Advertisement

Medical Applications of 3D Printing

  • Grace B. Hatton
  • Christine M. Madla
  • Simon Gaisford
  • Abdul W. Basit
Chapter
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 31)

Abstract

Three-dimensional printing (3DP) is an entirely novel method of manufacture with its applications only limited by the imagination. The mainstay of 3DP utilisation practically to date has been in the field of engineering, largely for the purpose of generating model prototypes. However, the potential of 3DP has increasingly been recognised in areas of commercial manufacture in medicine due to its capacity to produce materials and devices that can equal, if not surpass, the benefits of traditional consumer goods. The opportunities for future uses are innumerable ranging from tissue engineering, the on-demand fabrication of medical devices and advanced applications in other fields with the same pressing need for medical personalisation. The 3D printing arena is ultimately exciting and endless in opportunities with the FDA encouraging the development of science and risk based approaches. This chapter will discuss the existing and future medical applications of 3DP and its potential to revolutionise medical practice.

Keywords

3D printing Bioprinting Tissue engineering Medical devices Personalized medicines Drug delivery systems 

References

  1. 1.
    Schubert C, van Langeveld MC, Donoso LA. Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol. 2014;98(2):159–61.CrossRefGoogle Scholar
  2. 2.
    Ursan ID, Chiu L, Pierce A. Three-dimensional drug printing: a structured review. J Am Pharm Assoc. 2013;53(2):136–44.CrossRefGoogle Scholar
  3. 3.
    Gross BC, Erkal JL, Lockwood SY, Chen CP, Spence DM. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem. 2014;86(7):3240–53.CrossRefGoogle Scholar
  4. 4.
    Kalaskar DM. 3D printing in medicine. Duxford: Woodhead Publishing; 2017.Google Scholar
  5. 5.
    Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29(20):2941–53.CrossRefGoogle Scholar
  6. 6.
    Helsen JA, Breme HJ. Metals as biomaterials. Chichester: Wiley; 1998.Google Scholar
  7. 7.
    Cakor A. Alphaform – Production of hip implant using additive manufacturing: eos; 2014. Available from: https://www.eos.info/press/case_study/additive_manufactured_hip_implant.
  8. 8.
    Developments MD. Top ten: upcoming products to benefit the heart 2011. Available from: http://www.medicaldevice-developments.com/features/featuretop-ten-upcoming-projects-to-benefit-the-heart/.
  9. 9.
    Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295(5557):1014–7.CrossRefGoogle Scholar
  10. 10.
    Kolan K, Liu Y, Baldridge J, Murphy C, Semon J, Day D, et al. Solvent based 3D printing of biopolymer/bioactive glass composite and hydrogel for tissue engineering applications. Procedia CIRP. 2017;65:38–43.CrossRefGoogle Scholar
  11. 11.
    Hench LL, Wilson J. Introduction. An introduction to bioceramics. Singapore: World Scientific Publishing; 2011. p. 1–24.Google Scholar
  12. 12.
    Jungst T, Smolan W, Schacht K, Scheibel T, Groll J. Strategies and molecular design criteria for 3D printable hydrogels. Chem Rev. 2016;116(3):1496–539.CrossRefGoogle Scholar
  13. 13.
    Wang J, Goyanes A, Gaisford S, Basit AW. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm. 2016;503(1–2):207–12.CrossRefGoogle Scholar
  14. 14.
    Martinez PR, Goyanes A, Basit AW, Gaisford S. Fabrication of drug-loaded hydrogels with stereolithographic 3D printing. Int J Pharm. 2017;532(1):313–7.CrossRefGoogle Scholar
  15. 15.
    Martinez PR, Goyanes A, Basit AW, Gaisford S. Influence of geometry on the drug release profiles of stereolithographic (SLA) 3D printed tablets. AAPS Pharm Sci Tech. 2018;  https://doi.org/10.1208/s12249-018-1075-3.
  16. 16.
    Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater. 2013;9(1):4457–86.CrossRefGoogle Scholar
  17. 17.
    Schmidt M, Pohle D, Rechtenwald T. Selective laser sintering of PEEK. CIRP Ann. 2007;56(1):205–8.CrossRefGoogle Scholar
  18. 18.
    Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DH, Cohen DM, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. 2012;11(9):768–74.CrossRefGoogle Scholar
  19. 19.
    Leukers B, Gulkan H, Irsen SH, Milz S, Tille C, Schieker M, et al. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med. 2005;16(12):1121–4.CrossRefGoogle Scholar
  20. 20.
    Ventola CL. Medical applications for 3D printing: current and projected uses. Pharm Ther. 2014;39(10):704–11.Google Scholar
  21. 21.
    Pharmaceutials A. Manufactured using 3D printing 2015. Available from: http://www.spritam.com/ - /hcp/zipdose-technology/manufactured-using-3d-printing.
  22. 22.
    Peng W, Datta P, Ayan B, Ozbolat V, Sosnoski D, Ozbolat IT. 3D bioprinting for drug discovery and development in pharmaceutics. Acta Biomater. 2017;57:26–46.CrossRefGoogle Scholar
  23. 23.
    Transplantation USGIoODa. Organ Donation Statistics 2016. Available from: https://www.organdonor.gov/statistics-stories/statistics.html.
  24. 24.
    Klein GT, Lu Y, Wang MY. 3D printing and neurosurgery--ready for prime time? World Neurosurg. 2013;80(3–4):233–5.CrossRefGoogle Scholar
  25. 25.
    Cui X, Boland T, D’Lima DD, Lotz MK. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul. 2012;6(2):149–55.Google Scholar
  26. 26.
    Sharma J. Celprogen introduces 3D printed scaffold human heart that may someday be utilized in heart transplants 2016. Available from: http://www.celprogen.com/news-details.php?nid=52.
  27. 27.
    Davis S. Celprogen Inc successfully 3D print functioning pancreas model: TCT Magazine; 2016. Available from: https://www.tctmagazine.com/3d-printing-news/celprogen-successfully-3d-print-functioning-pancreas/.
  28. 28.
    Schmid F. Testing a soft artificial heart Eidgenössische Technische Hochschule Zürich: ETH Zurich; 2017. Available from: https://www.ethz.ch/en/news-and-events/eth-news/news/2017/07/artificial_heart.html.
  29. 29.
    Bartlett S. Printing organs on demand. Lancet Respir Med. 2013;1(9):684.CrossRefGoogle Scholar
  30. 30.
    Ozbolat IT, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng. 2013;60(3):691–9.CrossRefGoogle Scholar
  31. 31.
    Mertz L. Dream it, design it, print it in 3-D: what can 3-D printing do for you? IEEE Pulse. 2013;4(6):15–21.CrossRefGoogle Scholar
  32. 32.
    Haumont T, Rahman T, Sample W, MK M, Church C, Henley J, et al. Wilmington robotic exoskeleton: a novel device to maintain arm improvement in muscular disease. J Pediatr Orthop. 2011;31(5):e44–9.CrossRefGoogle Scholar
  33. 33.
    Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO, et al. 3D printed bionic ears. Nano Lett. 2013;13(6):2634–9.CrossRefGoogle Scholar
  34. 34.
    Campbell PG, Weiss LE. Tissue engineering with the aid of inkjet printers. Expert Opin Biol Ther. 2007;7(8):1123–7.CrossRefGoogle Scholar
  35. 35.
    Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J, et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med. 2012;1(11):792–802.CrossRefGoogle Scholar
  36. 36.
    Virginie K, Fabien G, Isabelle A, Bertrand G, Sylvain M, Joëlle A, et al. In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice. Biofabrication. 2010;2(1):014101.CrossRefGoogle Scholar
  37. 37.
    Ozbolat IT. Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol. 2015;33(7):395–400.CrossRefGoogle Scholar
  38. 38.
    Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL. 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg. 2010;5(4):335–41.CrossRefGoogle Scholar
  39. 39.
    Bilemjian T. Heal bones faster with the 3D printed ‘Osteoid’ cast: Buro 24/7; 2014. Available from: http://www.buro247.me/lifestyle/technology/heal-bones-faster-3d-cast.html.
  40. 40.
    Osteoid. Osteoid. A better healing experience: Osteoid; 2017. Available from: http://www.osteoid.com/.
  41. 41.
    Watanabe Y, Matsushita T, Bhandari M, Zdero R, Schemitsch EH. Ultrasound for fracture healing: current evidence. J Orthop Trauma. 2010;24(Suppl 1):S56–61.CrossRefGoogle Scholar
  42. 42.
    Mundi R, Petis S, Kaloty R, Shetty V, Bhandari M. Low-intensity pulsed ultrasound: fracture healing. Indian J Orthop. 2009;43(2):132–40.CrossRefGoogle Scholar
  43. 43.
    Rankin TM, Giovinco NA, Cucher DJ, Watts G, Hurwitz B, Armstrong DG. Three-dimensional printing surgical instruments: are we there yet? J Surg Res. 2014;189(2):193–7.CrossRefGoogle Scholar
  44. 44.
    Abbott A. Cell culture: biology’s new dimension. Nature. 2003;424(6951):870–2.CrossRefGoogle Scholar
  45. 45.
    Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol. 2006;7(3):211–24.CrossRefGoogle Scholar
  46. 46.
    Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell. 2007;130(4):601–10.CrossRefGoogle Scholar
  47. 47.
    Zopf DA, Hollister SJ, Nelson ME, Ohye RG, Green GE. Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med. 2013;368(21):2043–5.CrossRefGoogle Scholar
  48. 48.
    Song K, Yeom E, Lee SJ. Real-time imaging of pulvinus bending in Mimosa pudica. Sci Rep. 2014;4:6466.CrossRefGoogle Scholar
  49. 49.
    Tibbits S. 4D printing: multi-material shape change. Archit Des. 2014;84(1):116–21.Google Scholar
  50. 50.
    Yi HG, Choi YJ, Kang KS, Hong JM, Pati RG, Park MN, et al. A 3D-printed local drug delivery patch for pancreatic cancer growth suppression. J Control Release. 2016;238:231–41.CrossRefGoogle Scholar
  51. 51.
    tec e. The top choice for 3D printed hearing aids, Inner-ear devices EnvisionTEC; 2017. Available from: https://envisiontec.com/3d-printing-industries/medical/hearing-aid/.
  52. 52.
    tec e. EnvisionTEC dental 3D Printers: accurate, fast, reliable and flexible: EnvisionTEC; 2017. Available from: https://envisiontec.com/3d-printing-industries/medical/dental/.
  53. 53.
    Wheeler A. Medshape INC. Receives FDA clearance for 3D printed Titanium medical device: 3D Printing Industry; 2015. Available from: https://3dprintingindustry.com/news/medshape-inc-receives-fda-clearance-3d-printed-titanium-medical-device-41644/.
  54. 54.
    FDA. 510(k) Premarket Notification: U.S. Food and Drug Administration; 2013. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K121818.
  55. 55.
    Revishaw. Surgeons present Renishawplant technology at CMF surgery masterclass: Revishaw Apply Innovation; 2014. Available from: http://www.renishaw.com/en/surgeons-present-renishaw-implant-technology-at-cmf-surgery-masterclass--42387.
  56. 56.
    FDA. 510(k) Premarket Notification: U.S. Food and Drug Administration; 2015. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K143126.
  57. 57.
    Medicrea. Lumbosacral anterior plating system: Medicrea; 2017. Available from: https://www.medicrea.com/en/th-lumbar-range/stabolt/.
  58. 58.
    FDA. 510(k) Premarket Notification: U.S. Food and Drug Administration; 2014. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K133809.
  59. 59.
    Mendoza HR. FDA approved first 3D printed facial implants: 3DPrint.com; 2014. Available from: https://3dprint.com/12417/3d-print-face-implant-fda/.
  60. 60.
    https://www.invisalign.co.uk/en/Pages/Home.aspx. Invisalign innovations. Pushing what’s possible.: Invisalign; 2017. Available from: https://www.invisalign.co.uk/en/what-is-invisalign/Pages/Technology.aspx.
  61. 61.
    FDA. FOIA Response: Align Technology 2011. Available from: https://www.fda.gov/cdrh/510k/K081960.pdf.
  62. 62.
    Málaga HRd. Cirujanos crean instrumentación quirúrgica con impresión 3D: Diario Medico; 2016. Available from: http://www.diariomedico.com/2016/12/05/area-profesional/gestion/cirujanos-crean-instrumentacion-quirurgica-con-impresion-3d.
  63. 63.
    FDA. Technical considerations for additive manufactured devices: Food and Drug Administration; 2017. Available from: https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM499809.pdf.
  64. 64.
    FDA. Classify your medical device: U.S. Food and Drug Administration; 2014. Available from: https://www.fda.gov/medicaldevices/deviceregulationandguidance/overview/classifyyourdevice/default.htm.
  65. 65.
    Baird LaJ, M. 3D printing: its impact on medical device and healthcare. In: Beek S, Daubert G, Letoureau C, Madagan K, Maiden T, Oni Y, Quinn T, Schryber J, editors. 3D printing of medical devices: when a novel technology meets traditional legal principles. 1st ed. Reed Smith; 2015. p. 1–33.Google Scholar
  66. 66.
    Smith S. 3-D Printing helps save dying baby: CNN; 2013. Available from: http://edition.cnn.com/2013/05/22/health/baby-surgery.
  67. 67.
    Banks J. Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE Pulse. 2013;4(6):22–6.CrossRefGoogle Scholar
  68. 68.
    Burg T, Cass CA, Groff R, Pepper M, Burg KJ. Building off-the-shelf tissue-engineered composites. Philos Trans A Math Phys Eng Sci. 2010;368(1917):1839–62.CrossRefGoogle Scholar
  69. 69.
    Health NIo. 3D Print Exchange. Available from: https://3dprint.nih.gov/.
  70. 70.
    Administration FaD. Technical considerations for additive manufactured devices: Draft guidance for Industry and Food and Drug Administration Staff 2016. Available from: https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM499809.pdf.
  71. 71.
    Trenfield SJ, Awad A, Goyanes A, Gaisford S, Basit AW. 3D printing pharmaceuticals: drug development to front-line care. Trends Pharmacol Sci. 2018;39(5):440–51.CrossRefGoogle Scholar
  72. 72.
    Muwaffak Z, Goyanes A, Clark V, Basit AW, Hilton ST, Gaisford S. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int J Pharm. 527(1–2):161–70.Google Scholar
  73. 73.
    Awad A, Trenfield SJ, Gaisford S, Basit AW. 3D printed medicines: A new branch of digital health. Int J Pharm. 2018;548(1):586–96.Google Scholar
  74. 74.
    Awad A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. Reshaping drug development using 3D printing. Drug Discov Today. 2018;  https://doi.org/10.1016/j.drudis.2018.05.025.

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Grace B. Hatton
    • 1
  • Christine M. Madla
    • 1
  • Simon Gaisford
    • 1
    • 2
  • Abdul W. Basit
    • 1
    • 2
  1. 1.Department of Pharmaceutics, UCL School of PharmacyUniversity College LondonLondonUK
  2. 2.FabRx Ltd.Ashford, KentUK

Personalised recommendations