Advertisement

Rose

  • Leen Leus
  • Katrijn Van Laere
  • Jan De Riek
  • Johan Van Huylenbroeck
Chapter
Part of the Handbook of Plant Breeding book series (HBPB, volume 11)

Abstract

Since ancient times, roses have graced homes and gardens as an ornamental plant. Roses are used for many different ornamental purposes as cut flower, garden plant, and pot plant, as well as industrial (perfume), medicinal, and culinary applications. Roses have the largest economic value of all the ornamental plants and have a long and well-documented tradition in selection and breeding. With more than 30,000 cultivars, roses have the largest breeding output among all crops, yet the demand for new cultivars continues unabated. The search for novel ornamental traits is still the main breeding goal. Besides, for cut roses differentiation in the product, increase in production, and better adaptation to (new) production areas are sought. In garden roses, breeders select for better adaptation to diseases including new and important diseases such as rose rosette disease (RRD). Rose breeding is challenging because of the very narrow genetic background in cultivated roses, polyploidy and/or differences in ploidy levels, reproductive barriers including limited fertility and germination challenges, etc. Tools for the breeder include knowledge on the background of traits, (new) molecular techniques, and genome information. This chapter gives an overview of the challenges in rose breeding, breeding objectives, the hybridization process, and conventional and molecular breeding tools. Several breeders were contacted to share an applied and practical viewpoint on cut rose and garden rose breeding with an eye toward trends and evolutions in modern rose breeding.

Keywords

Breeders’ viewpoint Cut rose Fertility Garden rose Rose breeding Ploidy Cytogenetics Molecular markers 

Notes

Acknowledgments

We are grateful to the breeders for sharing their experience and viewpoint on current cut rose breeding. The author also thanks Miriam Levenson, English-language editor at ILVO, for the useful remarks about the structure of the manuscript, fair questions that needed an answer, and helpful English corrections.

References

  1. Abdolmohammadi M, Kermani MJ, Zakizadeh H, Hamidoghli Y (2014) An vitro embryo germination and interploidy hybridization of rose (Rosa sp). Euphytica 198:255–264CrossRefGoogle Scholar
  2. AIPH (2015) International statistics flowers and plants. Vol 63 International Association of Horticultural ProducersGoogle Scholar
  3. AIPH (2016) International statistics flowers and plants. Vol 64 International Association of Horticultural ProducersGoogle Scholar
  4. Akasaka M, Ueda Y, Koba T (2002) Karyotype analysis of five wild rose species belonging to septet a by fluorescence in situ hybridization. Chromosom Sci 6:17–26Google Scholar
  5. Akasaka M, Ueda Y, Koba T (2003) Karyotype analysis of wild rose species belonging to septet B, C, and D by molecular cytogenetic method. Breed Sci 53:177–182CrossRefGoogle Scholar
  6. Allum JF, Bringloe DH, Roberts AV (2007) Chromosome doubling in a Rosa rugosa Thunb. Hybrid by exposure of in vitro nodes to oryzalin: the effects of node length, oryzalin concentration and exposure time. Plant Cell Rep 26:1977–1984PubMedCrossRefGoogle Scholar
  7. Alp S, Çelik F, Türkoglu N, Karagöz S (2009) The effects of different warm stratification periods on the seed germination of some Rosa taxa. Afr J Biotechnol 8:5838–5841CrossRefGoogle Scholar
  8. Anderson N, Byrne DH (2007) Methods for Rosa germination. Acta Hortic 751:503–507CrossRefGoogle Scholar
  9. Arene L, Pellegrino C, Gudin S (1993) A comparison of the somaclonal variation level of Rosa hybrida cv. Meirutral plants regenerated from callus or direct induction from different vegetative and embryonic tissues. Euphytica 71:83–92CrossRefGoogle Scholar
  10. Arnold NP, Barthakur NN, Tanguay M (1998) Mutagenic effects of acute γ-irradiation on miniature roses. Target theory approach. Hortic Sci 33:127–129Google Scholar
  11. Badaeva ED, Ruban AS, Zoshchuk SA, Surzhikov SA, Knüpffer H, Kilian B (2016) Molecular cytogenetic characterization of Triticum timopheevii chromosomes provides new insight on genome evolution of T. zhukovskyi. Plant Syst Evol 302:943–956CrossRefGoogle Scholar
  12. Bala M, Singh KP (2015) In vitro mutagenesis in rose (Rosa hybrida L.) cv. Raktima for novel traits. Indian J Biotechnol 14:525–531Google Scholar
  13. Ballard RE, Rajapakse S, Abbott AG, Byrne D (1995) DNA markers in rose and their use for cultivar identification and genome mapping. Acta Hortic 424:265–268Google Scholar
  14. Barton LV (1961) Experimental seed physiology at the Boyce Thompson Institute. Proc Int Seed Test Assoc 26:561Google Scholar
  15. Bhanuprakash K, Tejaswini Y, Yogeesha HS, Naik LB (2004) Effect of scarification and gibberellic acid on breaking dormancy of rose seeds. Seed Res 32:105–107Google Scholar
  16. Blechert O, Debener T (2005) Morphological characterisation of the interaction between Diplocarpon rosae and various rose species. Plant Pathol 54:82–90CrossRefGoogle Scholar
  17. Blundell JB (1965) Studies of flower development, fruit development, and germination in Rosa. PhD Dissertation, University of WalesGoogle Scholar
  18. Bo J, Huiru D, Xiaohan Y (1995) Shortening hybridization breeding cycle of rose - a study on mechanisms controlling achene dormancy. Acta Hortic 404:40–47CrossRefGoogle Scholar
  19. Bosco R, Caser M, Ghione GG, Mansuino A, Giovannini A, Scariot V (2015) Dynamics of abscisic acid and indole-3-acetic acid during the early-middle stage of seed development in rosa, hybrida. Plant Growth Regul 75:265–270CrossRefGoogle Scholar
  20. Bourke PM, Arens P, Voorrips RE, Esselink GD, Koning-Boucoiran CFS, van’t Westende WPC, Santos Leonardo T, Wissink P, Zheng C, van Geest G, Visser RGF, Krens FA, Smulders MJM, Maliepaard C (2017) Partial preferential chromosome pairing is genotype dependent in tetraploid rose. Plant J 90:330–343CrossRefPubMedGoogle Scholar
  21. Burger DW, Liu L, Zary KW, Lee CI (1990) Organogenesis and plant regeneration from immature embryos of Rosa hybrida L. Plant Cell Tissue Organ Cult 21:147152CrossRefGoogle Scholar
  22. Burrell AM, Lineberger RD, Rathore KS, Byrne DH (2006) Genetic variation in somatic embryogenesis of rose. HortSci 41:1165–1168Google Scholar
  23. Byrne DH, Crane YM (2003) Biotechnologies for breeding / Amphidiploidy. In: Roberts, Debener, Gudin (eds) Encyclopedia of rose science. Elsevier, OxfordGoogle Scholar
  24. Byrne DH, Black W, Ma Y, Pemberton HB (1996) The use of amphidiploidy in the development of blackspot resistant rose germplasm. Acta Hortic 424:269–272CrossRefGoogle Scholar
  25. Cabrera RI, Solis-Perez AR, Sloan JJ (2009) Greenhouse rose yield and ion accumulation responces to salt stress as modulated by rootstock selection. HortSci 44:2000–2008Google Scholar
  26. Cai X, Sun Y, Starman T, Hall C, Niu G (2014) Response of 18 earth-kind® rose cultivars to salt stress. HortSci 49:544–549Google Scholar
  27. Caser M (2017) Pollen grains and tubes. Reference Module in Life Sciences, Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.05077-9 Google Scholar
  28. Caser M, Dente F, Ghione GG, Mansuino A, Giovannini A, Scariot V (2014) Shortening of selection time of Rosa hybrida by in vitro culture of isolated embryos and immature seeds. Propag Ornamen Plant 14:139–144Google Scholar
  29. Chaanin A (2003) Breeding / selection strategies for cut roses. In: Roberts, Debener, Gudin (eds) Encyclopedia of rose science. Elsevier, Academic Press, OxfordGoogle Scholar
  30. Chan AP (1966) Chrysanthemum and rose mutations induced by X-rays. Proc Am Soc Hortic Sci 88:613–620Google Scholar
  31. Chen JR, Lü JJ, Liu R, Xiong XY, Wang TX, Chen SY, Guo LB, Wang HF (2010) DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China rose (Rosa chinensis Jacq.). Plant Growth Regul 60:199–211CrossRefGoogle Scholar
  32. Chimonidou-Pavlidou D (2004) Malfunction of roses due to drought stress. Sci Hortic 99:79–87CrossRefGoogle Scholar
  33. Condliffe PC, Davey MR, Power JB, Koehorst-van Putten H, Visser PB (2003) An optimized protocol for rose transformation applicable to different cultivars. Acta Hortic 612:115–120CrossRefGoogle Scholar
  34. Crépin F (1889) Sketch of a new classification of roses. J Roy Hortic Soc Lond 11:217–228Google Scholar
  35. Crespel L, Gudin S (2003) Evidence for the production of unreduced gametes by tetraploid Rosa hybrida L. Euphytica 133:65–69CrossRefGoogle Scholar
  36. Crespel L, Mouchotte J (2003) Methods of cross-breeding. In: Roberts, Debener, Gudin (eds) Encyclopedia of rose science. Elsevier, OxfordGoogle Scholar
  37. Crespel L, Gudin S, Meynet J, Zhang D (2002) AFLP-based estimation of 2n gametophytic heterozygosity in two parthenogenetically derived dihaploids of Rosa hybrida L. Theor Appl Genet 104:451–456PubMedCrossRefGoogle Scholar
  38. Crespel L, Ricci S, Gudin S (2006) The production of 2n pollen in rose. Euphytica 151:155–164CrossRefGoogle Scholar
  39. Cubero JI, Millan T, Osuna F, Torres AM, Cobos S (1995) Varietal identification in Rosa by using isozym and RAPD markers. Acta Hortic 424:261–264Google Scholar
  40. Datta SK (2012) Success story of induced mutagenesis for development of new ornamental varieties. In: Kozgar K (ed) Induced mutagenesis in crop plants: bioremediation, biodiversity and bioavailability. Global Science Books Ltd., UK, Ikenobe, Japan pp 15–26Google Scholar
  41. De Cock K, Scariot V, Leus L, De Riek J, Van Huylenbroeck J (2007) Understanding genetic relationships of wild and cultivated roses and the use of species in breeding. CAB Rev 52:2Google Scholar
  42. De Dauw K, Van Labeke MC, Leus L, Van Huylenbroeck J (2013) Drought tolerance screening of a Rosa population. Acta Hortic 990:121–127CrossRefGoogle Scholar
  43. De Riek J, Dendauw J, Mertens M, Van Bockstaele E, De Loose M (1997) Use of AFLP for variety protection: some case studies on ornamentals. Medded Fac Landbouwww Univ Gent 62:1459–1466Google Scholar
  44. De Riek J, Dendauw J, Leus L, De Loose M, Van Bockstaele E (2001) Variety protection by use of molecular markers: some case studies on ornamentals. Plant Biosyst 135:107–113CrossRefGoogle Scholar
  45. de Vries DP (2003) Breeding / Selection strategies for pot roses. In: Roberts, Debener, Gudin (eds) Encyclopedia of rose science. Elsevier, Academic Press, OxfordGoogle Scholar
  46. de Vries DP, Dubois LAM (1980) Inheritance of pigments. Am Rose Annu 65:145–148Google Scholar
  47. de Vries DP, Dubois LAM (1983) Pollen and pollination experiments. X. The effect of repeated pollination on fruit- and seed set in crosses between the hybrid tea-rose cvs. Sonia and Ilona. Euphytica 32:685–689CrossRefGoogle Scholar
  48. de Vries DP, Dubois LAM (1987) The effect of temperature on fruit-set, seed set and seed-germination in Sonia X Hadley hybrid tea-rose crosses. Euphytica 36:117–120CrossRefGoogle Scholar
  49. de Vries DP, Dubois LAM (1996) Rose breeding: past, present, prospects. Acta Hortic 424:241–248CrossRefGoogle Scholar
  50. de Vries DP, Dubois LAM (2001) Developments in breeding for horizontal and vertical fungus resistance in roses. Acta Hortic 552:103–112CrossRefGoogle Scholar
  51. de Vries DP, Dubois LAM (2015) Factors affection the germination of hybrid rose achenes: a review. Acta Hortic 1064:151–164CrossRefGoogle Scholar
  52. de Wit JC, Esendam HF, Honkanen JJ, Tuominen U (1990) Somatic embryogenesis and regeneration of flowering plants in rose. Plant Cell Rep 9:456–458PubMedCrossRefGoogle Scholar
  53. Debener T (1999) Genetic analysis of horticulturally important morphological and physiological characters in diploid roses. Gartenbauwissenschaft 64:14–20Google Scholar
  54. Debener T (2017) Inheritance of characteristics. Reference Module in Life Sciences, Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.05047-0 Google Scholar
  55. Debener T, Byrne DH (2014) Disease resistance breeding in rose: current status and potential of biotechnological tools. Plant Sci 228:107–117CrossRefPubMedGoogle Scholar
  56. Debener T, Linde M (2009) Exploring complex ornamental genomes: the rose as a model plant. Crit Rev Plant Sci 28:267–280CrossRefGoogle Scholar
  57. Debener T, Mattiesch L (1999) Construction of a genetic linkage map for roses using RAPD and AFLP markers. Theor Appl Genet 99:891–899CrossRefGoogle Scholar
  58. Debener T, Drewes-Alvarez R, Rockstroh K (1998) Identification of five physiological races of black spot, Diplocarpon rosae, wolf on roses. Plant Breed 117:267–270CrossRefGoogle Scholar
  59. Densmore RA, Zasada JC (1977) Germination requirements of Alaskan Rosa acicularis. Can Field Nat 91:58–62Google Scholar
  60. Derks FHM, van Dijk AJ, Hänisch ten Cate CH, Florack DEA, Dubois LAM, de Vries DP (1995) Prolongation of vase life of cut roses via introduction of genes coding for antibacterial activity. Somatic embryogenesis and Agrobacterium-mediated transformation. Acta Hortic 405:205–209CrossRefGoogle Scholar
  61. Dewitte A, Leus L, Van Huylenbroeck J, Van Bockstaele E, Höfte M (2007) Characterization of reactions to powdery mildew (Podosphaera pannosa) in resistant and susceptible rose genotypes. J Phytopathol 155:264–272CrossRefGoogle Scholar
  62. Di Bello PL, Ho T, Tzanetakis IE (2015) The evolution of emaraviruses is becoming more complex: seven segments identified in the causal agent of rose rosette disease. Virus Res 210:241–244PubMedCrossRefGoogle Scholar
  63. Di Bello PL, Thekke-Veetil T, Druciarek T, Tzanetakis IE (2018) Transmission attributes and resistance to rose rosette virus. Plant Pathol 67:499–504CrossRefGoogle Scholar
  64. Dohm A, Ludwig C, Schilling D, Debener T (2002) Transformation of roses with genes for antifungal proteins to reduce their susceptibility to fungal diseases. Acta Hortic 572:105–111CrossRefGoogle Scholar
  65. Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, Rupp O, Sörensen TR, Stracke R, Reinhardt R, Goesmann A, Kraft T, Schulz B, Stadler PF, Schmidt T, Gabaldón T, Lehrach H, Weisshaar B, Himmelbauer H (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505:546–549PubMedCrossRefGoogle Scholar
  66. Drewes-Alavarez R (2017) Early embryo rescue. Reference Module in Life Sciences, Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.05002-0
  67. Drewes-Alvarez R (2003) Disease / black spot. In: Roberts, Debener, Gudin (eds) Encyclopedia of rose science. Elsevier, Academic Press, OxfordGoogle Scholar
  68. Dubois LAM (2003) Intellectual property/plant patents and trademarks. In: Roberts, Debener, Gudin (eds) Encyclopedia of rose science. Elsevier, OxfordGoogle Scholar
  69. Dubois LAM, de Vries DP (1987) On the inheritance of the dwarf character in polyantha x Rosa chinensis minima (Sims) Voss F1-populations. Euphytica 36:535–539CrossRefGoogle Scholar
  70. Dubois LAM, de Vries DP (1995) Preliminary report on direct regeneration of adventitious buds on leaf explants of in vivo grown glass house rose cultivars. Gartenbauwissenschaft 60:249–253Google Scholar
  71. Dubois LAM, de Vries DP, Koot A (2000) Direct shoot regeneration in the rose: genetic variation of cultivars. Gartenbauwissenschaft 65:45–49Google Scholar
  72. El Mokadem H, Crespel L, Meynet J, Gudin S (2002a) The occurrence of 2n-pollen and the origin of sexual polyploids in dihaploid roses (Rosa hybrida L.). Euphytica 125:169–177CrossRefGoogle Scholar
  73. El Mokadem H, Meynet J, Crespel L (2002b) The occurrence of 2n eggs in the dihaploids derived from Rosa hybrida L. Euphytica 124:327–332CrossRefGoogle Scholar
  74. Esselink D, Smulders MJM, Vosman B (2003) Identification of cut-rose (Rosa hybrida) and rootstock varieties using robust sequence tagged microsatellite markers. Theor Appl Genet 106:277–286PubMedCrossRefGoogle Scholar
  75. Estabrooks T, Browne R, Dong Z (2007) 2,4,5-Trichlorophenoxyacetic acid promotes somatic embryogenesis in the rose cultivar ‘Livin’ easy’ (Rosa sp.). Plant Cell Rep 26:153–160PubMedCrossRefGoogle Scholar
  76. Fagerlind F (1958) Hip and seed formation in newly formed Rosa polyploids. Acta Hortic Berg 17:229–256Google Scholar
  77. Feng H, Wang ML, Cong RC, Dai SL (2016) Colchicine- and trifluralin-mediated polyploidization of Rosa multiflora Thunb. Var. inermis and Rosa roxburghii f. Normalis. J Hortic Sci Biotechnol 92:279–287CrossRefGoogle Scholar
  78. Fernandez-Romero MD, Torres AM, Millan T, Curero JL, Cabrera A (2001) Physical mapping of ribosomal DNA on several species of the subgenus Rosa. Theor Appl Genet 103:835–838CrossRefGoogle Scholar
  79. Firoozabady E, Moy Y, Courtneygutterson N, Robinson K (1994) Regeneration of transgenic rose (Rosa hybrida) plants from embryogenic tissue. Biotechnology 12:609–613Google Scholar
  80. Fougère-Danezan M, Joly S, Bruneau A, Gao XF, Zhang LB (2015) Phylogeny and biogeography of wild roses with specific attention to polyploids. Ann Bot 115:275–291PubMedCrossRefGoogle Scholar
  81. Gallego FJ, Martinez I (1996) Molecular typing of rose cultivars using RAPDs. J Hortic Sci 71:901–908CrossRefGoogle Scholar
  82. Gar O, Sargent DJ, Tsai CJ, Pleban T, Shalev G, Byrne DH, Zamir D (2011) An autotetraploid linkage map of rose (Rosa hybrida) validated using the strawberry (Fragaria vesca) genome sequence. PLoS One 6:e20463PubMedPubMedCentralCrossRefGoogle Scholar
  83. Geike J, Kaufmann H, Schürmann F, Debener T (2015) Targeted mutagenesis of MLO homologous genes in the rose genome. Acta Hortic 1087:507–513CrossRefGoogle Scholar
  84. Giovannini A, Macovei A, Donà M, Valassi A, Caser M, Mansuino A, Ghione GG, Carbonera D, Scariot V, Balestrazzi A (2015) Pollen grain preservation at low temperatures in valuable commercial rose cultivars. Acta Hortic 1064:63–66CrossRefGoogle Scholar
  85. Grossi C, Jay M (2002) Chromosome studies of rose cultivars: application into selection process. Acta Bot Gallica 149:405–413CrossRefGoogle Scholar
  86. Gudin S (1995) Rose improvement, a breeders experience. Acta Hortic 420:125–128CrossRefGoogle Scholar
  87. Gudin S (1999) Improvement of rose varietal creation in the world. Acta Hortic 495:283–291CrossRefGoogle Scholar
  88. Gudin S (2000) Rose: genetics and breeding. In: Plant breeding reviews, vol 17, pp 159–189Google Scholar
  89. Gudin S (2001) Rose breeding technologies. Acta Hortic 547:23–33CrossRefGoogle Scholar
  90. Gudin S (2003) Breeding / Overview. In: Roberts, Debener, Gudin (eds) Encyclopedia of rose science. Elsevier, Academic Press, OxfordGoogle Scholar
  91. Gudin S (2017) Seed propagation. Reference Module in Life Sciences, Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.05093-7 Google Scholar
  92. Gudin S, Mouchotte J (1996) Integrated research in rose improvement – a breeders experience. Acta Hortic 424:285–291CrossRefGoogle Scholar
  93. Gudin S, Arene L, Chavagnat A, Bulart C (1990) Influence of endocarp thickness on rose achene germination: genetic and environmental factors. HortSci 25:786–788Google Scholar
  94. Hakam N, DeEll JR, Khanizadeh S, Richer C (2000) Assessing chilling tolerance in roses using chlorophyll fluorescence. HortSci 35:184–186Google Scholar
  95. Haring PA (1986) Modern Roses 9. American Rose Society, ShreveportGoogle Scholar
  96. Harp DA, Kay K, Zlesak DC, George S (2015) The effect of rose root size on drought stress tolerance and landscape plant performance. Texas J Agric Nat Resour 28:82–88Google Scholar
  97. Herrero M, Hormaza JI (1996) Pistil strategies controlling pollen tube growth. Sex Plant Reprod 9:343–347CrossRefGoogle Scholar
  98. Hibrand Saint-Oyant L, Ruttink T, Hamama L, Kirov I, Lakhwani D, Zhou NN, Bourke P, Daccord N, Leus L, Schulz D, Van de Geest H, Hesselink T, Van Laere K, Debray K, Balzergue S, Thouroude T, Chastellier A, Jeauffre J, Voisine L, Gaillard S, Borm T, Arens P, Voorrips R, Maliepaard C, Neu E, Linde M, Le Paslier MC, Berard A, Bounon R, Clotault J, Choisne N, Quesneville H, Kawamura K, Aubourg S, Sakr S, Smulders R, Schijlen E, Bucher E, Debener T, De Riek J, Foucher F (2018) A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nature Plants. https://doi:10.1038/s41477-018-0166-1 CrossRefPubMedGoogle Scholar
  99. Hibrand-Saint Oyant L, Crespel L, Rajapakse S, Zhang L, Foucher F (2008) Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits Tree Genetics & Genomes 4:11CrossRefGoogle Scholar
  100. Himi E, Taketa S (2015) Isolation of candidate genes for the barley Ant1 and wheat Rc genes controlling anthocyanin pigmentation in different vegetative tissues. Mol Gen Genomics 290:1287–1298CrossRefGoogle Scholar
  101. Horst RK (1983) Compedium of rose diseases. APS Press, St. PaulGoogle Scholar
  102. Hosseini Moghaddam H, Leus L, De Riek J, Van Huylenbroeck J, Van Bockstaele E (2012) Construction of a genetic linkage map with SSR, AFLP and morphological markers to locate QTLs controlling pathotype-specific powdery mildew resistance in diploid roses. Euphytica 184:413–427CrossRefGoogle Scholar
  103. Hsia CN, Korban SS (1996) Organogenesis and somatic embryogenesis in callus cultures of Rosa hybrida and Rosa chinensis minima. Plant Cell Tissue Organ Cult 44:1–6CrossRefGoogle Scholar
  104. Hubbard M, Kelly J, Rajapakse S, Abbott AG, Ballard RE (1992) Restriction fragment polymorphism in rose and their use for cultivar identification. HortSci 27:172–173Google Scholar
  105. IAEA (2018) database https://mvd.iaea.org/. Accessed 04 Mar 2018
  106. Ibrahim R (1999) In vitro mutagenesis in rose. PhD Dissertation, Ghent UniversityGoogle Scholar
  107. Ibrahim R, Debergh P (2001) Factors controlling high efficiency adventitious bud formation and plant regeneration from in vitro leaf explants of roses (Rosa hybrida L.). Sci Hortic 88:41–57CrossRefGoogle Scholar
  108. Ishioka N, Tanimoto S (1990) Plant regeneration from Bulgarian rose callus. Plant Cell Tissue Organ Cult 22:197–199CrossRefGoogle Scholar
  109. Iwata H, Kato T, Ohno S (2000) Triparental origin of damask roses. Gene 259:53–59PubMedCrossRefGoogle Scholar
  110. Iwata H, Gaston A, Remay A, Thouroude T, Jeauffre J, Kawamura K, Hibrand-Saint Oyant L, Araki T, Denoyes B, Foucher F (2012) The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. Plant J 69:116–125PubMedCrossRefGoogle Scholar
  111. Jackson GAD (1968) Hormonal control of fruit development, seed development and germination with particular reference to Rosa. SCI monogr 31:157–156Google Scholar
  112. Jackson GAD, Blundell JB (1963) Germination in Rosa. J Hortic Sci 38:310–320CrossRefGoogle Scholar
  113. Jacob Y, Ferrero F (2003) Pollen grains and tubes. In: Roberts, Debener, Gudin (eds) Encyclopedia of rose science. Elsevier, Academic Press, OxfordGoogle Scholar
  114. Jang HR, Lee HJ, Park BJ, Pee OJ, Paek KY, Park SY (2016) Establishment of embryogenic cultures and determination of their bioactive properties in Rosa rugosa. Hortic Environ Biotechnol 57:291–298CrossRefGoogle Scholar
  115. Jian HY, Zhang H, Tang KX, Li SF, Wang QG et al (2010a) Decaploidy in Rosa praelucens Byhouwer (Rosaceae) endemic to Zhongdian plateau, Yunnan, China. Caryology 63:162–167CrossRefGoogle Scholar
  116. Jian HY, Zhang H, Zhang T, Li SF, Wang QG et al (2010b) Karyotype analysis of different varieties of Rosa odorata sweet. J Plant Genet Res 11:457–461Google Scholar
  117. Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068PubMedCrossRefGoogle Scholar
  118. Joly S, Starr JR, Lewis WH, Bruneau A (2006) Polyploid and hybrid evolution in roses east of the Rocky Mountains. Am J Bot 93:412–425PubMedCrossRefGoogle Scholar
  119. Kahrizi ZA, Kermani MJ, Amiri M, Vedadi S, Hosseini Z (2015) In vitro radio-sensitivity of different genotypes and explants of rose (Rosa hybrida). J Hortic Sci Biotechnol 88:47–52CrossRefGoogle Scholar
  120. Kamo K, Jones B, Bolar J, Smith F (2005) Regeneration from long-term embryogenic callus of the Rosa hybrida cultivar cardinal. In Vitro Cell Dev Biol Plant 41:32–36CrossRefGoogle Scholar
  121. Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A, Tao GQ, Nehra NS, Lu CY, Dyson BK, Tsuda S, Ashikari T, Kusumi T, Mason JG, Tanaka Y (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48:589–1600CrossRefGoogle Scholar
  122. Kaufmann H, Qiu X, Wehmeyer J, Debener T (2012) Isolation, molecular characterization, and mapping of four rose MLO orthologs. Front Plant Sci 3:244PubMedPubMedCentralCrossRefGoogle Scholar
  123. Kermani MJ, Sarasan V, Roberts AV, Yokoya K, Wentworth J, Sieber VK (2003) Oryzalin-induced chromosome doubling in Rosa and its effect on plant morphology and pollen viability. Theor Appl Genet 107:1195–1200PubMedCrossRefGoogle Scholar
  124. Khosravi P, Kermani MJ, Nematzadeh GA, Bihamta MR, Yokoya K (2008) Role of mitotic inhibitors and genotype on chromosome doubling of Rosa. Euphytica 160:267–275CrossRefGoogle Scholar
  125. Kim CK, Chung J, Jee S, Oh J (2003a) Somatic embryogenesis from in vitro grown leaf explants of Rosa hybrida L. J Plant Biotech 5:169–172Google Scholar
  126. Kim SW, Oh SC, Liu JR (2003b) Control of direct and indirect somatic embryogenesis by exogenous growth regulators in immature zygotic embryo cultures of rose. Plant Cell Tissue Organ Cult 74:61–66CrossRefGoogle Scholar
  127. Kim CK, Chung JD, Park SH, Burrell AM, Kamo KK, Byrne DH (2004) Agrobacterium tumefaciens-mediated transformation of Rosa hybrida using the green fluorescent protein (GFP) gene. Plant Cell Tissue Organ Cult 78:107–111CrossRefGoogle Scholar
  128. Kim SW, Oh MJ, Liu JR (2009) Somatic embryogenesis and plant regeneration in zygotic embryo explant cultures of rugosa rose. Plant Biotechnol Rep 3:199–203CrossRefGoogle Scholar
  129. Kintzios S, Manos C, Makri O (1999) Somatic embryogenesis from mature leaves of rose (Rosa sp.). Plant Cell Rep 18:467–472CrossRefGoogle Scholar
  130. Kintzios S, Drossopoulos JB, Lymperopoulos C (2000) Effect of vitamins and inorganic micronutrients on callus growth and somatic embryogenesis from young mature leaves of rose. J Plant Nutr 23:1407–1420CrossRefGoogle Scholar
  131. Kirov I (2017) Physical mapping of genes on plant chromosomes. PhD Dissertation, Ghent UniversityGoogle Scholar
  132. Kirov I, Van Laere K, De Riek J, De Keyser E, Van Roy N, Khrustaleva L (2014a) Anchoring linkage groups of the Rosa genetic map to physical chromosomes with tyramide-FISH and EST-SNP markers. PlosONE 9:e95793CrossRefGoogle Scholar
  133. Kirov I, Divashuk M, Van Laere K, Soloviev A, Khrustaleva L (2014b) An easy “SteamDrop” method for high quality plant chromosome preparation. Mol Cytogenet 7:1–10CrossRefGoogle Scholar
  134. Kirov I, Van Laere K, Khrustaleva L (2015) High resolution physical mapping of single gene fragments on pachytene chromosome 4 and 7 of Rosa. BMC Genet 16:1–10CrossRefGoogle Scholar
  135. Kirov I, Van Laere K, Van Roy N, Khrustaleva L (2016) Towards a FISh-based karyotype of Rosa L. Comp Cytogenet 10:543PubMedPubMedCentralCrossRefGoogle Scholar
  136. Koning-Boucoiran CFS, Gitonga VW, Yan Z, Dolstra O, van der Linden CG, van der Schoot J, Uenk GE, Verlinden K, Smulders MJM, Krens FA, Maliepaard C (2012) The mode of inheritance in tetraploid cut roses. Theor Appl Genet 125:591–607PubMedPubMedCentralCrossRefGoogle Scholar
  137. Koning-Boucoiran CFS, Esselink GD, Vukosavljev M, van ‘t Westende WP, Gitonga VW, Krens FA, Voorrips RE, van de Weg WE, Schulz D, Debener T, Maliepaard C, Arens P, Smulders MJ (2014) Using RNA-Seq to assemble a rose transcriptome with more than 13,000 full-length expressed genes and to develop the WagRhSNP 68k axiom SNP array for rose (Rosa L.). Front Plant Sci 6:249Google Scholar
  138. Koopman WJM, Wissemann V, De Cock K, Van Huylenbroeck J, De Riek J, Sabatino GJH, Visser D, Vosman B, Ritz CM, Maes B, Werlemark G, Nybom H, Debener T, Linde M, Smulders MJM (2008) AFLP markers as a tool to reconstruct complex relationships: a case study in Rosa (Rosaceae). Am J Bot 95:353–366PubMedCrossRefGoogle Scholar
  139. Kunitake H, Imamizo H, Mii M (1993) Somatic embryogenesis and plant regeneration from immature seed-derived calli of rugosa rose (Rosa rugosa Thunb.). Plant Sci 90:187–194CrossRefGoogle Scholar
  140. Lammerts WE (1945) The scientific basis of rose breeding. Am Rose Ann 30:71–79Google Scholar
  141. Lee SY, Han BH, Kim YS (2010a) Somatic embryogenesis and shoot development in Rosa hybrida L. Acta Hortic 870:219–225Google Scholar
  142. Lee SY, Jung JH, Kim WH, Kim ST, Lee EK (2010b) Acquirement of transgenic rose plants from embryogenic calluses via Agrobacterium tumefaciens. J Plant Biotechnol 37:511–516CrossRefGoogle Scholar
  143. Leus L (2005) Resistance breeding for powdery mildew (Podosphaera pannosa) and black spot (Diplocarpon rosae) in roses. PhD Dissertation, Ghent UniversityGoogle Scholar
  144. Leus L (2017) Selection strategies for disease resistance in roses. Reference Module in Life Sciences, Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.05008-1 Google Scholar
  145. Leus L, Van Huylenbroeck J (2009) Developing resistance to powdery mildew (Podosphaera pannosa (Wallr.: Fr.) de Bary): a challenge for rose breeders. In: Zlesak. (ed) RosesFloriculture and ornamental biotechnology. Global Science Books Ltd., UK, Ikenobe, Japan pp 131–138Google Scholar
  146. Leus L, Jeanneteau F, Van Huylenbroeck J, Van Bockstaele E, De Riek J (2004) Molecular evaluation of a collection of rose species and cultivars by AFLP, ITS, rbc L, and mat K. Acta Hortic 651:141–147CrossRefGoogle Scholar
  147. Leus L, Dewitte A, Van Huylenbroeck J, Vanhoutte N, Van Bockstaele E, Höfte M (2006) Podosphaera pannosa (syn. Sphaerotheca pannosa) on Rosa and Prunus spp.: characterization of pathotypes by differential plant reactions and ITS-sequences. J Phytopathol 154:23–28CrossRefGoogle Scholar
  148. Li XQ, Krasnyanski SF, Korban SS (2002a) Somatic embryogenesis, secondary somatic embryogenesis, and shoot organogenesis in Rosa. J Plant Physiol 159:313–319CrossRefGoogle Scholar
  149. Li XQ, Krasnyanski SF, Korban SS (2002b) Optimization of the uidA gene transfer into somatic embryos of rose via Agrobacterium tumefaciens. Plant Physiol Biochem 40:453–459CrossRefGoogle Scholar
  150. Li X, Gasic K, Cammue B, Broekaert W, Korban SS (2003) Transgenic rose lines harboring an antimicrobial gene, ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta 218:226–232CrossRefPubMedGoogle Scholar
  151. Liang S, Wu X, Byrne D (2017) Flower-size heritability and floral heat-shock tolerance in diploid roses. HortSci 52:682–685CrossRefGoogle Scholar
  152. Lim KY, Werlemark G, Matyasek R, Bringloe JB, Sieber V, El Mokadem H, Roberts AV (2005) Evolutionary implications of permanent odd polyploidy in the stable sexual, pentaploid of Rosa canina L. Heredity 94:501–506PubMedCrossRefPubMedCentralGoogle Scholar
  153. Li-Marchetti C, Le Bras C, Relion D, Citerne S, Huché-Thélier L, Sakr S, Morel P, Crespel L (2015) Genotypic differences in architectural and physiological responses to water restriction in rose bush. Front Plant Sci 6:355PubMedPubMedCentralCrossRefGoogle Scholar
  154. Linde M, Debener T (2003) Isolation and identification of eight races of powdery mildew of roses (Podosphaera pannosa) (Wallr:Fr.) de Bary and the genetic analysis of the resistance gene Rpp1. Theor Appl Genet 107:256–262PubMedCrossRefPubMedCentralGoogle Scholar
  155. Linde M, Shishkoff N (2003) Disease / powdery mildew. In: Roberts, Debener, Gudin (eds) Encyclopedia of rose science. Elsevier, Academic Press, OxfordGoogle Scholar
  156. Liorzou M, Pernet A, Li S, Chastellier A, Thouroude T, Michel G, Malécot V, Gaillard S, Brieé C, Foucher F, Oghina-Pavie C, Clotault J, Grapin A (2016) Nineteenth century French rose (Rosa sp.) germplasm shows a shift over time from a European to an Asian genetic background. J Exp Bot 67:4711–4725PubMedPubMedCentralCrossRefGoogle Scholar
  157. Liu CY, Wang GL, Xie QL, Jin J, Liu GN (2008) A study on the chromosome karyomorphology of 6 species in Rosa. J Jiangsu For Sci Technol 35:5–8Google Scholar
  158. Lloyd D, Roberts AV, Short KC (1988) The induction in vitro of adventitious shoots in Rosa. Euphytica 37:31–36CrossRefGoogle Scholar
  159. Longhi S, Giongo L, Buti M, Surbanovski N, Viola R, Velasco R, Ward JA, Sargent DJ (2014) Molecular genetics and genomics of the Rosoideae: state of the art and future perspectives. Hortic Res 1:1PubMedPubMedCentralCrossRefGoogle Scholar
  160. Ma Y, Chen JY (1991) Chromosome studies of seven roses. J Fujian Coll For 11:215–218Google Scholar
  161. Ma Y, Chen JY (1992) Chromosome studies of six species of Rosa in China. Guihaia 12:333–336Google Scholar
  162. Ma Y, Islam-Faridl MN, Crane CF, Stelly DM, Price HJ, Byrne DH (1996) A new procedure to prepare slides of metaphase chromosomes of roses. HortSci 31:855–857Google Scholar
  163. Ma Y, Crana CF, Byrne DH (1997a) Karyotypic relationships among some Rosa species. Caryologia 50:317–326CrossRefGoogle Scholar
  164. Ma Y, Islam-Faridi MN, Crana CF, Ji Y, Stelly DM, Price HJ, Byrne DH (1997b) In situ hybridization of ribosomal DNA to rose chromosomes. J Hered 88:158–161CrossRefGoogle Scholar
  165. Macovei A, Caser M, Donà M, Valassi A, Giovannini A, Carbonera D, Scariot V, Balestrazzi A (2016) Prolonged cold storage affects pollen viability and germination along with hydrogen peroxide and nitric oxide content in Rosa hybrida. Not Bot Hortic Agrobo 44:6–10Google Scholar
  166. MacPhail VJ, Kevan PG (2009) Review of the breeding systems of wild roses (Rosa spp.). In: Zlesak. (ed) RosesFloriculture and ornamental biotechnology. Global Science Books Ltd., UK, Ikenobe, Japan pp 1–13Google Scholar
  167. Magnard JL, Roccia A, Caissard JC, Vergne Pn Sun P, Hecquet R, Dubois A, Hibrand-Saint Oyant L, Julien F, Nicolè F, Raymond O, Huguet S, Baltenweck R, Meyer S, Claudel P, Jeauffre Jn Rohmer M, Foucher F, Hugueney P, Bendahmane M, Baudino S (2015) Biosynthesis of monoterpene scent compounds in roses. Science 349:81–83PubMedCrossRefPubMedCentralGoogle Scholar
  168. Mandakova T, Singh V, Krämer U, Lysak MA (2015) Genome structure of the heavy metal hyperaccumulator Noccaea caerulescens and its stability on metalliferous and nonmetalliferous soils. Plant Physiol 169:674–689PubMedPubMedCentralCrossRefGoogle Scholar
  169. Marchant R, Davey MR, Lucas JA, Lamb CJ, Dixon RA, Power JB (1998a) Expression of a chitinase transgene in rose (Rosa hybrida L.) reduces development of blackspot disease (Diplocarpon rosa wolf). Mol Breed 4:187–194CrossRefGoogle Scholar
  170. Marchant R, Power JB, Lucas JA, Davey MR (1998b) Biolistic transformation of rose (Rosa hybrida L.). Ann Bot 81:109–114CrossRefGoogle Scholar
  171. Marriott M (2017) Modern (Post-1800). Reference Module in Life Sciences, Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.05063-9 Google Scholar
  172. Matsumoto S, Fukui H (1996) Identification of rose cultivars and clonal plants by random amplified polymorphic DNA. Sci Hortic 67:49–54CrossRefGoogle Scholar
  173. Matsumoto S, Kouchi M, Yabuki J, Kusunoki M, Ueda Y, Fukui H (1998) Phylogenetic analysis of the genus Rosa using MatK sequence: molecular evidence for the narrow genetic background of modern roses. Sci Hortic 77:73–82CrossRefGoogle Scholar
  174. Matsumoto S, Kouchi M, Fukui H (2000) Phylogenetic analysis of the subgenus Eurosa using the ITS nrDNA sequence. Acta Hortic 521:193–202CrossRefGoogle Scholar
  175. Matthews D, Mottley J, Horan I, Roberts AV (1991) A protoplast to plant system in rose. Plant Cell Tissue Organ Cult 24:173–180CrossRefGoogle Scholar
  176. Meneve I (1995) Breeding for disease resistance in roses by means of Rosa rugosa and Rosa fedtschenkoana. Can Rose Annu 1995:55–57Google Scholar
  177. Meynet J, Barrade R, Duclos A, Siadous R (1994) Dihaploid plants of roses (Rosa x hybrida, cv. ‘Sonia’) obtained by parthenogenesis induced using irradiated pollen and in vitro culture of immature seeds. Agronomie 2:169–175CrossRefGoogle Scholar
  178. Morpeth DR, Hall AM (2000) Microbial enhancement of seed germination in Rosa corymbifera „Laxa‟. Seed Sci Res 10:489–494CrossRefGoogle Scholar
  179. Mottley J, Yokoya K, Matthews D, Squirrel J, Wentworth JE (1996) Protoplast fusion and its potential role in the genetic improvement of roses. Acta Hortic 424:393–397CrossRefGoogle Scholar
  180. Murali S, Sreedhar D, Lokeswari TS (1996) Regeneration through somatic embryogenesis from petal-derived calli of Rosa hybrida L. cv Arizona (hybrid tea). Euphytica 91:271–275CrossRefGoogle Scholar
  181. Nakamura N, Hirakawa H, Sato S, Otagaki S, Matsumoto S, Tabata S, Tanaka Y (2017) Genome structure of Rosa multiflora, a wild ancestor of cultivated roses, DNA Research, dsx042, https://doi.org/10.1093/dnares/dsx042
  182. Nguyen HN, Schulz D, Winkelmann T, Debener T (2017) Genetic dissection of adventitious shoot regeneration in roses by employing genome-wide association studies. Plant Cell Rep 36:1493–1505CrossRefPubMedGoogle Scholar
  183. Noriega C, Sondahl MR (1991) Somatic embryogenesis in hybrid tea roses. Biotechnology 9:991–993CrossRefGoogle Scholar
  184. Novak P, Neumann P, Pech J, Steinhaisl J, Macas J (2013) RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792PubMedCrossRefGoogle Scholar
  185. Nybom H (2017) DNA fingerprinting. Reference Module in Life Sciences, Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.05044-5 Google Scholar
  186. Nybom H, Esselink GD, Werlemark G, Vosman B (2004) Microsatellite DNA marker inheritance indicates preferential pairing between two highly homologous genomes in polyploid and hemisexual dog-roses, Rosa L. sect. Caninae DC. Heredity 92:139–150PubMedCrossRefGoogle Scholar
  187. O’neill CM, Bancroft I (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to resequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J 23:233–243PubMedCrossRefGoogle Scholar
  188. Ogilvie I, Cloutier D, Arnold N, Jui PY (1991) The effect of gibberellic acid on fruit and seed set in crosses of garden and winter hardy Rosa accessions. Euphytica 52:119–123Google Scholar
  189. Ouyang L, Leus L, Van Labeke MC (2017) Seasonal changes in cold hardiness of garden roses. Paper presented at the 7th international symposium on rose research and cultivation, Angers, France, 2–7 July 2017Google Scholar
  190. Pati PK, Sharma M, Sood A, Sood A, Ahuja PS (2004) Direct shoot regeneration from leaf explants of Rosa damascena mill. In Vitro Cell Dev Biol Plant 40:192–195CrossRefGoogle Scholar
  191. Pati PK, Rath SP, Sharma M, Sood A, Ahuja PS (2006) In vitro propagation of rose - a review. Biotechnol Adv 24:94–114PubMedCrossRefGoogle Scholar
  192. Pécrix Y, Rallo G, Folzer H, Cigna M, Gudin S, Le Bris M (2011) Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp. J Exp Bot 62:3587–3597CrossRefPubMedGoogle Scholar
  193. Peng T, Chen W, Moens M (2003) Resistance of Rosa species and cultivars to Pratylenchus penetrans. HortSci 38:560–564Google Scholar
  194. Pertwee J (1995) The production and marketing of roses. Pathfast Publishing, EssexGoogle Scholar
  195. Pipino L (2011) Improving seed production efficiency for hybrid rose breeding. PhD Dissertation, Ghent UniversityGoogle Scholar
  196. Pipino L, Van Labeke MC, Mansuino A, Scariot V, Giovannini A, Leus L (2011) Pollen morphology as fertility predictor in hybrid tea roses. Euphytica 178:203–214CrossRefGoogle Scholar
  197. Pipino L, Leus L, Scariot V, Van Labeke MC (2013) Embryo and hip development in hybrid roses. Plant Growth Reg 69:107–116CrossRefGoogle Scholar
  198. Pourhosseini L, Kermani MJ, Habashi AA, Khalighi A (2013) Efficiency of direct and indirect shoot organogenesis in different genotypes of Rosa hybrida. Plant Cell Tissue Organ Cult 112:101–108CrossRefGoogle Scholar
  199. Rajapakse S, Hubbard M, Kelly JW, Abbott AG, Ballard RE (1992) Identification of rose cultivars by restriction fragment polymorphism. Sci Hortic 52:237–245CrossRefGoogle Scholar
  200. Raymond O, Gouzy J, Just J, Badouin H, Verdenaud M, Lemainque A, Vergne P, Moja S, Choisne N, Pont C, Carrère S, Caissard J, Couloux A, Cottret L, Aury J, Szécsi J, Latrasse D, Madoui M, François L, Fu X, Yang S, Dubois A, Piola F, Larrieu A, Perez M, Labadie K, Perrier L, Govetto B, Labrousse Y, Villand P, Bardoux C, Boltz V, Lopez-Roques C, Heitzler P, Vernoux T, Vandenbussche M, Quesneville H, Boualem A, Bendahmane A, Liu C, Le Bris M, Salse J, Baudino S, Benhamed M, Winckler P, Bendahmane M (2018) The Rosa genome provides new insights into the domestication of modern roses. Nature Genetics. https://doi.org/10.1038/s41588-018-0110-3
  201. Rehder A (1940) Manual of cultivated trees and shrubs hardy in North America. Collier Macmillan Ltd., New YorkGoogle Scholar
  202. Reitsma TJ (1966) Pollen morphology of some European Rosaceae. Acta Botanica Neerlandica 15:290–307CrossRefGoogle Scholar
  203. Reynders-Aloisi S, Bollereau P (1996) Characterization of genetic diversity in genus Rosa by random amplified length polymorphic DNA. Acta Hortic 424:253–259CrossRefGoogle Scholar
  204. Ritz CM, Wissemann V (2011) Microsatellite analyses of artificial and apontaneous dogrose hybrids reveal the hybridogenic origin of Rosa micrantha by the contribution of unreduced gametes. J Hered 102:217–227PubMedCrossRefGoogle Scholar
  205. Roberts AV (2007) The use of bead beating to prepare suspensions of nuclei for flow cytometry from fresh leaves, herbarium leaves, petals and pollen. Cytometry A 71A:1039–1044CrossRefGoogle Scholar
  206. Roberts AV, Debener T, Gudin S (2003) Introduction. In: Roberts, Debener, Gudin (eds) Encyclopedia of rose science. Elsevier, Academic Press, OxfordGoogle Scholar
  207. Roberts AV, Gladis T, Brumme H (2009) DNA amounts of roses (Rosa L.) and their use in attributing ploidy levels. Plant Cell Rep 28:61–71PubMedCrossRefGoogle Scholar
  208. Roundey E, Anderson N, Bedard C, Scheiber M, Zlesak D, Byrne D (2017) Rosa palustris and Rosa setigera: Breeding Challenges. Paper presented at the 7th international symposium on rose research and cultivation, Angers, France, 2–7 July 2017Google Scholar
  209. Rout GR, Debata BK, Das P (1991) Somatic embryogenesis in callus cultures of Rosa hybrida L. cv. Landora. Plant Cell Tissue Organ Cult 27:65–69CrossRefGoogle Scholar
  210. Rout GR, Samantaray S, Mottley J, Das P (1999) Biotechnology of the rose: a review of recent progress. Sci Hortic 81:201–228CrossRefGoogle Scholar
  211. Rowley GD (1956) Germination in Rosa canina. Am Rose Ann 41:70–73Google Scholar
  212. Sarasan V, Roberts AV, Rout GR (2001) Methyl laurate and 6-benzyladenine promote the germination of somatic embryos of a hybrid rose. Plant Cell Rep 20:183–186CrossRefGoogle Scholar
  213. Scariot V, Akkak A, Botta R (2006) Characterization and genetic relationships of wild species and old garden roses based on microsatellite analysis. J Am Soc Hortic Sci 131:66–73Google Scholar
  214. Schum A, Hofman K, Ghalib N, Tawfik A (2001) Factors affecting protoplast isolation and plant regeneration in Rosa spp. Gartenbauwissenschaft 66:115–122Google Scholar
  215. Semeniuk P (1971a) Inheritance of recurrent blooming in Rosa wichuraiana. J Hered 62:203–204CrossRefGoogle Scholar
  216. Semeniuk P (1971b) Inheritance of recurrent and non-recurrent blooming in ‘goldilocks’ x Rosa wichuraiana progeny. J Hered 62:319–320CrossRefGoogle Scholar
  217. Semeniuk P, Arisumi T (1968) Colchicine-induced tetraploid and cytomerical roses. Bot Gaz 129:190–193CrossRefGoogle Scholar
  218. Semeniuk P, Stewart RN (1962) Temperature reversal of after-ripening of rose seeds. Proc Amer Soc Hortic Sci 80:615–621Google Scholar
  219. Senapathi SK, Rout GR (2008) In vitro mutagenesis of rose with ethylmethanesulphonate (EMS) and early selection using RAPD markers. Adv Hortic Sci 3:218–222Google Scholar
  220. Smulders MJM, Arens P, Koning-Boucoiran CFS, Gitonga VW, Krens FA, Atanassov A, Atanassov I, Rusanov KE, Bendahmane M, Dubois A, Raymond O, Caissard JC, Baudino S, Crespel L, Gudin S, Ricci SC, Kovatcheva N, Van Huylenbroeck J, Leus L, Wisseman V, Zimmermann H, Hensen I, Werlemark G, Nybom H (2011) Rosa. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin, pp 243–275CrossRefGoogle Scholar
  221. Solo K, Collins S, Cheng Q, England B, Hale F, Windham AS, Byrne D, Anderson N, Windham MT (2017) Rosa species resistance to Eriophyid mite populations. Conference abstract APS. Phytopathology 107:139Google Scholar
  222. Souq F, Coutos-Thevenot P, Yean H, Delbard G, Maziere Y, Barbe JP, Boulay M (1996) Genetic transformation of roses, 2 examples: one on morphogenesis, the other on anthocyanin biosynthetic pathway. Acta Hortic 424:381–388CrossRefGoogle Scholar
  223. Spethmann W, Feuerhahn B (2003) Genetics / species crosses. In: Roberts, Debener, Gudin (eds) Encyclopedia of rose science. Elsevier, Academic Press, OxfordGoogle Scholar
  224. Spiller M, Linde M, Hibrand-Saint Oyant L, Tsai C-J, Byrne DH, Smulders MJ, Foucher F, Debener T (2011) Towards a unified genetic map for diploid roses. Theor Appl Genet 122:489–500PubMedCrossRefGoogle Scholar
  225. Squirrell J, Mandegaran Z, Yokoya K, Robets AV, Mottley J (2005) Cell lines and plants obtained after protoplast fusions of Rosa+Rosa, Rosa+Prunus and Rosa+Rubus. Euphytica 146:223–231CrossRefGoogle Scholar
  226. Stewart RN, Semeniuk P (1965) The effect of the interaction of temperature with after-ripening requirements and compensating temperature on germination of seeds of 5 species of Rosa. Am J Bot 52:755–760CrossRefGoogle Scholar
  227. Svejda (1968) Effect of temperature and seed coat treatment on the germination of rose seeds. Hortscience 3:184–185Google Scholar
  228. Svejda F (1977) Breeding for improvement of flowering attributes of winterhardy Rosa kordesii Wuiff hybrids. Euphytica 26:703–708CrossRefGoogle Scholar
  229. Svejda F (1979) Inheritance of winterhardiness in roses. Euphytica 28:309–314CrossRefGoogle Scholar
  230. Szinay D, Bai Y, Visser R, de Jong H (2010) FISH applications for genomics and plant breeding strategies in tomato and other solanaceous crops. Cytogenet Genome Res 129:199–210PubMedCrossRefGoogle Scholar
  231. Tanaka Y, Katsumoto Y, Demelis L, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Togami T, Nakamura N, Tsuda S, Mason J (2007) Flower colour modification of roses by expression of a torenian anthocyanin methyltransferase gene. Plant Cell Physiol 48:S221–S221CrossRefGoogle Scholar
  232. Torres AM, Milan T, Cubero JI (1993) Identifying rose cultivars using random amplified polymorphic DNA markers. HortSci 28:333–334Google Scholar
  233. Ueda Y (2003) Seed maturation and germination. In: Roberts, Debener, Gudin (eds) Encyclopedia of rose science. Elsevier Academic Press, OxfordGoogle Scholar
  234. UPOV (2018) website on: Essentially Derived Varieties legi http://www.upov.int/meetings/en/doc_details.jsp?meeting_id=24135&doc_id=186123. Accessed 04 Mar 2018
  235. van der Salm TPM, van der Toorn CJG, Hänisch ten Cate CHH, Dons HJM (1996) Somatic embryogenesis and shoot regeneration from excised adventious roots of the rootstock Rosa hybrida L. ‘Moneyway’. Plant Cell Rep 15:522–526PubMedCrossRefGoogle Scholar
  236. van der Salm TPM, van der Toorn CJG, Bouwer R, Hanish ten Cate CH, Don HJM (1997) Production of ROL gene transformed plants of Rosa hybrida L. and characterisation of their rooting ability. Mol Breed 3:39–47CrossRefGoogle Scholar
  237. van der Salm TPM, Bouwer R, van Dijk AJ, Keizer LCP, Hänisch ten Cate CH, van der Plas LWH, Dons JJM (1998) Stimulation of scion bud release by rol gene transformed rootstocks of Rosa hybrida L. J Exp Bot 49:847–852CrossRefGoogle Scholar
  238. Van Huylenbroeck J, Leus L, Van Bockstaele E (2005) Interploidy crosses in roses: use of triploids. Acta Hortic 690:109–112CrossRefGoogle Scholar
  239. Van Huylenbroeck J, Eeckhaut T, Leus L, Werlemark G, De Riek J (2007) Introduction of wild germplasm in modern roses. Acta Hortic 751:285–290CrossRefGoogle Scholar
  240. Vergne P, Maene M, Gabant G, Chauvet A, Debener T, Bendahmane M (2010) Somatic embryogenesis and transformation of the diploid Rosa chinensis cv old blush. Plant Cell Tissue Organ Cult 100:73CrossRefGoogle Scholar
  241. Visessuwan R, Kawai T, Mii M (1997) Plant regeneration systems from leaf segment culture through embryogenic callus formation of Rosa hybrida and R. canina. Breed Sci 47:217–222Google Scholar
  242. von Malek B, Debener T (1998) Genetic analysis of resistance to black spot (Diplocarpon rosae) in tetraploid roses. Theor Appl Genet 96:228–231CrossRefGoogle Scholar
  243. Vosman B, Visser D, van der Voort JR, Smulders MJM, van Eeuwijk F (2004) The establishment of ‘essential derivation’ among rose varieties, using AFLP. Theor Appl Genet 109:1718–1725PubMedCrossRefGoogle Scholar
  244. Vukosavljev M (2014) Towards marker assisted breeding in garden roses: from marker development to QTL detection. PhD Dissertation, Wageningen UniversityGoogle Scholar
  245. Vukosavljev M, Arens P, Voorrips RE, Westende v ‘t, WP EG, Bourke PM, Cox P, van de Weg WE, Visser RGF, Maliepaard C, Smulders MJ (2016) High-density SNP-based genetic maps for the parents of an outcrossed and a selfed tetraploid garden rose cross, inferred from admixed progeny using the 68k rose SNP array. Hortic Res 3:16052PubMedPubMedCentralCrossRefGoogle Scholar
  246. Walther F, Sauer A (1986) In vitro mutagenesis in roses. Acta Hortic 189:37–46CrossRefGoogle Scholar
  247. Wang X, Jacob Y, Mastrantuono S, Bazzano J, Voisin R, Esmenjaud D (2004) Spectrum and inheritance of resistance to the root-knot nematode Meloidogyne hapla in Rosa multiflora and R. indica. Plant Breed 123:79–83CrossRefGoogle Scholar
  248. Werlemark G, Carlson-Nilsson U, Uggla M, Nybom H (1995) Effects of temperature treatments on seedling emergence in dogroses, Rosa sect. Caninae (L). Acta Agric Scand 45:278–282Google Scholar
  249. Werlemark G, Carlson-Nilsson U, Esselink GD, Nybom H (2009) Studies of intersectional crosses between pentaploid dogrose species (Rosa sect. Caninae L.) as seed parents and tetraploid garden roses as pollen donors. In: Zlesak. (ed) RosesFloriculture and ornamental biotechnology. Global Science Books Ltd., UK, Ikenobe, Japan pp 131–138Google Scholar
  250. Whitaker VM, Zuzek K, Hokanson SC (2007) Resistance of 12 rose genotypes to14 isolates of Diplocarpon rosae wolf (rose blackspot) collected from eastern North America. Plant Breed 126:83–88CrossRefGoogle Scholar
  251. Whitaker VM, Debener T, Roberts AV, Hokanson SC (2010) A standard set ofhost differentials and unified nomenclature for an international collection of Diplocarpon rosae races. Plant Pathol 59:745–752CrossRefGoogle Scholar
  252. Wissemann V (2003) Conventional taxonomy of wild roses. In: Roberts A, Debener T, Gudin S (eds) Encyclopedia of rose science. Elsevier, Academic Press, Oxford, pp 111–117CrossRefGoogle Scholar
  253. Wissemann V, Ritz CM (2005) The genus Rosa (Rosoideae, Rosaceae) revisited: molecular analysis of nrITS-1 and atpB-rbcL intergenic spacer (IGS) versus conventional taxonomy. Bot J Linn Soc 147:275–290CrossRefGoogle Scholar
  254. Wylie AP (1954) The history of garden roses – part I. J R Hortic Soc 79:555–571Google Scholar
  255. Yambe Y, Takeno K (1992) Improvement of rose achene germination by treatment with macerating enzymes. HortSci 27:1018–1020Google Scholar
  256. Yambe Y, Hori Y, Takeno K (1992) Levels of endogenous abscisic acid in rose achenes and leaching with activated charcoal to improve seed germination. J Japan Soc Hortic Sci 61:383–387CrossRefGoogle Scholar
  257. Yan Z, Denneboom C, Hattendorf A, Dolstra O, Debener T, Stam P, Visser PB (2005) Construction of an integrated map of rose with AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. Theor Appl Genet 110:766–777PubMedCrossRefGoogle Scholar
  258. Yokoya K, Walker S, Sarasan V (1996) Regeneration of rose plants from cell and tissue culture. Acta Hortic 424:333–337CrossRefGoogle Scholar
  259. Yokoya K, Kandasamy KI, Walker S, Mandegaran Z, Roberts AV (2000) Resistance of roses to pathotypes of Diplocarpon rosae. Ann Appl Biol 136:15–20CrossRefGoogle Scholar
  260. Young MA, Schorr P, Baer R (2007) Modern roses 12. American Rose Society, ShreveportGoogle Scholar
  261. Zakizadeh H, Lutken H, Sriskandarajah S, Serek M, Muller R (2013) Transformation of miniature potted rose (Rosa hybrida cv. Linda) with PSAG12-ipt gene delays leaf senescence and enhances resistance to exogenous ethylene. Plant Cell Rep 32:195–205CrossRefPubMedGoogle Scholar
  262. Zhang D, Germain E, Reynders-Aloisi S, Gandelin MH (2000) Development of amplified fragment length polymorphism markers for variety identification in rose. Acta Hortic 508:113–120CrossRefGoogle Scholar
  263. Zhang LH, Byrne DH, Ballard RE, Rajapakse S (2006) Microsatellite marker development in rose and its application in tetraploid mapping. J Am Soc Hortic Sci 131:380–387CrossRefGoogle Scholar
  264. Zhang X, Zhang J, Zhang W, Yang T, Xiong Y, Che D (2016) Transcriptome sequencing and de novo analysis of Rosa multiflora under cold stress. Acta Physiol Plant 38:164CrossRefGoogle Scholar
  265. Zhou Z, Bao W, Wu N (2009) Effects of scarification, stratification and chemical treatments on the germination of Rosa soulieana Crépin achenes. In: da Silva T (ed) Floriculture and ornamental biotechnology. Global Science Books, London, pp 75–80Google Scholar
  266. Zieslin N (1996) Influence of climatic and socio economical factors on mode of cultivation and research of rose plants. Acta Hortic 424:21–22CrossRefGoogle Scholar
  267. Zlesak DC (2005) The effects of short-term drying on seed germination in Rosa. HortSci 40:1931–1932Google Scholar
  268. Zlesak DC (2006) Rose – Rosa x hybrida. In: Anderson NO (ed) Flower breeding and genetics: issue, challenges and opportunities for the 21st century. Springer, DordrechtGoogle Scholar
  269. Zlesak DC (2008) Warm stratification enhances germination of Rosa section Caninae species. HortSci 43:1268Google Scholar
  270. Zlesak DC (2009) Pollen diameter and guard cell length as predictors of ploidy in diverse rose cultivars, species and breeding lines. In: da Silva T (ed) Floriculture and ornamental biotechnology. Global Science Books, London, pp 53–70Google Scholar
  271. Zlesak DC (2010) The effect of gibberellins (GA3 and GA4+7) and ethanol on seed germination of Rosa eglanteria and R. glauca. Suppl Rose Hybrid Assoc Newslett 41:1–10Google Scholar
  272. Zlesak DC, Thill CA, Anderson NO (2005) Trifluralin-mediated polyploidization of Rosa chinensis minima (Sims) Voss seedlings. Euphytica 141:281–290CrossRefGoogle Scholar
  273. Zlesak DC, Nelson R, Harp D, Villarreal B, Howell N, Griffin J, Hammond G, George S (2017) Performance of landscape roses grown with minimal input in the north-central, central, and south-Central United States. HortTechnology 27:718–730CrossRefGoogle Scholar
  274. Zvi MMB, Shklarman E, Masci T, Kalev H, Debener T, Shafir S, Ovadis M, Vainstein A (2012) PAP1 transcription factor enhances production of phenylpropanoid and terpenoid scent compounds in rose flowers. New Phytol 195:335–345PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Leen Leus
    • 1
  • Katrijn Van Laere
    • 1
  • Jan De Riek
    • 1
  • Johan Van Huylenbroeck
    • 1
  1. 1.Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Applied Genetics and BreedingMelleBelgium

Personalised recommendations