Advertisement

Rotational Tunneling in Stick NMR Spectra of Solids

  • Sławomir SzymańskiEmail author
  • Piotr Bernatowicz
Chapter

Abstract

In NMR spectroscopy of condensed phases, the space coordinates of the magnetic nuclei are generally treated classically and only the spin degrees of freedom are quantized. This approach can fail for atomic groupings of a periodic structure whose topomers differ by permuted labels of light nuclei such as protons or deuterons, and are separated by low energy barriers. The spectra of such systems can show apparent proton-proton or deuteron-deuteron couplings resulting from spin-space correlations of the nuclear space and spin degrees of freedom, imposed by the symmetrization postulate of quantum mechanics. In this chapter, the stick spectra of such systems will be considered.

References

  1. 1.
    M. Dracinsky, P. Hodgkinson, Chem. Eur. J. 20, 2201 (2013)Google Scholar
  2. 2.
    S. Mamone, M. Concistre, E. Carignani, B. Meier, A. Krachmalnicoff, O.G. Johannessen, X.G. Lei, Y.J. Li, M. Denning, M. Carravetta, K. Goh, A.J. Horsewill, R.J. Whitby, M.H. Levitt, J. Chem. Phys. 140 (2014), art. no. 194306Google Scholar
  3. 3.
    F. Reif, E.M. Purcell, Phys. Rev. 91, 631 (1953)ADSCrossRefGoogle Scholar
  4. 4.
    K. Tomita, Phys. Rev. 89, 429 (1953)ADSCrossRefGoogle Scholar
  5. 5.
    J.G. Powles, A.S. Gutowsky, J. Chem. Phys. 23, 1692 (1955)Google Scholar
  6. 6.
    S. Clough, J. Phys. C 1, 265 (1968)Google Scholar
  7. 7.
    F. Apaydin, S. Clough, J. Phys. C 1, 932 (1968)Google Scholar
  8. 8.
    (a) C. Mottley, T.B. Cobb, C.S. Johnson, J. Chem. Phys. 55, 5823 (1971); (b) C.S. Johnson, C. Mottley, Chem. Phys. Lett. 22, 430 (1973); (c) C. Mottley, C.S. Johnson, J. Chem. Phys. 61, 1078 (1974)Google Scholar
  9. 9.
    M. Prager, A. Heidemann, Chem. Rev. 97, 2933 (1997)CrossRefGoogle Scholar
  10. 10.
    A. Horsewill, Prog. Nucl. Magn. Reson. Spectrosc. 35, 359 (1999)Google Scholar
  11. 11.
    S. Clough, in Introductory Essays, vol. 13, NMR Basic Principles and Progress, ed. by M.M. Pintar (Springer, Berlin, 1976), p. 113Google Scholar
  12. 12.
    E.W. Weisstein, Mathieu Function, MathWorld–A Wolfram Web Resource; 30 Jan 2018, 15:00 UTC. http://mathworld.wolfram.com/MathieuFunction.html
  13. 13.
    C. Herring, in Magnetism, vol. IIB, ed. by G.T. Rado, H. Suhl (Academic Press, New York, 1966), p. 2Google Scholar
  14. 14.
    A. Hueller, Phys. Rev. B 16, 1844 (1977)ADSCrossRefGoogle Scholar
  15. 15.
    E.M. Hiller, R.A. Harris, J. Chem. Phys. 99, 7652 (1993)Google Scholar
  16. 16.
    Z. Olejniczak, Z. Lalowicz, T. Schmidt, H. Zimmermann, U. Haeberlen, H. Schmitt, J. Chem. Phys. 116, 10343 (2002)Google Scholar
  17. 17.
    W. Press, Single Particle Rotations in Molecular Crystals, vol. 92, Springer Tracts on Modern Physics (Springer, Berlin, 1981)Google Scholar
  18. 18.
    P.S. Allen, J. Phys. C 7, L22 (1974)Google Scholar
  19. 19.
    S. Szymański, J. Chem. Phys. 104, 8216 (1996); 106(E), 3430 (1997)Google Scholar
  20. 20.
    C. Scheurer, R. Wiedenbruch, R. Meyer, R.R. Ernst, D.M. Heinekey, J. Chem. Phys. 106, 1 (1997)Google Scholar
  21. 21.
    S. Szymański, J. Chem. Phys. 111, 288 (1999)Google Scholar
  22. 22.
    T. Ratajczyk, S. Szymański, J. Chem. Phys. 123 (2005), art. no. 204509Google Scholar
  23. 23.
    P. Bernatowicz, A. Shkurenko, A. Osior, B. Kamieński, S. Szymański, Phys. Chem. Chem. Phys. 17, 28866 (2015)CrossRefGoogle Scholar
  24. 24.
    P. Gutsche, M. Rinsdorf, H. Zimmermann, H. Schmitt, U. Haeberlen, Solid State Nucl. Magn. Reson. 25, 227 (2004)Google Scholar
  25. 25.
    P. Gutsche, H. Schmitt, U. Haeberlen, T. Ratajczyk, S. Szymański, ChemPhysChem 7, 886 (2006)CrossRefGoogle Scholar
  26. 26.
    A. Detken, P. Focke, H. Zimmermann, U. Haeberlen, Z. Olejniczak, Z.T. Lalowicz, Z. Naturforsch, A 50, 95 (1995)Google Scholar
  27. 27.
    A. Osior, P. Kalicki, B. Kamieński, S. Szymański, P. Bernatowicz, A. Shkurenko, J. Chem. Phys. 146 (2017), art. no. 104504Google Scholar

Further Reading

  1. 28.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics, A Course of Theoretical Physics, vol. 3, 3rd edn. (Butterworth-Heinemann, Oxford, 1981)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Organic ChemistryPolish Academy of SciencesWarsawPoland
  2. 2.Institute of Physical ChemistryPolish Academy of SciencesWarsawPoland

Personalised recommendations