour of young adult prisoners. randomised, placebo-controlled trial. The British Journal of Psychiatry, 181, 22–28. https://doi.org10.1192/bjp.181.1.22Google Scholar
- Giraldo-Chica, M., Hegarty, J. P., & Schneider, K. A., (2015). Morphological differences in the lateral geniculate nucleus associated with dyslexia. NeuroImage: Clin. http://dx.doi.org/10.1016/j.nicl.2015.03.011
- Goodale, M. A., & Milner, A. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25. https://doi.org10.1016/0166-2236(92)90344-8Google Scholar
- Goswami, U., Power, A. J., Lallier, M., & Facoetti, A. (2014). Oscillatory “temporal sampling” and developmental dyslexia: Toward an over-arching theoretical framework. Frontiers in Human Neuroscience, 8, 904. https://doi.org10.3389/fnhum.2014.00904
- Gouleme, N., Gerard, C.-L., & Bucci, M. P. (2015). The effect of training on postural control in dyslexic children. PloS One, 10(7), e0130196. https://doi.org10.1371/journal.pone.0130196Google Scholar
- Graham, S. A., & Fisher, S. E. (2013). Decoding the genetics of speech and language. Current Opinion in Neurobiology, 23(1), 43–51. https://doi.org10.1016/j.conb.2012.11.006Google Scholar
- Gross-Glenn, K., Skottun, B. C., Glenn, W., Kushch, A., Lingua, R., Dunbar, M., … Duara, R. (1995). Contrast sensitivity in dyslexia. Visual Neuroscience, 12(01), 153–163. https://doi.org10.1017/S0952523800007380Google Scholar
- Hämäläinen, J. A., Salminen, H. K., & Leppänen, P. H. T. (2013). Basic auditory processing deficits in dyslexia: Systematic review of the behavioral and event-related potential/field evidence. Journal of Learning Disabilities, 46(5), 413–427. https://doi.org10.1177/0022219411436213Google Scholar
- Hamazaki, T., Sawazaki, S., Itomura, M., Asaoka, E., Nagao, Y., Nishimura, N., … Kobayashi, M. (1996). The effect of docosahexaenoic acid on aggression in young adults: A placebo-controlled double-blind study. The Journal of Clinical Investigation, 97(4), 1129–1133. https://doi.org10.1172/JCI118507Google Scholar
- Hankins, M. W., Peirson, S. N., & Foster, R. G. (2008). Melanopsin: An exciting photopigment. Trends in Neurosciences, 31(1), 27–36. https://doi.org10.1016/j.tins.2007.11.002Google Scholar
- Hari, R., & Renvall, H. (2001). Impaired processing of rapid stimulus sequences in dyslexia. Trends in Cognitive Sciences, 5(12), 525–532. https://doi.org10.1016/S1364-6613(00)01801-5Google Scholar
- Harrar, V., Tammam, J., Perez-Bellido, A., Pitt, A., Stein, J. F., & Spence, C. (2014). Multisensory integration and attention in developmental dyslexia. Current Biology, 24(5), 531–535. https://doi.org10.1016/j.cub.2014.01.029Google Scholar
- Herve, P.-Y., Zago, L., Petit, L., Mazoyer, B., & Tzourio-Mazoyer, N. (2013). Revisiting human hemispheric specialization with neuroimaging. Trends in Cognitive Sciences, 17(2), 69–80. https://doi.org10.1016/j.tics.2012.12.004Google Scholar
- Hibbeln, J. R., Umhau, J. C., Linnoila, M., George, D. T., Ragan, P. W., Shoaf, S. E., … Salem, N. (1998). A replication study of violent and nonviolent subjects: Cerebrospinal fluid metabolites of serotonin and dopamine are predicted by plasma essential fatty acids. Biological Psychiatry, 44(4), 243–249. https://doi.org10.1016/S0006-3223(98)00143-7Google Scholar
- Hill, G. T., & Raymond, J. E. (2002). Deficits of motion transparency perception in adult developmental dyslexics with normal unidirectional motion sensitivity. Vision Research, 42(9), 1195–1203. https://doi.org10.1016/S0042-6989(02)00042-1Google Scholar
- Hockfield, S., & Sur, M. (1990). Monoclonal antibody Cat-301 identifies Y-cells in the dorsal lateral geniculate nucleus of the cat. The Journal of Comparative Neurology, 300(3), 320–330. https://doi.org10.1002/cne.903000305Google Scholar
- Hoeft, F., McCandliss, B. D., Black, J. M., Gantman, A., Zakerani, N., Hulme, C., … Gabrieli, J. D. E. (2011). Neural systems predicting long-term outcome in dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 108(1), 361–366. https://doi.org10.1073/pnas.1008950108Google Scholar
- Hornickel, J., & Kraus, N. (2013). Unstable representation of sound: A biological marker of dyslexia. The Journal of Neuroscience, 33(8), 3500–3504. https://doi.org10.1523/jneurosci.4205-12.2013Google Scholar
- Iles, J., Walsh, V., & Richardson, A. (2000). Visual search performance in dyslexia. Dyslexia, 6(3), 163–177. https://doi.org10.1002/1099-0909(200007/09)6:3<163::AID-DYS150>3.0.CO;2-UGoogle Scholar
- Jacobson, L., Polizzi, A., Morriss-Kay, G., & Vincent, A. (1999). Plasma from human mothers of fetuses with severe arthrogryposis multiplex congenita causes deformities in mice. The Journal of Clinical Investigation, 103(7), 1031–1038. https://doi.org10.1172/JCI5943Google Scholar
- Jariabkova, K., Hugdahl, K., & Glos, J. (1995). Immune disorders and handedness in dyslexic boys and their relatives. Scandinavian Journal of Psychology, 36(4), 355–362. https://doi.org10.1111/j.1467-9450.1995.tb00993.xGoogle Scholar
- von Károlyi, C., Winner, E., Gray, W., & Sherman, G. F. (2003). Dyslexia linked to talent: Global visual-spatial ability. Brain and Language, 85(3), 427–431. https://doi.org10.1016/S0093-934X(03)00052-XGoogle Scholar
- Kinsey, K., Rose, M., Hansen, P., Richardson, A., & Stein, J. F. (2004). Magnocellular mediated visual-spatial attention and reading ability. Neuroreport, 15(14), 2215–2218. https://doi.org10.1097/00001756-200410050-00014Google Scholar
- Kirkby, J. A., Webster, L. A. D., Blythe, H. I., & Liversedge, S. P. (2008). Binocular coordination during reading and non-reading tasks. Psychological Bulletin, 134(5), 742–763. https://doi.org10.1037/a0012979Google Scholar
- Kirkpatrick, R. M., Legrand, L. N., Iacono, W. G., & McGue, M. (2011). A twin and adoption study of reading achievement: Exploration of shared-environmental and gene-evironment-interaction effects. Learning and Individual Differences, 21(4), 368–375. https://doi.org10.1016/j.lindif.2011.04.008Google Scholar
- Kuba, M., Szanyi, J., Gayer, D., Kremlacek, J., & Kubova, Z. (2001). Electrophysiological testing of dyslexia. Acta Medica, 44(4), 131–134.Google Scholar
- Lachmann, T., & van Leeuwen, C. (2007). Paradoxical enhancement of letter recognition in developmental dyslexia. Developmental Neuropsychology, 31(1), 61–77. https://doi.org10.1080/87565640709336887Google Scholar
- Lahita, R. G. (1988). Systemic lupus erythematosus: Learning disability in the male offspring of female patients and relationship to laterality. Psychoneuroendocrinology, 13(5), 385–396. https://doi.org10.1016/0306-4530(88)90045-5Google Scholar
- Lallier, M., Tainturier, M.-J., Dering, B., Donnadieu, S., Valdois, S., & Thierry, G. (2011). Behavioral and ERP evidence for amodal sluggish attentional shifting in developmental dyslexia. Neuropsychologia, 48(14), 4125–4135. https://doi.org10.1016/j.neuropsychologia.2010.09.027Google Scholar
- Leonard, C. M., & Eckert, M. A. (2008). Asymmetry and dyslexia. Developmental Neuropsychology, 33(6), 663–681. https://doi.org10.1080/87565640802418597Google Scholar
- Liberman, I. Y., & Shankweiler, D. (1977). Phonetic segmentation in the beginning reader. In A. S. Reber & D. L. Scarborough (Eds.), Toward a psychology of reading. Hillsdale, NJ: Lawrence Erlbaum AssociatesGoogle Scholar
- Livingstone, M. S., Rosen, G. D., Drislane, F. W., & Galaburda, A. M. (1991). Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 88(18), 7943–7947. https://doi.org10.1073/pnas.88.18.7943Google Scholar
- Logan, J. (2009). Dyslexic entrepreneurs: The incidence: Their coping strategies and their business skills. Dyslexia, 15(4), 328–346. https://doi.org10.1002/dys.388Google Scholar
- Lovegrove, W. J., Heddle, M., & Slaghuis, W. (1980). Reading disability: Spatial frequency specific deficits in visual information store. Neuropsychologia, 18(1), 111–115. https://doi.org10.1016/0028-3932(80)90093-7Google Scholar
- Lurie, D. I., Pasic, T. R., Hockfield, S. J., & Rubel, E. W. (1997). Development of CAT-301 immunoreactivity in auditory brainstem nuclei of the gerbil. The Journal of Comparative Neurology, 380(3), 319–334. https://doi.org10.1002/(SICI)1096-9861(19970414)380:3<319::AID-CNE3>3.0.CO;2-5Google Scholar
- Lyytinen, H., Erskine, J., Hämäläinen, J., Torppa, M., & Ronimus, M. (2015). Dyslexia-early identification and prevention: Highlights from the Jyvaskyla longitudinal study of dyslexia. Current Developmental Disorders Reports, 2(4), 330–338. https://doi.org10.1007/s40474-015-0067-1Google Scholar
- Maddess, T., James, A. C., Goldberg, I., Wine, S., & Dobinson, J. (2000). A spatial frequency-doubling illusion-based pattern electroretinogram for glaucoma. Investigative Ophthalmology & Visual Science, 41(12), 3818–3826.Google Scholar
- Manis, F. R., Mcbride-Chang, C., Seidenberg, M. S., Keating, P., Doi, L. M., Munson, B., & Petersen, A. (1997). Are speech perception deficits associated with developmental dyslexia? Journal of Experimental Child Psychology, 66(2), 211–235. https://doi.org10.1006/jecp.1997.2383Google Scholar
- Mason, A., Cornelissen, P., Fowler, S., & Stein, J. F. (1993). Contrast sensitivity, ocular dominance and specific reading disability. Clinical Vision, 8(4), 345–353.Google Scholar
- McAnally, K. I., & Stein, J. F. (1996). Auditory temporal coding in dyslexia. Proceedings. Biological Sciences, 263(1373), 961–965. https://doi.org10.1098/rspb.1996.0142Google Scholar
- McClelland, E., Pitt, A., & Stein, J. F. (2014). Enhanced academic performance using a novel classroom physical activity intervention to increase awareness, attention and self-control: Putting embodied cognition into practice. Improving Schools, 18(1), 83–100. https://doi.org10.1177/1365480214562125Google Scholar
- McGuire, P. K., Hockfield, S., & Goldman-Rakic, P. S. (1989). Distribution of CAT-301 immunoreactivity in the frontal and parietal lobes of the macaque monkey. The Journal of Comparative Neurology, 288(2), 280–296. https://doi.org10.1002/cne.902880207Google Scholar
- Miall, R. C., Weir, D. J., Wolpert, D. M., & Stein, J. F. (1993). Is the cerebellum a smith predictor? Journal of Motor Behavior, 25(3), 203–216. https://doi.org10.1080/00222895.1993.9942050Google Scholar
- Miles, T. R. (1993). Dyslexia: The pattern of difficulties. London: Whurr Wyke.Google Scholar
- Montgomery, P., Burton, J. R., Sewell, R. P., Spreckelsen, T. F., & Richardson, A. J. (2013). Low blood long chain omega-3 fatty acids in UK children are associated with poor cognitive performance and behavior: A cross-sectional analysis from the DOLAB study. PloS One, 8(6), e66697. https://doi.org10.1371/journal.pone.0066697Google Scholar
- Morais, J., Cary, L., Alegria, J., & Bertelson, P. (1979). Does awareness of speech as a sequence of phones arise spontaneously? Cognition, 7(4), 323–331. https://doi.org10.1016/0010-0277(79)90020-9Google Scholar
- Mueller, A. L., Davis, A., Sovich, S., Carlson, S. S., & Robinson, F. R. (2016). Distribution of N-acetylgalactosamine-positive perineuronal nets in the macaque brain: Anatomy and implications. Neural Plasticity, 6021428. https://doi.org10.1155/2016/6021428
- Newbury, D. F., Paracchini, S., Scerri, T. S., Winchester, L., Addis, L., Richardson, A. J., … Monaco, A. P. (2011). Investigation of dyslexia and SLI risk variants in reading- and language-impaired subjects. Behavior Genetics, 41(1), 90–104. https://doi.org10.1007/s10519-010-9424-3Google Scholar
- Nicolson, R. I., Fawcett, A. J., Berry, E. L., Jenkins, I. H., Dean, P., & Brooks, D. J. (1999). Association of abnormal cerebellar activation with motor learning difficulties in dyslexic adults. The Lancet, 353(9165), 1662–1667. https://doi.org10.1016/S0140-6736(98)09165-XGoogle Scholar
- Olson, R. K., Hulslander, J., Christopher, M., Keenan, J. M., Wadsworth, S. J., Willcutt, E. G., … DeFries, J. C. (2013). Genetic and environmental influences on writing and their relations to language and reading. Annals of Dyslexia, 63(1), 25–43. https://doi.org10.1007/s11881-011-0055-zGoogle Scholar
- Pammer, K., & Wheatley, C. (2001). Isolating the M(y)-cell response in dyslexia using the spatial frequency doubling illusion. Vision Research, 41(16), 2139–2147. https://doi.org10.1016/S0042-6989(01)00092-XGoogle Scholar
- Paracchini, S., Thomas, A., Castro, S., Lai, C., Paramasivam, M., Wang, Y., … Monaco, A. P. (2006). The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319: A novel gene involved in neuronal migration. Human Molecular Genetics, 15(10), 1659–1666. https://doi.org10.1093/hmg/ddl089Google Scholar
- Parletta, N., Niyonsenga, T., & Duff, J. (2016). Omega-3 and Omega-6 polyunsaturated fatty acid levels and correlations with symptoms in children with attention deficit hyperactivity disorder, autistic spectrum disorder and typically developing controls. PloS One, 11(5), e0156432. https://doi.org10.1371/journal.pone.0156432Google Scholar
- Rae, C., Harasty, J. A., Dzendrowskyj, T. E., Talcott, J. B., Simpson, J. M., Blamire, A. M., … Stein, J. F. (2002). Cerebellar morphology in developmental dyslexia. Neuropsychologia, 40(8), 1285–1292. https://doi.org10.1016/S0028-3932(01)00216-0Google Scholar
- Rae, C., Lee, M. A., Dixon, R. M., Blamire, A. M., Thompson, C. H., Styles, P., … Stein, J. F. (1998). Metabolic abnormalities in developmental dyslexia detected by 1H magnetic resonance spectroscopy. The Lancet, 351(9119), 1849–1852. https://doi.org10.1016/S0140-6736(97)99001-2Google Scholar
- Ramus, F. (2004). Neurobiology of dyslexia: A reinterpretation of the data. Trends in Neurosciences, 27(12), 720–726. https://doi.org10.1016/j.tins.2004.10.004Google Scholar
- Ramus, F., Pidgeon, E., & Frith, U. (2003). The relationship between motor control and phonology in dyslexic children. Journal of Child Psychology and Psychiatry, 44(5), 712–722. https://doi.org10.1111/1469-7610.00157Google Scholar
- Rao, S. C., Rainer, G., & Miller, E. K. (1997). Integration of what and where in the primate prefrontal cortex. Science, 276(5313), 821–824. https://doi.org10.1126/science.276.5313.821Google Scholar
- Ray, N. J., Fowler, S., & Stein, J. F. (2005). Yellow filters can improve magnocellular function: Motion sensitivity, convergence, accommodation, and reading. Annals of the New York Academy of Sciences, 1039, 283–293. https://doi.org10.1196/annals.1325.027Google Scholar
- Rayner, K. (1985). Do faulty eye movements cause dyslexia? Developmental Neuropsychology, 1(1), 3–15. https://doi.org10.1080/87565648509540294Google Scholar
- Read, C., Yun-Fei, Z., Hong-Yin, N., & Bao-Qing, D. (1986). The ability to manipulate speech sounds depends on knowing alphabetic writing. Cognition, 24(1–2), 31–44. https://doi.org10.1016/0010-0277(86)90003-XGoogle Scholar
- Rice, M. L., Smith, S. D., & Gayan, J. (2009). Convergent genetic linkage and associations to language, speech and reading measures in families of probands with specific language impairment. Journal of Neurodevelopmental Disorders, 1(4), 264–282. https://doi.org10.1007/s11689-009-9031-xGoogle Scholar
- Richardson, A. J., Burton, J. R., Sewell, R. P., Spreckelsen, T. F., & Montgomery, P. (2012). Docosahexaenoic acid for reading, cognition and behavior in children aged 7–9 years: A randomized, controlled trial (the DOLAB study). PloS one, 7(9), e43909. https://doi.org10.1371/journal.pone.0043909Google Scholar
- Richardson, A. J., & Montgomery, P. (2005). The Oxford-Durham study: A randomized, controlled trial of dietary supplementation with fatty acids in children with developmental coordination disorder. Pediatrics, 115(5), 1360–1366. https://doi.org10.1542/peds.2004-2164Google Scholar
- Richlan, F., Kronbichler, M., & Wimmer, H. (2013). Structural abnormalities in the dyslexic brain: A meta-analysis of voxel-based morphometry studies. Human Brain Mapping, 34(11), 3055–3065. https://doi.org10.1002/hbm.22127Google Scholar
- Riemersma, S., Vincent, A., Beeson, D., Newland, C., Hawke, S., Vernet-der Garabedian, B., … Newsom-Davis, J. (1996). Association of arthrogryposis multiplex congenita with maternal antibodies inhibiting fetal acetylcholine receptor function. The Journal of Clinical Investigation, 98(10), 2358–2363. https://doi.org10.1172/JCI119048Google Scholar
- Rosen, G. D., Bai, J., Wang, Y., Fiondella, C. G., Threlkeld, S. W., LoTurco, J. J., & Galaburda, A. M. (2007). Disruption of neuronal migration by RNAi of Dyx1c1 results in neocortical and hippocampal malformations. Cerebral Cortex, 17(11), 2562–2572. https://doi.org10.1093/cercor/bhl162Google Scholar
- Rutter, M., Giller, H., & Hagell, A. (1998). Antisocial behavior by young people. Cambridge, NY: Cambridge University Press.Google Scholar
- Samar, V. J., & Parasnis, I. (2007). Cortical locus of coherent motion deficits in deaf poor readers. Brain and Cognition, 63(3), 226–239. https://doi.org10.1016/j.bandc.2006.08.004Google Scholar
- Scerri, T. S., Paracchini, S., Morris, A., MacPhie, I. L., Talcott, J., Stein, J. F., … Richardson, A. J. (2011). Identification of candidate genes for dyslexia susceptibility on chromosome 18. PloS One, 5(10), e13712. https://doi.org10.1371/journal.pone.0013712Google Scholar
- Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511(7510), 421–427. https://doi.org10.1038/nature13595
- Schmolesky, M. T., Wang, Y., Hanes, D. P., Thompson, K. G., Leutgeb, S., Schall, J. D., & Leventhal, A. G. (1998). Signal timing across the macaque visual system. Journal of Neurophysiology, 79(6), 3272–3278.Google Scholar
- Sinclair, H. (1956). Deficiency of essential fatty acids and atherosclerosis. The Lancet, 267(6919), 381–383. https://doi.org10.1016/S0140-6736(56)90126-X
- Skottun, B. C. (2015). The need to differentiate the magnocellular system from the dorsal stream in connection with dyslexia. Brain and Cognition, 95, 62–66. https://doi.org10.1016/j.bandc.2015.01.001Google Scholar
- Skottun, B. C. (2016). A few remarks on the utility of visual motion perception to assess the integrity of the magnocellular system or the dorsal stream. Cortex, 79, 155–158. https://doi.org10.1016/j.cortex.2016.03.006Google Scholar
- Skoyles, J., & Skottun, B. C. (2004). On the prevalence of magnocellular deficits in the visual system of non-dyslexic individuals. Brain and Language, 88(1), 79–82. https://doi.org10.1016/S0093-934X(03)00162-7Google Scholar
- Stein, J. F. (1986). Role of the cerebellum in the visual guidance of movement. Nature, 323(6085), 217–221. https://doi.org10.1038/323217a0Google Scholar
- Stein, J. F. (2001). The magnocellular theory of developmental dyslexia. Dyslexia, 7(1), 12–36. https://doi.org10.1002/dys.186Google Scholar
- Stein, J. F., & Walsh, V. (1997). To see but not to read: The magnocellular theory of dyslexia. Trends in Neurosciences, 20(4), 147–152. https://doi.org10.1016/S0042-6989(99)00170-4Google Scholar
- Stoodley, C. J. (2014). Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Frontiers in Systems Neuroscience, 8, 92. https://doi.org10.3389/fnsys.2014.00092
- Stoodley, C. J. (2016). The cerebellum and neurodevelopmental disorders. Cerebellum, 15(1), 34–37. https://doi.org10.1007/s12311-015-0715-3Google Scholar
- Stoodley, C. J., Fawcett, A. J., Nicolson, R. I., & Stein, J. F. (2005). Impaired balancing ability in dyslexic children. Experimental Brain Research, 167(3), 370–380. https://doi.org10.1007/s00221-005-0042-xGoogle Scholar
- Stoodley, C. J., & Stein, J. F. (2011). The cerebellum and dyslexia. Cortex, 47(1), 101–116. https://doi.org10.1016/j.cortex.2009.10.005Google Scholar
- Talcott, J. B., Hansen, P. C., Assoku, E. L., & Stein, J. F. (2000). Visual motion sensitivity in dyslexia: Evidence for temporal and energy integration deficits. Neuropsychologia, 38(7), 935–943. https://doi.org10.1016/S0028-3932(00)00020-8Google Scholar
- Tallal, P., & Piercy, M. (1973). Defects of non-verbal auditory perception in children with developmental aphasia. Nature, 241(5390), 468–469. https://doi.org10.1038/241468a0Google Scholar
- Tammam, J. D., Steinsaltz, D., Bester, D. W., Semb-Andenaes, T., & Stein, J. F. (2015). A randomised double-blind placebo-controlled trial investigating the behavioural effects of vitamin, mineral and n-3 fatty acid supplementation in typically developing adolescent schoolchildren. The British Journal of Nutrition, 115(2), 361–373. https://doi.org10.1017/S0007114515004390Google Scholar
- Vidyasagar, T. R. (2004). Neural underpinnings of dyslexia as a disorder of visuo-spatial attention. Clinical & Experimental Optometry, 87(1), 4–10. https://doi.org10.1111/j.1444-0938.2004.tb03138.xGoogle Scholar
- Warren, R. P., Cole, P., Odell, J. D., Pingree, C. B., Warren, W. L., White, E., … Singh, V. K. (1990). Detection of maternal antibodies in infantile autism. Journal of the American Academy of Child and Adolescent Psychiatry, 29(6), 873–877. https://doi.org10.1097/00004583-199011000-00005Google Scholar
- White, A. J. R., Sun, H., Swanson, W. H., & Lee, B. B. (2002). An examination of physiological mechanisms underlying the frequency-doubling illusion. Investigative Ophthalmology & Visual Science, 43(11), 3590–3599.Google Scholar
- Witton, C., Stein, J. F., Stoodley, C. J., Rosner, B. S., & Talcott, J. B. (2002). Separate influences of acoustic AM and FM sensitivity on the phonological decoding skills of impaired and normal readers. Journal of Cognitive Neuroscience, 14(6), 866–874. https://doi.org10.1162/089892902760191090Google Scholar
- Witton, C., Talcott, J. B., Hansen, P. C., Richardson, A. J., Griffiths, T. D., Rees, A., … Green, G. G. (1998). Sensitivity to dynamic auditory and visual stimuli predicts nonword reading ability in both dyslexic and normal readers. Current Biology, 8(14), 791–797. https://doi.org10.1016/S0960-9822(98)70320-3Google Scholar
- Wolff, U., & Lundberg, I. (2002). The prevalence of dyslexia among art students. Dyslexia, 8(1), 34–42. https://doi.org10.1002/dys.211Google Scholar
- Zhao, J., Thiebaut de Schotten, M., Altarelli, I., Dubois, J., & Ramus, F. (2016). Altered hemispheric lateralization of white matter pathways in developmental dyslexia: Evidence from spherical deconvolution tractography. Cortex, 76, 51–62. https://doi.org10.1016/j.cortex.2015.12.004Google Scholar