The Magnocellular Theory of Developmental Dyslexia

  • John SteinEmail author
Part of the Literacy Studies book series (LITS, volume 16)


The late 19th neurological concept of dyslexia had 3 crucial elements: selectively poor reading, with unaffected other cognitive skills and a genetic background. The contemporary ‘phonological theory’ has undermined the selectivity criterion because all poor readers, dyslexic or otherwise, have phonological problems. Here I argue that the phonological theory is pitched at too high a cognitive level so that it does not illuminate the mechanisms that cause reading problems in dyslexia. Recent genetic and imaging studies have confirmed their biological basis. In children with visual reading problems there is strong evidence that they suffer impaired development of the visual magnocellular (M-) system which is vital for tracking shifts of the focus of visual attention and of eye movements. This can often be ameliorated by viewing text through deep yellow or blue filters because they can facilitate the M- system. Likewise children with phonological problems seem to suffer an analogous impairment of sound sequencing, which can be ameliorated by musical training, particularly in rhythm; whilst those with impaired motor sequencing can often be helped by motor training. Thus in dyslexics the neural sub system which is required for rapid and accurate temporal processing and is distributed throughout the brain, appears to be compromised. This system’s ‘M-’ neurones express a specific surface marker that renders them susceptible to autoimmune attack, and the rapidity with which they have to respond, makes them particularly vulnerable to lack of omega 3 long chain polyunsaturated fatty acids in the diet. But its weaknesses for temporal processing may be balanced by exceptional talents for other kinds of cognitive task.


Temporal processing Vision Magnocellular Colored filters Audition Embodied cognition Genetics Handedness Omega 3s Dyslexia talents 


  1. Asbury, K., & Plomin, R. (2013). G is for genes: The impact of genetics on education and achievement (understanding children’s worlds). Hoboken, USA: Wiley.Google Scholar
  2. Attree, E. A., Turner, M. J., & Cowell, N. (2009). A virtual reality test identifies the visuospatial strengths of adolescents with dyslexia. Cyberpsychology & Behavior, 12(2), 163–168. https://doi.org10.1089/cpb.2008.0204Google Scholar
  3. Bashir, S., & Al-Ayadhi, L. (2015). Endothelial antibody levels in the sera of children with autism spectrum disorders. Journal of the Chinese Medical Association, 78(7), 414–417. https://doi.org10.1016/j.jcma.2015.01.008Google Scholar
  4. Bednarek, D. B., & Grabowska, A. (2002). Luminance and chromatic contrast sensitivity in dyslexia: The magnocellular deficit hypothesis revisited. Neuroreport, 13(18), 2521–2525. https://doi.org10.1097/01.wnr.0000048921.00321.35Google Scholar
  5. Ben-Yehudah, G., Sackett, E., Malchi-Ginzberg, L., & Ahissar, M. (2001). Impaired temporal contrast sensitivity in dyslexics is specific to retain-and-compare paradigms. Brain, 124(7), 1381–1395. https://doi.org10.1093/brain/124.7.1381Google Scholar
  6. Bradley, L., & Bryant, P. E. (1978). Difficulties in auditory organisation as a possible cause of reading backwardness. Nature, 271(5647), 746–747. https://doi.org10.1038/271746a0Google Scholar
  7. Brandler, W. M., Morris, A. P., Evans, D. M., Scerri, T. S., Kemp, J. P., Timpson, N. J., … Paracchini, S. (2013). Common variants in left/right asymmetry genes and pathways are associated with relative hand skill. PLoS genetics, 9(9), e1003751. https://doi.org10.1371/journal.pgen.1003751Google Scholar
  8. Centanni, T. M., Booker, A. B., Sloan, A. M., Chen, F., Maher, B. J., Carraway, R. S., … Kilgard, M. P. (2014). Knockdown of the dyslexia-associated gene KIAA0319 impairs temporal responses to speech stimuli in rat primary auditory cortex. Cerebral Cortex, 24(7), 1753–1766. https://doi.org10.1093/cercor/bht028Google Scholar
  9. Cestnick, L., & Coltheart, M. (1999). The relationship between language-processing and visual-processing deficits in developmental dyslexia. Cognition, 71(3), 231–255. https://doi.org10.1016/S0010-0277(99)00023-2Google Scholar
  10. Chase, C., & Jenner, A. R. (1993). Magnocellular visual deficits affect temporal processing of dyslexics. Annals of the New York Academy of Sciences, 682(1), 326–329. https://doi.org10.1111/j.1749-6632.1993.tb22983.xGoogle Scholar
  11. Cheng, A., Eysel, U. T., & Vidyasagar, T. R. (2004). The role of the magnocellular pathway in serial deployment of visual attention. The European Journal of Neuroscience, 20(8), 2188–2192. https://doi.org10.1111/j.1460-9568.2004.03675.xGoogle Scholar
  12. Chomsky, N. (1957). Syntactic structures. Paris: Mouton.Google Scholar
  13. Clisby, C., Fowler, M. S., Hebb, G. S., Walters, J., Southcott, P., & Stein, J. F. (2000). Outcome of treatment of visual problems of children with reading difficulties. Professional Association of Teachers in Special Situations (PATOSS).Google Scholar
  14. Corballis, M. C. (2003). From mouth to hand: Gesture, speech, and the evolution of right-handedness. The Behavioral and Brain Sciences, 26(2), 199–208. https://doi.org10.1017/S0140525X03000062
  15. Corballis, M. C. (2009). The evolution and genetics of cerebral asymmetry. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1519), 867–879. https://doi.org10.1098/rstb.2008.0232Google Scholar
  16. Cornelissen, P., Richardson, A., Mason, A., Fowler, S., & Stein, J. F. (1995). Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls. Vision Research, 35(10), 1483–1494. https://doi.org10.1016/0042-6989(95)98728-RGoogle Scholar
  17. Corrigan, F., Gray, R., Strathdee, A., Skinner, R., van Rhijn, A., & Horrobin, D. (1994). Fatty acid analysis of blood from violent offenders. The Journal of Forensic Psychiatry, 5(1), 83–92. https://doi.org10.1080/09585189408410899Google Scholar
  18. Corriveau, R. A., Huh, G. S., & Shatz, C. J. (1998). Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron, 21(3), 505–520. https://doi.org10.1016/S0896-6273(00)80562-0Google Scholar
  19. Crawford, T. J., & Higham, S. (2001). Dyslexia and the centre-of-gravity effect. Experimental Brain Research, 137(1), 122–126. https://doi.org10.1007/s002210000659Google Scholar
  20. Dain, S. J., Floyd, R. A., & Elliot, R. T. (2008). Color and luminance increment thresholds in poor readers. Visual Neuroscience, 25(3), 481–486. https://doi.org10.1017/S0952523808080565Google Scholar
  21. Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Nunes Filho, G., Jobert, A., … Cohen, L. (2010). How learning to read changes the cortical networks for vision and language. Science, 330(6009), 1359–1364. https://doi.org10.1126/science.1194140Google Scholar
  22. Demb, J. B., Boynton, G. M., Best, M., & Heeger, D. J. (1998). Psychophysical evidence for a magnocellular pathway deficit in dyslexia. Vision Research, 38(11), 1555–1559. https://doi.org10.1016/S0042-6989(98)00075-3Google Scholar
  23. Denison, R. N., Vu, A. T., Yacoub, E., Feinberg, D. A., & Silver, M. A. (2014). Functional mapping of the magnocellular and parvocellular subdivisions of human LGN. NeuroImage, 102(2), 358–369. https://doi.org10.1016/j.neuroimage.2014.07.019Google Scholar
  24. Downie, A. L. S., Jakobson, L. S., Frisk, V., & Ushycky, I. (2003). Periventricular brain injury, visual motion processing, and reading and spelling abilities in children who were extremely low birthweight. Journal of the International Neuropsychological Society, 9(3), 440–449. https://doi.org10.1017/S1355617703930098
  25. Eckert, M. A., Leonard, C. M., Wilke, M., Eckert, M., Richards, T., Richards, A., & Berninger, V. (2005). Anatomical signatures of dyslexia in children: Unique information from manual and voxel based morphometry brain measures. Cortex, 41(3), 304–315. https://doi.org10.1016/S0010-9452(08)70268-5Google Scholar
  26. Eden, G. F., Stein, J. F., Wood, H. M., & Wood, F. B. (1994). Differences in eye movements and reading problems in dyslexic and normal children. Vision Research, 34(10), 1345–1358. https://doi.org10.1016/0042-6989(94)90209-7Google Scholar
  27. Eden, G. F., VanMeter, J. W., Rumsey, J. M., Maisog, J. M., Woods, R. P., & Zeffiro, T. A. (1996). Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature, 382(6586), 66–69. https://doi.org10.1038/382066a0Google Scholar
  28. Elliott, J., & Grigorenko, E. L. (2014). The dyslexia debate (Vol. 14). New York, NY: Cambridge University Press.Google Scholar
  29. Everatt, J., Steffert, B., & Smythe, I. (1999). An eye for the unusual: Creative thinking in dyslexics. Dyslexia, 5(1), 28–46. https://doi.org10.1002/(sici)1099-0909(199903)5:1<28::aid-dys126>;2-kGoogle Scholar
  30. Facoetti, A., Ruffino, M., Gori, S., Bigoni, A., Benassi, M., Bolzani, R., … Cecchini, P. (2010). On the relationship between magnocellular pathway and automatic attentional orienting: Evidences from developmental dyslexia. Journal of Vision, 10(7), 281. https://doi.org10.1167/10.7.281Google Scholar
  31. Fawcett, A. J., Nicolson, R. I., & Dean, P. (1996). Impaired performance of children with dyslexia on a range of cerebellar tasks. Annals of Dyslexia, 46(1), 259–283. https://doi.org10.1007/BF02648179Google Scholar
  32. Felmingham, K. L., & Jakobson, L. S. (1995). Visual and visuomotor performance in dyslexic children. Experimental Brain Research, 106(3), 467–474. https://doi.org10.1007/BF00231069
  33. Fischer, B., & Hartnegg, K. (2000). Stability of gaze control in dyslexia. Strabismus, 8(2), 119–122. https://doi.org10.1076/0927-3972(200006)821-2FT119Google Scholar
  34. Fisher, S. E., Francks, C., Marlow, A. J., MacPhie, I. L., Newbury, D. F., Cardon, L. R., … Monaco, A. P. (2002). Independent genome-wide scans identify a chromosome 18 quantitative-trait locus influencing dyslexia. Nature Genetics, 30(1), 86–91. https://doi.org10.1038/ng792Google Scholar
  35. Francks, C., Paracchini, S., Smith, S. D., Richardson, A. J., Scerri, T. S., Cardon, L. R., … Monaco, A. P. (2004). A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the united kingdom and from the united states. American Journal of Human Genetics, 75(6), 1046–1058. https://doi.org10.1086/426404Google Scholar
  36. Galaburda, A. M. (1993). Dyslexia and development: Neurobiological aspects of extra-ordinary brains. Cambridge, MA: Harvard University Press.Google Scholar
  37. Galaburda, A. M., Menard, M. T., & Rosen, G. D. (1994). Evidence for aberrant auditory anatomy in developmental dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 91(17), 8010–8013. https://doi.org10.1073/pnas.91.17.8010Google Scholar
  38. Galaburda, A. M., Sherman, G. F., Rosen, G. D., Aboitiz, F., & Geschwind, N. (1985). Developmental dyslexia: Four consecutive patients with cortical anomalies. Annals of Neurology, 18(2), 222–233. https://doi.org10.1002/ana.410180210Google Scholar
  39. Geiger, G., & Lettvin, J. Y. (1987). Peripheral vision in persons with dyslexia. The New England Journal of Medicine, 316(20), 1238–1243. https://doi.org10.1056/NEJM198705143162003Google Scholar
  40. Gesch, C. B., Hammond, S. M., Hampson, S. E., Eves, A., & Crowder, M. J. (2002). Influence of supplementary vitamins, minerals and essential fatty acids on the antisocial behaviour of young adult prisoners. randomised, placebo-controlled trial. The British Journal of Psychiatry, 181, 22–28. https://doi.org10.1192/bjp.181.1.22Google Scholar
  41. Giraldo-Chica, M., Hegarty, J. P., & Schneider, K. A., (2015). Morphological differences in the lateral geniculate nucleus associated with dyslexia. NeuroImage: Clin.
  42. Goodale, M. A., & Milner, A. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25. https://doi.org10.1016/0166-2236(92)90344-8Google Scholar
  43. Goswami, U., Power, A. J., Lallier, M., & Facoetti, A. (2014). Oscillatory “temporal sampling” and developmental dyslexia: Toward an over-arching theoretical framework. Frontiers in Human Neuroscience, 8, 904. https://doi.org10.3389/fnhum.2014.00904
  44. Gouleme, N., Gerard, C.-L., & Bucci, M. P. (2015). The effect of training on postural control in dyslexic children. PloS One, 10(7), e0130196. https://doi.org10.1371/journal.pone.0130196Google Scholar
  45. Graham, S. A., & Fisher, S. E. (2013). Decoding the genetics of speech and language. Current Opinion in Neurobiology, 23(1), 43–51. https://doi.org10.1016/j.conb.2012.11.006Google Scholar
  46. Gross-Glenn, K., Skottun, B. C., Glenn, W., Kushch, A., Lingua, R., Dunbar, M., … Duara, R. (1995). Contrast sensitivity in dyslexia. Visual Neuroscience, 12(01), 153–163. https://doi.org10.1017/S0952523800007380Google Scholar
  47. Hämäläinen, J. A., Salminen, H. K., & Leppänen, P. H. T. (2013). Basic auditory processing deficits in dyslexia: Systematic review of the behavioral and event-related potential/field evidence. Journal of Learning Disabilities, 46(5), 413–427. https://doi.org10.1177/0022219411436213Google Scholar
  48. Hamazaki, T., Sawazaki, S., Itomura, M., Asaoka, E., Nagao, Y., Nishimura, N., … Kobayashi, M. (1996). The effect of docosahexaenoic acid on aggression in young adults: A placebo-controlled double-blind study. The Journal of Clinical Investigation, 97(4), 1129–1133. https://doi.org10.1172/JCI118507Google Scholar
  49. Hankins, M. W., Peirson, S. N., & Foster, R. G. (2008). Melanopsin: An exciting photopigment. Trends in Neurosciences, 31(1), 27–36. https://doi.org10.1016/j.tins.2007.11.002Google Scholar
  50. Hari, R., & Renvall, H. (2001). Impaired processing of rapid stimulus sequences in dyslexia. Trends in Cognitive Sciences, 5(12), 525–532. https://doi.org10.1016/S1364-6613(00)01801-5Google Scholar
  51. Harrar, V., Tammam, J., Perez-Bellido, A., Pitt, A., Stein, J. F., & Spence, C. (2014). Multisensory integration and attention in developmental dyslexia. Current Biology, 24(5), 531–535. https://doi.org10.1016/j.cub.2014.01.029Google Scholar
  52. Herve, P.-Y., Zago, L., Petit, L., Mazoyer, B., & Tzourio-Mazoyer, N. (2013). Revisiting human hemispheric specialization with neuroimaging. Trends in Cognitive Sciences, 17(2), 69–80. https://doi.org10.1016/j.tics.2012.12.004Google Scholar
  53. Hibbeln, J. R., Umhau, J. C., Linnoila, M., George, D. T., Ragan, P. W., Shoaf, S. E., … Salem, N. (1998). A replication study of violent and nonviolent subjects: Cerebrospinal fluid metabolites of serotonin and dopamine are predicted by plasma essential fatty acids. Biological Psychiatry, 44(4), 243–249. https://doi.org10.1016/S0006-3223(98)00143-7Google Scholar
  54. Hill, G. T., & Raymond, J. E. (2002). Deficits of motion transparency perception in adult developmental dyslexics with normal unidirectional motion sensitivity. Vision Research, 42(9), 1195–1203. https://doi.org10.1016/S0042-6989(02)00042-1Google Scholar
  55. Hockfield, S., & Sur, M. (1990). Monoclonal antibody Cat-301 identifies Y-cells in the dorsal lateral geniculate nucleus of the cat. The Journal of Comparative Neurology, 300(3), 320–330. https://doi.org10.1002/cne.903000305Google Scholar
  56. Hoeft, F., McCandliss, B. D., Black, J. M., Gantman, A., Zakerani, N., Hulme, C., … Gabrieli, J. D. E. (2011). Neural systems predicting long-term outcome in dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 108(1), 361–366. https://doi.org10.1073/pnas.1008950108Google Scholar
  57. Hornickel, J., & Kraus, N. (2013). Unstable representation of sound: A biological marker of dyslexia. The Journal of Neuroscience, 33(8), 3500–3504. https://doi.org10.1523/jneurosci.4205-12.2013Google Scholar
  58. Iles, J., Walsh, V., & Richardson, A. (2000). Visual search performance in dyslexia. Dyslexia, 6(3), 163–177. https://doi.org10.1002/1099-0909(200007/09)6:3<163::AID-DYS150>3.0.CO;2-UGoogle Scholar
  59. Jacobson, L., Polizzi, A., Morriss-Kay, G., & Vincent, A. (1999). Plasma from human mothers of fetuses with severe arthrogryposis multiplex congenita causes deformities in mice. The Journal of Clinical Investigation, 103(7), 1031–1038. https://doi.org10.1172/JCI5943Google Scholar
  60. Jariabkova, K., Hugdahl, K., & Glos, J. (1995). Immune disorders and handedness in dyslexic boys and their relatives. Scandinavian Journal of Psychology, 36(4), 355–362. https://doi.org10.1111/j.1467-9450.1995.tb00993.xGoogle Scholar
  61. von Károlyi, C., Winner, E., Gray, W., & Sherman, G. F. (2003). Dyslexia linked to talent: Global visual-spatial ability. Brain and Language, 85(3), 427–431. https://doi.org10.1016/S0093-934X(03)00052-XGoogle Scholar
  62. Kinsey, K., Rose, M., Hansen, P., Richardson, A., & Stein, J. F. (2004). Magnocellular mediated visual-spatial attention and reading ability. Neuroreport, 15(14), 2215–2218. https://doi.org10.1097/00001756-200410050-00014Google Scholar
  63. Kirkby, J. A., Webster, L. A. D., Blythe, H. I., & Liversedge, S. P. (2008). Binocular coordination during reading and non-reading tasks. Psychological Bulletin, 134(5), 742–763. https://doi.org10.1037/a0012979Google Scholar
  64. Kirkpatrick, R. M., Legrand, L. N., Iacono, W. G., & McGue, M. (2011). A twin and adoption study of reading achievement: Exploration of shared-environmental and gene-evironment-interaction effects. Learning and Individual Differences, 21(4), 368–375. https://doi.org10.1016/j.lindif.2011.04.008Google Scholar
  65. Kuba, M., Szanyi, J., Gayer, D., Kremlacek, J., & Kubova, Z. (2001). Electrophysiological testing of dyslexia. Acta Medica, 44(4), 131–134.Google Scholar
  66. Lachmann, T., & van Leeuwen, C. (2007). Paradoxical enhancement of letter recognition in developmental dyslexia. Developmental Neuropsychology, 31(1), 61–77. https://doi.org10.1080/87565640709336887Google Scholar
  67. Lahita, R. G. (1988). Systemic lupus erythematosus: Learning disability in the male offspring of female patients and relationship to laterality. Psychoneuroendocrinology, 13(5), 385–396. https://doi.org10.1016/0306-4530(88)90045-5Google Scholar
  68. Lallier, M., Tainturier, M.-J., Dering, B., Donnadieu, S., Valdois, S., & Thierry, G. (2011). Behavioral and ERP evidence for amodal sluggish attentional shifting in developmental dyslexia. Neuropsychologia, 48(14), 4125–4135. https://doi.org10.1016/j.neuropsychologia.2010.09.027Google Scholar
  69. Leonard, C. M., & Eckert, M. A. (2008). Asymmetry and dyslexia. Developmental Neuropsychology, 33(6), 663–681. https://doi.org10.1080/87565640802418597Google Scholar
  70. Liberman, I. Y., & Shankweiler, D. (1977). Phonetic segmentation in the beginning reader. In A. S. Reber & D. L. Scarborough (Eds.), Toward a psychology of reading. Hillsdale, NJ: Lawrence Erlbaum AssociatesGoogle Scholar
  71. Livingstone, M. S., Rosen, G. D., Drislane, F. W., & Galaburda, A. M. (1991). Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 88(18), 7943–7947. https://doi.org10.1073/pnas.88.18.7943Google Scholar
  72. Logan, J. (2009). Dyslexic entrepreneurs: The incidence: Their coping strategies and their business skills. Dyslexia, 15(4), 328–346. https://doi.org10.1002/dys.388Google Scholar
  73. Lovegrove, W. J., Heddle, M., & Slaghuis, W. (1980). Reading disability: Spatial frequency specific deficits in visual information store. Neuropsychologia, 18(1), 111–115. https://doi.org10.1016/0028-3932(80)90093-7Google Scholar
  74. Lurie, D. I., Pasic, T. R., Hockfield, S. J., & Rubel, E. W. (1997). Development of CAT-301 immunoreactivity in auditory brainstem nuclei of the gerbil. The Journal of Comparative Neurology, 380(3), 319–334. https://doi.org10.1002/(SICI)1096-9861(19970414)380:3<319::AID-CNE3>3.0.CO;2-5Google Scholar
  75. Lyytinen, H., Erskine, J., Hämäläinen, J., Torppa, M., & Ronimus, M. (2015). Dyslexia-early identification and prevention: Highlights from the Jyvaskyla longitudinal study of dyslexia. Current Developmental Disorders Reports, 2(4), 330–338. https://doi.org10.1007/s40474-015-0067-1Google Scholar
  76. Maddess, T., James, A. C., Goldberg, I., Wine, S., & Dobinson, J. (2000). A spatial frequency-doubling illusion-based pattern electroretinogram for glaucoma. Investigative Ophthalmology & Visual Science, 41(12), 3818–3826.Google Scholar
  77. Manis, F. R., Mcbride-Chang, C., Seidenberg, M. S., Keating, P., Doi, L. M., Munson, B., & Petersen, A. (1997). Are speech perception deficits associated with developmental dyslexia? Journal of Experimental Child Psychology, 66(2), 211–235. https://doi.org10.1006/jecp.1997.2383Google Scholar
  78. Mason, A., Cornelissen, P., Fowler, S., & Stein, J. F. (1993). Contrast sensitivity, ocular dominance and specific reading disability. Clinical Vision, 8(4), 345–353.Google Scholar
  79. McAnally, K. I., & Stein, J. F. (1996). Auditory temporal coding in dyslexia. Proceedings. Biological Sciences, 263(1373), 961–965. https://doi.org10.1098/rspb.1996.0142Google Scholar
  80. McClelland, E., Pitt, A., & Stein, J. F. (2014). Enhanced academic performance using a novel classroom physical activity intervention to increase awareness, attention and self-control: Putting embodied cognition into practice. Improving Schools, 18(1), 83–100. https://doi.org10.1177/1365480214562125Google Scholar
  81. McGuire, P. K., Hockfield, S., & Goldman-Rakic, P. S. (1989). Distribution of CAT-301 immunoreactivity in the frontal and parietal lobes of the macaque monkey. The Journal of Comparative Neurology, 288(2), 280–296. https://doi.org10.1002/cne.902880207Google Scholar
  82. Miall, R. C., Weir, D. J., Wolpert, D. M., & Stein, J. F. (1993). Is the cerebellum a smith predictor? Journal of Motor Behavior, 25(3), 203–216. https://doi.org10.1080/00222895.1993.9942050Google Scholar
  83. Miles, T. R. (1993). Dyslexia: The pattern of difficulties. London: Whurr Wyke.Google Scholar
  84. Montgomery, P., Burton, J. R., Sewell, R. P., Spreckelsen, T. F., & Richardson, A. J. (2013). Low blood long chain omega-3 fatty acids in UK children are associated with poor cognitive performance and behavior: A cross-sectional analysis from the DOLAB study. PloS One, 8(6), e66697. https://doi.org10.1371/journal.pone.0066697Google Scholar
  85. Morais, J., Cary, L., Alegria, J., & Bertelson, P. (1979). Does awareness of speech as a sequence of phones arise spontaneously? Cognition, 7(4), 323–331. https://doi.org10.1016/0010-0277(79)90020-9Google Scholar
  86. Mueller, A. L., Davis, A., Sovich, S., Carlson, S. S., & Robinson, F. R. (2016). Distribution of N-acetylgalactosamine-positive perineuronal nets in the macaque brain: Anatomy and implications. Neural Plasticity, 6021428. https://doi.org10.1155/2016/6021428
  87. Newbury, D. F., Paracchini, S., Scerri, T. S., Winchester, L., Addis, L., Richardson, A. J., … Monaco, A. P. (2011). Investigation of dyslexia and SLI risk variants in reading- and language-impaired subjects. Behavior Genetics, 41(1), 90–104. https://doi.org10.1007/s10519-010-9424-3Google Scholar
  88. Nicolson, R. I., Fawcett, A. J., Berry, E. L., Jenkins, I. H., Dean, P., & Brooks, D. J. (1999). Association of abnormal cerebellar activation with motor learning difficulties in dyslexic adults. The Lancet, 353(9165), 1662–1667. https://doi.org10.1016/S0140-6736(98)09165-XGoogle Scholar
  89. Olson, R. K., Hulslander, J., Christopher, M., Keenan, J. M., Wadsworth, S. J., Willcutt, E. G., … DeFries, J. C. (2013). Genetic and environmental influences on writing and their relations to language and reading. Annals of Dyslexia, 63(1), 25–43. https://doi.org10.1007/s11881-011-0055-zGoogle Scholar
  90. Pammer, K., & Wheatley, C. (2001). Isolating the M(y)-cell response in dyslexia using the spatial frequency doubling illusion. Vision Research, 41(16), 2139–2147. https://doi.org10.1016/S0042-6989(01)00092-XGoogle Scholar
  91. Paracchini, S., Thomas, A., Castro, S., Lai, C., Paramasivam, M., Wang, Y., … Monaco, A. P. (2006). The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319: A novel gene involved in neuronal migration. Human Molecular Genetics, 15(10), 1659–1666. https://doi.org10.1093/hmg/ddl089Google Scholar
  92. Parletta, N., Niyonsenga, T., & Duff, J. (2016). Omega-3 and Omega-6 polyunsaturated fatty acid levels and correlations with symptoms in children with attention deficit hyperactivity disorder, autistic spectrum disorder and typically developing controls. PloS One, 11(5), e0156432. https://doi.org10.1371/journal.pone.0156432Google Scholar
  93. Rae, C., Harasty, J. A., Dzendrowskyj, T. E., Talcott, J. B., Simpson, J. M., Blamire, A. M., … Stein, J. F. (2002). Cerebellar morphology in developmental dyslexia. Neuropsychologia, 40(8), 1285–1292. https://doi.org10.1016/S0028-3932(01)00216-0Google Scholar
  94. Rae, C., Lee, M. A., Dixon, R. M., Blamire, A. M., Thompson, C. H., Styles, P., … Stein, J. F. (1998). Metabolic abnormalities in developmental dyslexia detected by 1H magnetic resonance spectroscopy. The Lancet, 351(9119), 1849–1852. https://doi.org10.1016/S0140-6736(97)99001-2Google Scholar
  95. Ramus, F. (2004). Neurobiology of dyslexia: A reinterpretation of the data. Trends in Neurosciences, 27(12), 720–726. https://doi.org10.1016/j.tins.2004.10.004Google Scholar
  96. Ramus, F., Pidgeon, E., & Frith, U. (2003). The relationship between motor control and phonology in dyslexic children. Journal of Child Psychology and Psychiatry, 44(5), 712–722. https://doi.org10.1111/1469-7610.00157Google Scholar
  97. Rao, S. C., Rainer, G., & Miller, E. K. (1997). Integration of what and where in the primate prefrontal cortex. Science, 276(5313), 821–824. https://doi.org10.1126/science.276.5313.821Google Scholar
  98. Ray, N. J., Fowler, S., & Stein, J. F. (2005). Yellow filters can improve magnocellular function: Motion sensitivity, convergence, accommodation, and reading. Annals of the New York Academy of Sciences, 1039, 283–293. https://doi.org10.1196/annals.1325.027Google Scholar
  99. Rayner, K. (1985). Do faulty eye movements cause dyslexia? Developmental Neuropsychology, 1(1), 3–15. https://doi.org10.1080/87565648509540294Google Scholar
  100. Read, C., Yun-Fei, Z., Hong-Yin, N., & Bao-Qing, D. (1986). The ability to manipulate speech sounds depends on knowing alphabetic writing. Cognition, 24(1–2), 31–44. https://doi.org10.1016/0010-0277(86)90003-XGoogle Scholar
  101. Rice, M. L., Smith, S. D., & Gayan, J. (2009). Convergent genetic linkage and associations to language, speech and reading measures in families of probands with specific language impairment. Journal of Neurodevelopmental Disorders, 1(4), 264–282. https://doi.org10.1007/s11689-009-9031-xGoogle Scholar
  102. Richardson, A. J., Burton, J. R., Sewell, R. P., Spreckelsen, T. F., & Montgomery, P. (2012). Docosahexaenoic acid for reading, cognition and behavior in children aged 7–9 years: A randomized, controlled trial (the DOLAB study). PloS one, 7(9), e43909. https://doi.org10.1371/journal.pone.0043909Google Scholar
  103. Richardson, A. J., & Montgomery, P. (2005). The Oxford-Durham study: A randomized, controlled trial of dietary supplementation with fatty acids in children with developmental coordination disorder. Pediatrics, 115(5), 1360–1366. https://doi.org10.1542/peds.2004-2164Google Scholar
  104. Richlan, F., Kronbichler, M., & Wimmer, H. (2013). Structural abnormalities in the dyslexic brain: A meta-analysis of voxel-based morphometry studies. Human Brain Mapping, 34(11), 3055–3065. https://doi.org10.1002/hbm.22127Google Scholar
  105. Riemersma, S., Vincent, A., Beeson, D., Newland, C., Hawke, S., Vernet-der Garabedian, B., … Newsom-Davis, J. (1996). Association of arthrogryposis multiplex congenita with maternal antibodies inhibiting fetal acetylcholine receptor function. The Journal of Clinical Investigation, 98(10), 2358–2363. https://doi.org10.1172/JCI119048Google Scholar
  106. Rosen, G. D., Bai, J., Wang, Y., Fiondella, C. G., Threlkeld, S. W., LoTurco, J. J., & Galaburda, A. M. (2007). Disruption of neuronal migration by RNAi of Dyx1c1 results in neocortical and hippocampal malformations. Cerebral Cortex, 17(11), 2562–2572. https://doi.org10.1093/cercor/bhl162Google Scholar
  107. Rutter, M., Giller, H., & Hagell, A. (1998). Antisocial behavior by young people. Cambridge, NY: Cambridge University Press.Google Scholar
  108. Samar, V. J., & Parasnis, I. (2007). Cortical locus of coherent motion deficits in deaf poor readers. Brain and Cognition, 63(3), 226–239. https://doi.org10.1016/j.bandc.2006.08.004Google Scholar
  109. Scerri, T. S., Paracchini, S., Morris, A., MacPhie, I. L., Talcott, J., Stein, J. F., … Richardson, A. J. (2011). Identification of candidate genes for dyslexia susceptibility on chromosome 18. PloS One, 5(10), e13712. https://doi.org10.1371/journal.pone.0013712Google Scholar
  110. Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511(7510), 421–427. https://doi.org10.1038/nature13595
  111. Schmolesky, M. T., Wang, Y., Hanes, D. P., Thompson, K. G., Leutgeb, S., Schall, J. D., & Leventhal, A. G. (1998). Signal timing across the macaque visual system. Journal of Neurophysiology, 79(6), 3272–3278.Google Scholar
  112. Sinclair, H. (1956). Deficiency of essential fatty acids and atherosclerosis. The Lancet, 267(6919), 381–383. https://doi.org10.1016/S0140-6736(56)90126-X
  113. Skottun, B. C. (2015). The need to differentiate the magnocellular system from the dorsal stream in connection with dyslexia. Brain and Cognition, 95, 62–66. https://doi.org10.1016/j.bandc.2015.01.001Google Scholar
  114. Skottun, B. C. (2016). A few remarks on the utility of visual motion perception to assess the integrity of the magnocellular system or the dorsal stream. Cortex, 79, 155–158. https://doi.org10.1016/j.cortex.2016.03.006Google Scholar
  115. Skoyles, J., & Skottun, B. C. (2004). On the prevalence of magnocellular deficits in the visual system of non-dyslexic individuals. Brain and Language, 88(1), 79–82. https://doi.org10.1016/S0093-934X(03)00162-7Google Scholar
  116. Stein, J. F. (1986). Role of the cerebellum in the visual guidance of movement. Nature, 323(6085), 217–221. https://doi.org10.1038/323217a0Google Scholar
  117. Stein, J. F. (2001). The magnocellular theory of developmental dyslexia. Dyslexia, 7(1), 12–36. https://doi.org10.1002/dys.186Google Scholar
  118. Stein, J. F., & Walsh, V. (1997). To see but not to read: The magnocellular theory of dyslexia. Trends in Neurosciences, 20(4), 147–152. https://doi.org10.1016/S0042-6989(99)00170-4Google Scholar
  119. Stoodley, C. J. (2014). Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Frontiers in Systems Neuroscience, 8, 92. https://doi.org10.3389/fnsys.2014.00092
  120. Stoodley, C. J. (2016). The cerebellum and neurodevelopmental disorders. Cerebellum, 15(1), 34–37. https://doi.org10.1007/s12311-015-0715-3Google Scholar
  121. Stoodley, C. J., Fawcett, A. J., Nicolson, R. I., & Stein, J. F. (2005). Impaired balancing ability in dyslexic children. Experimental Brain Research, 167(3), 370–380. https://doi.org10.1007/s00221-005-0042-xGoogle Scholar
  122. Stoodley, C. J., & Stein, J. F. (2011). The cerebellum and dyslexia. Cortex, 47(1), 101–116. https://doi.org10.1016/j.cortex.2009.10.005Google Scholar
  123. Talcott, J. B., Hansen, P. C., Assoku, E. L., & Stein, J. F. (2000). Visual motion sensitivity in dyslexia: Evidence for temporal and energy integration deficits. Neuropsychologia, 38(7), 935–943. https://doi.org10.1016/S0028-3932(00)00020-8Google Scholar
  124. Tallal, P., & Piercy, M. (1973). Defects of non-verbal auditory perception in children with developmental aphasia. Nature, 241(5390), 468–469. https://doi.org10.1038/241468a0Google Scholar
  125. Tammam, J. D., Steinsaltz, D., Bester, D. W., Semb-Andenaes, T., & Stein, J. F. (2015). A randomised double-blind placebo-controlled trial investigating the behavioural effects of vitamin, mineral and n-3 fatty acid supplementation in typically developing adolescent schoolchildren. The British Journal of Nutrition, 115(2), 361–373. https://doi.org10.1017/S0007114515004390Google Scholar
  126. Vidyasagar, T. R. (2004). Neural underpinnings of dyslexia as a disorder of visuo-spatial attention. Clinical & Experimental Optometry, 87(1), 4–10. https://doi.org10.1111/j.1444-0938.2004.tb03138.xGoogle Scholar
  127. Warren, R. P., Cole, P., Odell, J. D., Pingree, C. B., Warren, W. L., White, E., … Singh, V. K. (1990). Detection of maternal antibodies in infantile autism. Journal of the American Academy of Child and Adolescent Psychiatry, 29(6), 873–877. https://doi.org10.1097/00004583-199011000-00005Google Scholar
  128. White, A. J. R., Sun, H., Swanson, W. H., & Lee, B. B. (2002). An examination of physiological mechanisms underlying the frequency-doubling illusion. Investigative Ophthalmology & Visual Science, 43(11), 3590–3599.Google Scholar
  129. Witton, C., Stein, J. F., Stoodley, C. J., Rosner, B. S., & Talcott, J. B. (2002). Separate influences of acoustic AM and FM sensitivity on the phonological decoding skills of impaired and normal readers. Journal of Cognitive Neuroscience, 14(6), 866–874. https://doi.org10.1162/089892902760191090Google Scholar
  130. Witton, C., Talcott, J. B., Hansen, P. C., Richardson, A. J., Griffiths, T. D., Rees, A., … Green, G. G. (1998). Sensitivity to dynamic auditory and visual stimuli predicts nonword reading ability in both dyslexic and normal readers. Current Biology, 8(14), 791–797. https://doi.org10.1016/S0960-9822(98)70320-3Google Scholar
  131. Wolff, U., & Lundberg, I. (2002). The prevalence of dyslexia among art students. Dyslexia, 8(1), 34–42. https://doi.org10.1002/dys.211Google Scholar
  132. Zhao, J., Thiebaut de Schotten, M., Altarelli, I., Dubois, J., & Ramus, F. (2016). Altered hemispheric lateralization of white matter pathways in developmental dyslexia: Evidence from spherical deconvolution tractography. Cortex, 76, 51–62. https://doi.org10.1016/j.cortex.2015.12.004Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of OxfordOxfordUK

Personalised recommendations